Properties

Label 10.22.a.d.1.2
Level $10$
Weight $22$
Character 10.1
Self dual yes
Analytic conductor $27.948$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,22,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.9477344287\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1179649}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 294912 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-542.558\) of defining polynomial
Character \(\chi\) \(=\) 10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1024.00 q^{2} +145820. q^{3} +1.04858e6 q^{4} -9.76562e6 q^{5} +1.49320e8 q^{6} -2.36011e8 q^{7} +1.07374e9 q^{8} +1.08031e10 q^{9} -1.00000e10 q^{10} +1.49202e11 q^{11} +1.52903e11 q^{12} +4.89350e11 q^{13} -2.41675e11 q^{14} -1.42402e12 q^{15} +1.09951e12 q^{16} +5.46288e12 q^{17} +1.10624e13 q^{18} -1.12049e13 q^{19} -1.02400e13 q^{20} -3.44151e13 q^{21} +1.52783e14 q^{22} +1.78791e13 q^{23} +1.56573e14 q^{24} +9.53674e13 q^{25} +5.01094e14 q^{26} +4.99812e13 q^{27} -2.47475e14 q^{28} -2.82120e15 q^{29} -1.45820e15 q^{30} +4.24797e15 q^{31} +1.12590e15 q^{32} +2.17567e16 q^{33} +5.59399e15 q^{34} +2.30479e15 q^{35} +1.13279e16 q^{36} +5.74457e16 q^{37} -1.14738e16 q^{38} +7.13570e16 q^{39} -1.04858e16 q^{40} -3.51283e16 q^{41} -3.52410e16 q^{42} -2.62144e17 q^{43} +1.56450e17 q^{44} -1.05499e17 q^{45} +1.83081e16 q^{46} +1.08406e17 q^{47} +1.60331e17 q^{48} -5.02845e17 q^{49} +9.76562e16 q^{50} +7.96597e17 q^{51} +5.13120e17 q^{52} -2.47953e18 q^{53} +5.11807e16 q^{54} -1.45705e18 q^{55} -2.53415e17 q^{56} -1.63389e18 q^{57} -2.88891e18 q^{58} +2.14259e17 q^{59} -1.49320e18 q^{60} +3.64272e18 q^{61} +4.34992e18 q^{62} -2.54965e18 q^{63} +1.15292e18 q^{64} -4.77881e18 q^{65} +2.22788e19 q^{66} -1.13372e19 q^{67} +5.72825e18 q^{68} +2.60712e18 q^{69} +2.36011e18 q^{70} +2.44087e19 q^{71} +1.15998e19 q^{72} -4.12244e19 q^{73} +5.88244e19 q^{74} +1.39065e19 q^{75} -1.17492e19 q^{76} -3.52133e19 q^{77} +7.30695e19 q^{78} +6.83832e19 q^{79} -1.07374e19 q^{80} -1.05716e20 q^{81} -3.59714e19 q^{82} +1.39311e20 q^{83} -3.60868e19 q^{84} -5.33484e19 q^{85} -2.68435e20 q^{86} -4.11387e20 q^{87} +1.60205e20 q^{88} -4.04817e20 q^{89} -1.08031e20 q^{90} -1.15492e20 q^{91} +1.87475e19 q^{92} +6.19438e20 q^{93} +1.11008e20 q^{94} +1.09423e20 q^{95} +1.64179e20 q^{96} -9.18963e20 q^{97} -5.14913e20 q^{98} +1.61185e21 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2048 q^{2} + 30972 q^{3} + 2097152 q^{4} - 19531250 q^{5} + 31715328 q^{6} - 439959356 q^{7} + 2147483648 q^{8} + 13532817186 q^{9} - 20000000000 q^{10} + 105191777184 q^{11} + 32476495872 q^{12}+ \cdots + 14\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1024.00 0.707107
\(3\) 145820. 1.42575 0.712876 0.701290i \(-0.247392\pi\)
0.712876 + 0.701290i \(0.247392\pi\)
\(4\) 1.04858e6 0.500000
\(5\) −9.76562e6 −0.447214
\(6\) 1.49320e8 1.00816
\(7\) −2.36011e8 −0.315793 −0.157896 0.987456i \(-0.550471\pi\)
−0.157896 + 0.987456i \(0.550471\pi\)
\(8\) 1.07374e9 0.353553
\(9\) 1.08031e10 1.03277
\(10\) −1.00000e10 −0.316228
\(11\) 1.49202e11 1.73441 0.867206 0.497949i \(-0.165913\pi\)
0.867206 + 0.497949i \(0.165913\pi\)
\(12\) 1.52903e11 0.712876
\(13\) 4.89350e11 0.984497 0.492248 0.870455i \(-0.336175\pi\)
0.492248 + 0.870455i \(0.336175\pi\)
\(14\) −2.41675e11 −0.223299
\(15\) −1.42402e12 −0.637615
\(16\) 1.09951e12 0.250000
\(17\) 5.46288e12 0.657216 0.328608 0.944466i \(-0.393421\pi\)
0.328608 + 0.944466i \(0.393421\pi\)
\(18\) 1.10624e13 0.730277
\(19\) −1.12049e13 −0.419270 −0.209635 0.977780i \(-0.567228\pi\)
−0.209635 + 0.977780i \(0.567228\pi\)
\(20\) −1.02400e13 −0.223607
\(21\) −3.44151e13 −0.450242
\(22\) 1.52783e14 1.22641
\(23\) 1.78791e13 0.0899916 0.0449958 0.998987i \(-0.485673\pi\)
0.0449958 + 0.998987i \(0.485673\pi\)
\(24\) 1.56573e14 0.504079
\(25\) 9.53674e13 0.200000
\(26\) 5.01094e14 0.696144
\(27\) 4.99812e13 0.0467183
\(28\) −2.47475e14 −0.157896
\(29\) −2.82120e15 −1.24525 −0.622623 0.782522i \(-0.713933\pi\)
−0.622623 + 0.782522i \(0.713933\pi\)
\(30\) −1.45820e15 −0.450862
\(31\) 4.24797e15 0.930858 0.465429 0.885085i \(-0.345900\pi\)
0.465429 + 0.885085i \(0.345900\pi\)
\(32\) 1.12590e15 0.176777
\(33\) 2.17567e16 2.47284
\(34\) 5.59399e15 0.464722
\(35\) 2.30479e15 0.141227
\(36\) 1.13279e16 0.516384
\(37\) 5.74457e16 1.96399 0.981995 0.188909i \(-0.0604951\pi\)
0.981995 + 0.188909i \(0.0604951\pi\)
\(38\) −1.14738e16 −0.296469
\(39\) 7.13570e16 1.40365
\(40\) −1.04858e16 −0.158114
\(41\) −3.51283e16 −0.408721 −0.204361 0.978896i \(-0.565512\pi\)
−0.204361 + 0.978896i \(0.565512\pi\)
\(42\) −3.52410e16 −0.318369
\(43\) −2.62144e17 −1.84978 −0.924891 0.380233i \(-0.875844\pi\)
−0.924891 + 0.380233i \(0.875844\pi\)
\(44\) 1.56450e17 0.867206
\(45\) −1.05499e17 −0.461868
\(46\) 1.83081e16 0.0636337
\(47\) 1.08406e17 0.300626 0.150313 0.988638i \(-0.451972\pi\)
0.150313 + 0.988638i \(0.451972\pi\)
\(48\) 1.60331e17 0.356438
\(49\) −5.02845e17 −0.900275
\(50\) 9.76562e16 0.141421
\(51\) 7.96597e17 0.937027
\(52\) 5.13120e17 0.492248
\(53\) −2.47953e18 −1.94748 −0.973740 0.227662i \(-0.926892\pi\)
−0.973740 + 0.227662i \(0.926892\pi\)
\(54\) 5.11807e16 0.0330348
\(55\) −1.45705e18 −0.775653
\(56\) −2.53415e17 −0.111650
\(57\) −1.63389e18 −0.597775
\(58\) −2.88891e18 −0.880521
\(59\) 2.14259e17 0.0545748 0.0272874 0.999628i \(-0.491313\pi\)
0.0272874 + 0.999628i \(0.491313\pi\)
\(60\) −1.49320e18 −0.318808
\(61\) 3.64272e18 0.653826 0.326913 0.945054i \(-0.393992\pi\)
0.326913 + 0.945054i \(0.393992\pi\)
\(62\) 4.34992e18 0.658216
\(63\) −2.54965e18 −0.326141
\(64\) 1.15292e18 0.125000
\(65\) −4.77881e18 −0.440280
\(66\) 2.22788e19 1.74856
\(67\) −1.13372e19 −0.759835 −0.379918 0.925020i \(-0.624048\pi\)
−0.379918 + 0.925020i \(0.624048\pi\)
\(68\) 5.72825e18 0.328608
\(69\) 2.60712e18 0.128306
\(70\) 2.36011e18 0.0998625
\(71\) 2.44087e19 0.889882 0.444941 0.895560i \(-0.353225\pi\)
0.444941 + 0.895560i \(0.353225\pi\)
\(72\) 1.15998e19 0.365138
\(73\) −4.12244e19 −1.12270 −0.561350 0.827578i \(-0.689718\pi\)
−0.561350 + 0.827578i \(0.689718\pi\)
\(74\) 5.88244e19 1.38875
\(75\) 1.39065e19 0.285150
\(76\) −1.17492e19 −0.209635
\(77\) −3.52133e19 −0.547715
\(78\) 7.30695e19 0.992529
\(79\) 6.83832e19 0.812578 0.406289 0.913745i \(-0.366823\pi\)
0.406289 + 0.913745i \(0.366823\pi\)
\(80\) −1.07374e19 −0.111803
\(81\) −1.05716e20 −0.966159
\(82\) −3.59714e19 −0.289009
\(83\) 1.39311e20 0.985522 0.492761 0.870165i \(-0.335988\pi\)
0.492761 + 0.870165i \(0.335988\pi\)
\(84\) −3.60868e19 −0.225121
\(85\) −5.33484e19 −0.293916
\(86\) −2.68435e20 −1.30799
\(87\) −4.11387e20 −1.77541
\(88\) 1.60205e20 0.613207
\(89\) −4.04817e20 −1.37614 −0.688072 0.725643i \(-0.741542\pi\)
−0.688072 + 0.725643i \(0.741542\pi\)
\(90\) −1.08031e20 −0.326590
\(91\) −1.15492e20 −0.310897
\(92\) 1.87475e19 0.0449958
\(93\) 6.19438e20 1.32717
\(94\) 1.11008e20 0.212575
\(95\) 1.09423e20 0.187503
\(96\) 1.64179e20 0.252040
\(97\) −9.18963e20 −1.26530 −0.632652 0.774436i \(-0.718034\pi\)
−0.632652 + 0.774436i \(0.718034\pi\)
\(98\) −5.14913e20 −0.636590
\(99\) 1.61185e21 1.79124
\(100\) 1.00000e20 0.100000
\(101\) 3.74073e20 0.336963 0.168481 0.985705i \(-0.446114\pi\)
0.168481 + 0.985705i \(0.446114\pi\)
\(102\) 8.15716e20 0.662578
\(103\) 1.43042e21 1.04875 0.524375 0.851488i \(-0.324299\pi\)
0.524375 + 0.851488i \(0.324299\pi\)
\(104\) 5.25435e20 0.348072
\(105\) 3.36085e20 0.201354
\(106\) −2.53904e21 −1.37708
\(107\) −2.52568e20 −0.124122 −0.0620611 0.998072i \(-0.519767\pi\)
−0.0620611 + 0.998072i \(0.519767\pi\)
\(108\) 5.24090e19 0.0233591
\(109\) −1.76002e21 −0.712096 −0.356048 0.934468i \(-0.615876\pi\)
−0.356048 + 0.934468i \(0.615876\pi\)
\(110\) −1.49202e21 −0.548469
\(111\) 8.37672e21 2.80016
\(112\) −2.59497e20 −0.0789482
\(113\) −4.42156e21 −1.22533 −0.612663 0.790344i \(-0.709902\pi\)
−0.612663 + 0.790344i \(0.709902\pi\)
\(114\) −1.67311e21 −0.422691
\(115\) −1.74600e20 −0.0402455
\(116\) −2.95824e21 −0.622623
\(117\) 5.28650e21 1.01676
\(118\) 2.19401e20 0.0385902
\(119\) −1.28930e21 −0.207544
\(120\) −1.52903e21 −0.225431
\(121\) 1.48611e22 2.00819
\(122\) 3.73014e21 0.462325
\(123\) −5.12241e21 −0.582735
\(124\) 4.45432e21 0.465429
\(125\) −9.31323e20 −0.0894427
\(126\) −2.61084e21 −0.230616
\(127\) −1.71933e22 −1.39772 −0.698860 0.715259i \(-0.746309\pi\)
−0.698860 + 0.715259i \(0.746309\pi\)
\(128\) 1.18059e21 0.0883883
\(129\) −3.82258e22 −2.63733
\(130\) −4.89350e21 −0.311325
\(131\) −3.15817e22 −1.85390 −0.926951 0.375182i \(-0.877580\pi\)
−0.926951 + 0.375182i \(0.877580\pi\)
\(132\) 2.28135e22 1.23642
\(133\) 2.64447e21 0.132403
\(134\) −1.16093e22 −0.537285
\(135\) −4.88097e20 −0.0208930
\(136\) 5.86572e21 0.232361
\(137\) 3.69519e22 1.35541 0.677705 0.735334i \(-0.262975\pi\)
0.677705 + 0.735334i \(0.262975\pi\)
\(138\) 2.66969e21 0.0907259
\(139\) −1.17938e22 −0.371533 −0.185766 0.982594i \(-0.559477\pi\)
−0.185766 + 0.982594i \(0.559477\pi\)
\(140\) 2.41675e21 0.0706134
\(141\) 1.58078e22 0.428618
\(142\) 2.49945e22 0.629242
\(143\) 7.30121e22 1.70752
\(144\) 1.18781e22 0.258192
\(145\) 2.75508e22 0.556891
\(146\) −4.22138e22 −0.793869
\(147\) −7.33248e22 −1.28357
\(148\) 6.02361e22 0.981995
\(149\) −7.15203e21 −0.108636 −0.0543180 0.998524i \(-0.517298\pi\)
−0.0543180 + 0.998524i \(0.517298\pi\)
\(150\) 1.42402e22 0.201632
\(151\) 4.84896e22 0.640311 0.320155 0.947365i \(-0.396265\pi\)
0.320155 + 0.947365i \(0.396265\pi\)
\(152\) −1.20311e22 −0.148234
\(153\) 5.90161e22 0.678751
\(154\) −3.60585e22 −0.387293
\(155\) −4.14840e22 −0.416292
\(156\) 7.48232e22 0.701824
\(157\) 7.61443e22 0.667869 0.333934 0.942596i \(-0.391624\pi\)
0.333934 + 0.942596i \(0.391624\pi\)
\(158\) 7.00244e22 0.574580
\(159\) −3.61565e23 −2.77662
\(160\) −1.09951e22 −0.0790569
\(161\) −4.21965e21 −0.0284187
\(162\) −1.08253e23 −0.683177
\(163\) 2.43191e23 1.43872 0.719362 0.694636i \(-0.244434\pi\)
0.719362 + 0.694636i \(0.244434\pi\)
\(164\) −3.68347e22 −0.204361
\(165\) −2.12468e23 −1.10589
\(166\) 1.42655e23 0.696869
\(167\) 7.07489e22 0.324487 0.162243 0.986751i \(-0.448127\pi\)
0.162243 + 0.986751i \(0.448127\pi\)
\(168\) −3.69529e22 −0.159185
\(169\) −7.60128e21 −0.0307664
\(170\) −5.46288e22 −0.207830
\(171\) −1.21047e23 −0.433009
\(172\) −2.74877e23 −0.924891
\(173\) −6.67282e22 −0.211264 −0.105632 0.994405i \(-0.533687\pi\)
−0.105632 + 0.994405i \(0.533687\pi\)
\(174\) −4.21261e23 −1.25540
\(175\) −2.25077e22 −0.0631586
\(176\) 1.64050e23 0.433603
\(177\) 3.12432e22 0.0778102
\(178\) −4.14533e23 −0.973080
\(179\) 3.54801e23 0.785287 0.392643 0.919691i \(-0.371561\pi\)
0.392643 + 0.919691i \(0.371561\pi\)
\(180\) −1.10624e23 −0.230934
\(181\) 4.64442e23 0.914759 0.457380 0.889272i \(-0.348788\pi\)
0.457380 + 0.889272i \(0.348788\pi\)
\(182\) −1.18264e23 −0.219837
\(183\) 5.31181e23 0.932193
\(184\) 1.91975e22 0.0318169
\(185\) −5.60993e23 −0.878323
\(186\) 6.34305e23 0.938452
\(187\) 8.15074e23 1.13988
\(188\) 1.13672e23 0.150313
\(189\) −1.17961e22 −0.0147533
\(190\) 1.12049e23 0.132585
\(191\) 8.73751e23 0.978447 0.489223 0.872158i \(-0.337280\pi\)
0.489223 + 0.872158i \(0.337280\pi\)
\(192\) 1.68119e23 0.178219
\(193\) 1.27124e24 1.27607 0.638036 0.770006i \(-0.279747\pi\)
0.638036 + 0.770006i \(0.279747\pi\)
\(194\) −9.41019e23 −0.894705
\(195\) −6.96846e23 −0.627730
\(196\) −5.27271e23 −0.450137
\(197\) −4.11184e23 −0.332767 −0.166384 0.986061i \(-0.553209\pi\)
−0.166384 + 0.986061i \(0.553209\pi\)
\(198\) 1.65053e24 1.26660
\(199\) −2.46871e24 −1.79686 −0.898428 0.439121i \(-0.855290\pi\)
−0.898428 + 0.439121i \(0.855290\pi\)
\(200\) 1.02400e23 0.0707107
\(201\) −1.65319e24 −1.08334
\(202\) 3.83051e23 0.238269
\(203\) 6.65833e23 0.393240
\(204\) 8.35293e23 0.468513
\(205\) 3.43050e23 0.182786
\(206\) 1.46475e24 0.741578
\(207\) 1.93149e23 0.0929404
\(208\) 5.38046e23 0.246124
\(209\) −1.67179e24 −0.727187
\(210\) 3.44151e23 0.142379
\(211\) −2.00142e24 −0.787723 −0.393861 0.919170i \(-0.628861\pi\)
−0.393861 + 0.919170i \(0.628861\pi\)
\(212\) −2.59998e24 −0.973740
\(213\) 3.55928e24 1.26875
\(214\) −2.58630e23 −0.0877676
\(215\) 2.56000e24 0.827248
\(216\) 5.36669e22 0.0165174
\(217\) −1.00257e24 −0.293958
\(218\) −1.80226e24 −0.503528
\(219\) −6.01134e24 −1.60069
\(220\) −1.52783e24 −0.387826
\(221\) 2.67326e24 0.647027
\(222\) 8.57777e24 1.98001
\(223\) −5.12870e24 −1.12929 −0.564646 0.825333i \(-0.690987\pi\)
−0.564646 + 0.825333i \(0.690987\pi\)
\(224\) −2.65724e23 −0.0558248
\(225\) 1.03027e24 0.206553
\(226\) −4.52768e24 −0.866437
\(227\) −6.33336e24 −1.15708 −0.578539 0.815654i \(-0.696377\pi\)
−0.578539 + 0.815654i \(0.696377\pi\)
\(228\) −1.71326e24 −0.298888
\(229\) −1.10871e24 −0.184734 −0.0923671 0.995725i \(-0.529443\pi\)
−0.0923671 + 0.995725i \(0.529443\pi\)
\(230\) −1.78791e23 −0.0284579
\(231\) −5.13481e24 −0.780906
\(232\) −3.02924e24 −0.440261
\(233\) 1.82788e24 0.253928 0.126964 0.991907i \(-0.459477\pi\)
0.126964 + 0.991907i \(0.459477\pi\)
\(234\) 5.41338e24 0.718955
\(235\) −1.05866e24 −0.134444
\(236\) 2.24667e23 0.0272874
\(237\) 9.97164e24 1.15853
\(238\) −1.32024e24 −0.146756
\(239\) 1.53311e25 1.63078 0.815392 0.578910i \(-0.196522\pi\)
0.815392 + 0.578910i \(0.196522\pi\)
\(240\) −1.56573e24 −0.159404
\(241\) 1.14922e25 1.12002 0.560008 0.828487i \(-0.310798\pi\)
0.560008 + 0.828487i \(0.310798\pi\)
\(242\) 1.52177e25 1.42000
\(243\) −1.59383e25 −1.42422
\(244\) 3.81966e24 0.326913
\(245\) 4.91059e24 0.402615
\(246\) −5.24535e24 −0.412056
\(247\) −5.48310e24 −0.412770
\(248\) 4.56122e24 0.329108
\(249\) 2.03144e25 1.40511
\(250\) −9.53674e23 −0.0632456
\(251\) 2.87805e25 1.83031 0.915155 0.403102i \(-0.132068\pi\)
0.915155 + 0.403102i \(0.132068\pi\)
\(252\) −2.67350e24 −0.163070
\(253\) 2.66760e24 0.156083
\(254\) −1.76059e25 −0.988337
\(255\) −7.77927e24 −0.419051
\(256\) 1.20893e24 0.0625000
\(257\) 1.15320e25 0.572279 0.286140 0.958188i \(-0.407628\pi\)
0.286140 + 0.958188i \(0.407628\pi\)
\(258\) −3.91432e25 −1.86487
\(259\) −1.35578e25 −0.620214
\(260\) −5.01094e24 −0.220140
\(261\) −3.04777e25 −1.28605
\(262\) −3.23397e25 −1.31091
\(263\) 1.45289e24 0.0565844 0.0282922 0.999600i \(-0.490993\pi\)
0.0282922 + 0.999600i \(0.490993\pi\)
\(264\) 2.33611e25 0.874281
\(265\) 2.42142e25 0.870940
\(266\) 2.70794e24 0.0936227
\(267\) −5.90304e25 −1.96204
\(268\) −1.18879e25 −0.379918
\(269\) 6.13764e25 1.88626 0.943131 0.332420i \(-0.107865\pi\)
0.943131 + 0.332420i \(0.107865\pi\)
\(270\) −4.99812e23 −0.0147736
\(271\) −6.52956e25 −1.85655 −0.928274 0.371897i \(-0.878707\pi\)
−0.928274 + 0.371897i \(0.878707\pi\)
\(272\) 6.00650e24 0.164304
\(273\) −1.68410e25 −0.443262
\(274\) 3.78387e25 0.958420
\(275\) 1.42290e25 0.346882
\(276\) 2.73377e24 0.0641529
\(277\) −2.58414e25 −0.583820 −0.291910 0.956446i \(-0.594291\pi\)
−0.291910 + 0.956446i \(0.594291\pi\)
\(278\) −1.20768e25 −0.262713
\(279\) 4.58913e25 0.961359
\(280\) 2.47475e24 0.0499312
\(281\) −4.28312e25 −0.832423 −0.416212 0.909268i \(-0.636642\pi\)
−0.416212 + 0.909268i \(0.636642\pi\)
\(282\) 1.61872e25 0.303079
\(283\) 2.55709e25 0.461306 0.230653 0.973036i \(-0.425914\pi\)
0.230653 + 0.973036i \(0.425914\pi\)
\(284\) 2.55944e25 0.444941
\(285\) 1.59560e25 0.267333
\(286\) 7.47644e25 1.20740
\(287\) 8.29067e24 0.129071
\(288\) 1.21632e25 0.182569
\(289\) −3.92489e25 −0.568067
\(290\) 2.82120e25 0.393781
\(291\) −1.34003e26 −1.80401
\(292\) −4.32269e25 −0.561350
\(293\) 8.04265e25 1.00760 0.503801 0.863820i \(-0.331934\pi\)
0.503801 + 0.863820i \(0.331934\pi\)
\(294\) −7.50846e25 −0.907620
\(295\) −2.09237e24 −0.0244066
\(296\) 6.16818e25 0.694375
\(297\) 7.45730e24 0.0810287
\(298\) −7.32368e24 −0.0768172
\(299\) 8.74911e24 0.0885965
\(300\) 1.45820e25 0.142575
\(301\) 6.18687e25 0.584148
\(302\) 4.96534e25 0.452768
\(303\) 5.45473e25 0.480425
\(304\) −1.23199e25 −0.104818
\(305\) −3.55734e25 −0.292400
\(306\) 6.04325e25 0.479950
\(307\) 1.68725e26 1.29487 0.647436 0.762120i \(-0.275841\pi\)
0.647436 + 0.762120i \(0.275841\pi\)
\(308\) −3.69239e25 −0.273858
\(309\) 2.08583e26 1.49526
\(310\) −4.24797e25 −0.294363
\(311\) −1.48552e26 −0.995163 −0.497581 0.867417i \(-0.665778\pi\)
−0.497581 + 0.867417i \(0.665778\pi\)
\(312\) 7.66190e25 0.496264
\(313\) −2.05064e26 −1.28432 −0.642162 0.766569i \(-0.721962\pi\)
−0.642162 + 0.766569i \(0.721962\pi\)
\(314\) 7.79718e25 0.472255
\(315\) 2.48989e25 0.145855
\(316\) 7.17050e25 0.406289
\(317\) 1.29090e26 0.707570 0.353785 0.935327i \(-0.384894\pi\)
0.353785 + 0.935327i \(0.384894\pi\)
\(318\) −3.70243e26 −1.96337
\(319\) −4.20929e26 −2.15977
\(320\) −1.12590e25 −0.0559017
\(321\) −3.68295e25 −0.176967
\(322\) −4.32092e24 −0.0200951
\(323\) −6.12109e25 −0.275551
\(324\) −1.10851e26 −0.483079
\(325\) 4.66680e25 0.196899
\(326\) 2.49027e26 1.01733
\(327\) −2.56645e26 −1.01527
\(328\) −3.77188e25 −0.144505
\(329\) −2.55851e25 −0.0949357
\(330\) −2.17567e26 −0.781981
\(331\) −3.05719e25 −0.106446 −0.0532229 0.998583i \(-0.516949\pi\)
−0.0532229 + 0.998583i \(0.516949\pi\)
\(332\) 1.46078e26 0.492761
\(333\) 6.20592e26 2.02834
\(334\) 7.24469e25 0.229447
\(335\) 1.10715e26 0.339809
\(336\) −3.78398e25 −0.112561
\(337\) −1.13350e26 −0.326820 −0.163410 0.986558i \(-0.552249\pi\)
−0.163410 + 0.986558i \(0.552249\pi\)
\(338\) −7.78371e24 −0.0217551
\(339\) −6.44752e26 −1.74701
\(340\) −5.59399e25 −0.146958
\(341\) 6.33806e26 1.61449
\(342\) −1.23953e26 −0.306183
\(343\) 2.50500e26 0.600093
\(344\) −2.81475e26 −0.653997
\(345\) −2.54602e25 −0.0573801
\(346\) −6.83296e25 −0.149386
\(347\) 2.45240e25 0.0520153 0.0260077 0.999662i \(-0.491721\pi\)
0.0260077 + 0.999662i \(0.491721\pi\)
\(348\) −4.31371e26 −0.887705
\(349\) −5.35297e25 −0.106888 −0.0534438 0.998571i \(-0.517020\pi\)
−0.0534438 + 0.998571i \(0.517020\pi\)
\(350\) −2.30479e25 −0.0446599
\(351\) 2.44583e25 0.0459940
\(352\) 1.67987e26 0.306604
\(353\) 9.40765e26 1.66666 0.833329 0.552777i \(-0.186432\pi\)
0.833329 + 0.552777i \(0.186432\pi\)
\(354\) 3.19930e25 0.0550201
\(355\) −2.38367e26 −0.397967
\(356\) −4.24481e26 −0.688072
\(357\) −1.88006e26 −0.295906
\(358\) 3.63317e26 0.555282
\(359\) 5.56389e25 0.0825822 0.0412911 0.999147i \(-0.486853\pi\)
0.0412911 + 0.999147i \(0.486853\pi\)
\(360\) −1.13279e26 −0.163295
\(361\) −5.88660e26 −0.824213
\(362\) 4.75589e26 0.646832
\(363\) 2.16704e27 2.86317
\(364\) −1.21102e26 −0.155449
\(365\) 4.02582e26 0.502087
\(366\) 5.43929e26 0.659160
\(367\) −6.30707e26 −0.742736 −0.371368 0.928486i \(-0.621111\pi\)
−0.371368 + 0.928486i \(0.621111\pi\)
\(368\) 1.96582e25 0.0224979
\(369\) −3.79495e26 −0.422114
\(370\) −5.74457e26 −0.621068
\(371\) 5.85196e26 0.615001
\(372\) 6.49528e26 0.663586
\(373\) 5.07549e26 0.504122 0.252061 0.967711i \(-0.418892\pi\)
0.252061 + 0.967711i \(0.418892\pi\)
\(374\) 8.34636e26 0.806019
\(375\) −1.35805e26 −0.127523
\(376\) 1.16400e26 0.106287
\(377\) −1.38055e27 −1.22594
\(378\) −1.20792e25 −0.0104322
\(379\) −9.91065e26 −0.832512 −0.416256 0.909248i \(-0.636658\pi\)
−0.416256 + 0.909248i \(0.636658\pi\)
\(380\) 1.14738e26 0.0937517
\(381\) −2.50713e27 −1.99280
\(382\) 8.94721e26 0.691866
\(383\) 6.75228e26 0.507999 0.254000 0.967204i \(-0.418254\pi\)
0.254000 + 0.967204i \(0.418254\pi\)
\(384\) 1.72154e26 0.126020
\(385\) 3.43880e26 0.244946
\(386\) 1.30175e27 0.902319
\(387\) −2.83197e27 −1.91039
\(388\) −9.63603e26 −0.632652
\(389\) −3.61783e25 −0.0231194 −0.0115597 0.999933i \(-0.503680\pi\)
−0.0115597 + 0.999933i \(0.503680\pi\)
\(390\) −7.13570e26 −0.443872
\(391\) 9.76711e25 0.0591439
\(392\) −5.39925e26 −0.318295
\(393\) −4.60524e27 −2.64320
\(394\) −4.21052e26 −0.235302
\(395\) −6.67805e26 −0.363396
\(396\) 1.69015e27 0.895622
\(397\) 1.33109e27 0.686921 0.343460 0.939167i \(-0.388401\pi\)
0.343460 + 0.939167i \(0.388401\pi\)
\(398\) −2.52796e27 −1.27057
\(399\) 3.85617e26 0.188773
\(400\) 1.04858e26 0.0500000
\(401\) −2.02246e27 −0.939428 −0.469714 0.882819i \(-0.655643\pi\)
−0.469714 + 0.882819i \(0.655643\pi\)
\(402\) −1.69286e27 −0.766035
\(403\) 2.07874e27 0.916426
\(404\) 3.92244e26 0.168481
\(405\) 1.03238e27 0.432079
\(406\) 6.81813e26 0.278062
\(407\) 8.57102e27 3.40637
\(408\) 8.55340e26 0.331289
\(409\) −8.47227e26 −0.319820 −0.159910 0.987132i \(-0.551120\pi\)
−0.159910 + 0.987132i \(0.551120\pi\)
\(410\) 3.51283e26 0.129249
\(411\) 5.38833e27 1.93248
\(412\) 1.49990e27 0.524375
\(413\) −5.05674e25 −0.0172343
\(414\) 1.97785e26 0.0657188
\(415\) −1.36046e27 −0.440739
\(416\) 5.50959e26 0.174036
\(417\) −1.71977e27 −0.529713
\(418\) −1.71192e27 −0.514199
\(419\) 1.21097e26 0.0354720 0.0177360 0.999843i \(-0.494354\pi\)
0.0177360 + 0.999843i \(0.494354\pi\)
\(420\) 3.52410e26 0.100677
\(421\) −2.14501e27 −0.597677 −0.298839 0.954304i \(-0.596599\pi\)
−0.298839 + 0.954304i \(0.596599\pi\)
\(422\) −2.04946e27 −0.557004
\(423\) 1.17113e27 0.310477
\(424\) −2.66238e27 −0.688538
\(425\) 5.20981e26 0.131443
\(426\) 3.64470e27 0.897143
\(427\) −8.59720e26 −0.206474
\(428\) −2.64837e26 −0.0620611
\(429\) 1.06466e28 2.43450
\(430\) 2.62144e27 0.584952
\(431\) −6.54117e27 −1.42444 −0.712220 0.701956i \(-0.752310\pi\)
−0.712220 + 0.701956i \(0.752310\pi\)
\(432\) 5.49549e25 0.0116796
\(433\) −5.01504e27 −1.04028 −0.520141 0.854080i \(-0.674121\pi\)
−0.520141 + 0.854080i \(0.674121\pi\)
\(434\) −1.02663e27 −0.207860
\(435\) 4.01745e27 0.793988
\(436\) −1.84551e27 −0.356048
\(437\) −2.00332e26 −0.0377308
\(438\) −6.15561e27 −1.13186
\(439\) −1.69183e26 −0.0303725 −0.0151862 0.999885i \(-0.504834\pi\)
−0.0151862 + 0.999885i \(0.504834\pi\)
\(440\) −1.56450e27 −0.274235
\(441\) −5.43229e27 −0.929775
\(442\) 2.73742e27 0.457517
\(443\) −9.61737e26 −0.156970 −0.0784851 0.996915i \(-0.525008\pi\)
−0.0784851 + 0.996915i \(0.525008\pi\)
\(444\) 8.78363e27 1.40008
\(445\) 3.95329e27 0.615430
\(446\) −5.25179e27 −0.798529
\(447\) −1.04291e27 −0.154888
\(448\) −2.72102e26 −0.0394741
\(449\) 6.24039e27 0.884353 0.442176 0.896928i \(-0.354207\pi\)
0.442176 + 0.896928i \(0.354207\pi\)
\(450\) 1.05499e27 0.146055
\(451\) −5.24123e27 −0.708891
\(452\) −4.63634e27 −0.612663
\(453\) 7.07075e27 0.912924
\(454\) −6.48537e27 −0.818178
\(455\) 1.12785e27 0.139037
\(456\) −1.75438e27 −0.211345
\(457\) 3.52032e27 0.414440 0.207220 0.978294i \(-0.433558\pi\)
0.207220 + 0.978294i \(0.433558\pi\)
\(458\) −1.13532e27 −0.130627
\(459\) 2.73041e26 0.0307040
\(460\) −1.83081e26 −0.0201227
\(461\) −1.20890e28 −1.29877 −0.649385 0.760460i \(-0.724974\pi\)
−0.649385 + 0.760460i \(0.724974\pi\)
\(462\) −5.25804e27 −0.552184
\(463\) 1.11633e28 1.14602 0.573011 0.819548i \(-0.305775\pi\)
0.573011 + 0.819548i \(0.305775\pi\)
\(464\) −3.10194e27 −0.311311
\(465\) −6.04920e27 −0.593529
\(466\) 1.87175e27 0.179554
\(467\) −7.95837e26 −0.0746443 −0.0373222 0.999303i \(-0.511883\pi\)
−0.0373222 + 0.999303i \(0.511883\pi\)
\(468\) 5.54330e27 0.508378
\(469\) 2.67570e27 0.239951
\(470\) −1.08406e27 −0.0950664
\(471\) 1.11034e28 0.952215
\(472\) 2.30059e26 0.0192951
\(473\) −3.91124e28 −3.20828
\(474\) 1.02110e28 0.819208
\(475\) −1.06858e27 −0.0838540
\(476\) −1.35193e27 −0.103772
\(477\) −2.67867e28 −2.01129
\(478\) 1.56991e28 1.15314
\(479\) −2.17497e28 −1.56290 −0.781448 0.623970i \(-0.785519\pi\)
−0.781448 + 0.623970i \(0.785519\pi\)
\(480\) −1.60331e27 −0.112716
\(481\) 2.81110e28 1.93354
\(482\) 1.17680e28 0.791971
\(483\) −6.15309e26 −0.0405180
\(484\) 1.55830e28 1.00409
\(485\) 8.97425e27 0.565861
\(486\) −1.63209e28 −1.00708
\(487\) 5.73428e27 0.346278 0.173139 0.984897i \(-0.444609\pi\)
0.173139 + 0.984897i \(0.444609\pi\)
\(488\) 3.91134e27 0.231162
\(489\) 3.54621e28 2.05126
\(490\) 5.02845e27 0.284692
\(491\) 2.57469e28 1.42682 0.713411 0.700746i \(-0.247149\pi\)
0.713411 + 0.700746i \(0.247149\pi\)
\(492\) −5.37124e27 −0.291367
\(493\) −1.54119e28 −0.818395
\(494\) −5.61470e27 −0.291873
\(495\) −1.57407e28 −0.801069
\(496\) 4.67069e27 0.232714
\(497\) −5.76072e27 −0.281019
\(498\) 2.08019e28 0.993562
\(499\) −8.46999e27 −0.396120 −0.198060 0.980190i \(-0.563464\pi\)
−0.198060 + 0.980190i \(0.563464\pi\)
\(500\) −9.76563e26 −0.0447214
\(501\) 1.03166e28 0.462637
\(502\) 2.94713e28 1.29422
\(503\) 6.31847e27 0.271737 0.135868 0.990727i \(-0.456618\pi\)
0.135868 + 0.990727i \(0.456618\pi\)
\(504\) −2.73767e27 −0.115308
\(505\) −3.65306e27 −0.150694
\(506\) 2.73162e27 0.110367
\(507\) −1.10842e27 −0.0438652
\(508\) −1.80285e28 −0.698860
\(509\) −2.12183e28 −0.805701 −0.402851 0.915266i \(-0.631981\pi\)
−0.402851 + 0.915266i \(0.631981\pi\)
\(510\) −7.96597e27 −0.296314
\(511\) 9.72940e27 0.354541
\(512\) 1.23794e27 0.0441942
\(513\) −5.60032e26 −0.0195876
\(514\) 1.18088e28 0.404662
\(515\) −1.39689e28 −0.469015
\(516\) −4.00826e28 −1.31866
\(517\) 1.61745e28 0.521410
\(518\) −1.38832e28 −0.438557
\(519\) −9.73030e27 −0.301210
\(520\) −5.13120e27 −0.155663
\(521\) 2.15042e28 0.639333 0.319666 0.947530i \(-0.396429\pi\)
0.319666 + 0.947530i \(0.396429\pi\)
\(522\) −3.12092e28 −0.909374
\(523\) 2.33910e28 0.668006 0.334003 0.942572i \(-0.391600\pi\)
0.334003 + 0.942572i \(0.391600\pi\)
\(524\) −3.31158e28 −0.926951
\(525\) −3.28208e27 −0.0900484
\(526\) 1.48776e27 0.0400112
\(527\) 2.32061e28 0.611774
\(528\) 2.39217e28 0.618210
\(529\) −3.91519e28 −0.991902
\(530\) 2.47953e28 0.615847
\(531\) 2.31466e27 0.0563631
\(532\) 2.77293e27 0.0662013
\(533\) −1.71900e28 −0.402385
\(534\) −6.04471e28 −1.38737
\(535\) 2.46649e27 0.0555091
\(536\) −1.21732e28 −0.268642
\(537\) 5.17371e28 1.11962
\(538\) 6.28494e28 1.33379
\(539\) −7.50256e28 −1.56145
\(540\) −5.11807e26 −0.0104465
\(541\) −8.51648e28 −1.70486 −0.852430 0.522841i \(-0.824872\pi\)
−0.852430 + 0.522841i \(0.824872\pi\)
\(542\) −6.68627e28 −1.31278
\(543\) 6.77250e28 1.30422
\(544\) 6.15066e27 0.116180
\(545\) 1.71877e28 0.318459
\(546\) −1.72452e28 −0.313434
\(547\) −2.74194e28 −0.488868 −0.244434 0.969666i \(-0.578602\pi\)
−0.244434 + 0.969666i \(0.578602\pi\)
\(548\) 3.87469e28 0.677705
\(549\) 3.93527e28 0.675250
\(550\) 1.45705e28 0.245283
\(551\) 3.16112e28 0.522094
\(552\) 2.79938e27 0.0453629
\(553\) −1.61392e28 −0.256606
\(554\) −2.64616e28 −0.412823
\(555\) −8.18040e28 −1.25227
\(556\) −1.23667e28 −0.185766
\(557\) 9.36354e28 1.38026 0.690130 0.723686i \(-0.257553\pi\)
0.690130 + 0.723686i \(0.257553\pi\)
\(558\) 4.69926e28 0.679784
\(559\) −1.28280e29 −1.82110
\(560\) 2.53415e27 0.0353067
\(561\) 1.18854e29 1.62519
\(562\) −4.38592e28 −0.588612
\(563\) 1.15762e27 0.0152485 0.00762423 0.999971i \(-0.497573\pi\)
0.00762423 + 0.999971i \(0.497573\pi\)
\(564\) 1.65757e28 0.214309
\(565\) 4.31793e28 0.547983
\(566\) 2.61846e28 0.326192
\(567\) 2.49501e28 0.305106
\(568\) 2.62087e28 0.314621
\(569\) 1.15072e29 1.35609 0.678046 0.735020i \(-0.262827\pi\)
0.678046 + 0.735020i \(0.262827\pi\)
\(570\) 1.63389e28 0.189033
\(571\) 2.31271e27 0.0262689 0.0131344 0.999914i \(-0.495819\pi\)
0.0131344 + 0.999914i \(0.495819\pi\)
\(572\) 7.65588e28 0.853761
\(573\) 1.27410e29 1.39502
\(574\) 8.48964e27 0.0912671
\(575\) 1.70508e27 0.0179983
\(576\) 1.24551e28 0.129096
\(577\) 1.04522e29 1.06380 0.531900 0.846807i \(-0.321478\pi\)
0.531900 + 0.846807i \(0.321478\pi\)
\(578\) −4.01908e28 −0.401684
\(579\) 1.85372e29 1.81936
\(580\) 2.88891e28 0.278445
\(581\) −3.28789e28 −0.311221
\(582\) −1.37219e29 −1.27563
\(583\) −3.69952e29 −3.37773
\(584\) −4.42643e28 −0.396935
\(585\) −5.16260e28 −0.454707
\(586\) 8.23568e28 0.712483
\(587\) −6.14643e28 −0.522304 −0.261152 0.965298i \(-0.584102\pi\)
−0.261152 + 0.965298i \(0.584102\pi\)
\(588\) −7.68866e28 −0.641784
\(589\) −4.75979e28 −0.390281
\(590\) −2.14259e27 −0.0172581
\(591\) −5.99588e28 −0.474443
\(592\) 6.31622e28 0.490997
\(593\) 5.04078e28 0.384967 0.192484 0.981300i \(-0.438346\pi\)
0.192484 + 0.981300i \(0.438346\pi\)
\(594\) 7.63628e27 0.0572960
\(595\) 1.25908e28 0.0928166
\(596\) −7.49945e27 −0.0543180
\(597\) −3.59988e29 −2.56187
\(598\) 8.95909e27 0.0626472
\(599\) −1.05424e29 −0.724369 −0.362184 0.932107i \(-0.617969\pi\)
−0.362184 + 0.932107i \(0.617969\pi\)
\(600\) 1.49320e28 0.100816
\(601\) 1.74685e28 0.115897 0.0579486 0.998320i \(-0.481544\pi\)
0.0579486 + 0.998320i \(0.481544\pi\)
\(602\) 6.33536e28 0.413055
\(603\) −1.22477e29 −0.784733
\(604\) 5.08450e28 0.320155
\(605\) −1.45128e29 −0.898088
\(606\) 5.58564e28 0.339712
\(607\) 5.07197e28 0.303177 0.151588 0.988444i \(-0.451561\pi\)
0.151588 + 0.988444i \(0.451561\pi\)
\(608\) −1.26156e28 −0.0741172
\(609\) 9.70918e28 0.560662
\(610\) −3.64272e28 −0.206758
\(611\) 5.30486e28 0.295966
\(612\) 6.18829e28 0.339376
\(613\) −1.33432e29 −0.719326 −0.359663 0.933082i \(-0.617108\pi\)
−0.359663 + 0.933082i \(0.617108\pi\)
\(614\) 1.72774e29 0.915612
\(615\) 5.00236e28 0.260607
\(616\) −3.78100e28 −0.193647
\(617\) 2.59409e29 1.30614 0.653072 0.757296i \(-0.273480\pi\)
0.653072 + 0.757296i \(0.273480\pi\)
\(618\) 2.13589e29 1.05731
\(619\) 4.50651e27 0.0219325 0.0109663 0.999940i \(-0.496509\pi\)
0.0109663 + 0.999940i \(0.496509\pi\)
\(620\) −4.34992e28 −0.208146
\(621\) 8.93616e26 0.00420425
\(622\) −1.52117e29 −0.703686
\(623\) 9.55411e28 0.434576
\(624\) 7.84578e28 0.350912
\(625\) 9.09495e27 0.0400000
\(626\) −2.09986e29 −0.908155
\(627\) −2.43781e29 −1.03679
\(628\) 7.98431e28 0.333934
\(629\) 3.13819e29 1.29077
\(630\) 2.54965e28 0.103135
\(631\) −2.27120e29 −0.903539 −0.451769 0.892135i \(-0.649207\pi\)
−0.451769 + 0.892135i \(0.649207\pi\)
\(632\) 7.34260e28 0.287290
\(633\) −2.91848e29 −1.12310
\(634\) 1.32188e29 0.500328
\(635\) 1.67903e29 0.625079
\(636\) −3.79129e29 −1.38831
\(637\) −2.46067e29 −0.886318
\(638\) −4.31032e29 −1.52719
\(639\) 2.63690e29 0.919042
\(640\) −1.15292e28 −0.0395285
\(641\) 3.34335e29 1.12765 0.563824 0.825895i \(-0.309330\pi\)
0.563824 + 0.825895i \(0.309330\pi\)
\(642\) −3.77134e28 −0.125135
\(643\) 2.54505e29 0.830769 0.415385 0.909646i \(-0.363647\pi\)
0.415385 + 0.909646i \(0.363647\pi\)
\(644\) −4.42462e27 −0.0142094
\(645\) 3.73299e29 1.17945
\(646\) −6.26799e28 −0.194844
\(647\) 3.47025e29 1.06137 0.530683 0.847570i \(-0.321935\pi\)
0.530683 + 0.847570i \(0.321935\pi\)
\(648\) −1.13512e29 −0.341589
\(649\) 3.19679e28 0.0946553
\(650\) 4.77881e28 0.139229
\(651\) −1.46194e29 −0.419111
\(652\) 2.55004e29 0.719362
\(653\) 8.56072e28 0.237641 0.118821 0.992916i \(-0.462089\pi\)
0.118821 + 0.992916i \(0.462089\pi\)
\(654\) −2.62805e29 −0.717905
\(655\) 3.08415e29 0.829090
\(656\) −3.86240e28 −0.102180
\(657\) −4.45352e29 −1.15949
\(658\) −2.61991e28 −0.0671297
\(659\) 4.44478e29 1.12086 0.560432 0.828200i \(-0.310635\pi\)
0.560432 + 0.828200i \(0.310635\pi\)
\(660\) −2.22788e29 −0.552944
\(661\) −3.57515e29 −0.873330 −0.436665 0.899624i \(-0.643841\pi\)
−0.436665 + 0.899624i \(0.643841\pi\)
\(662\) −3.13056e28 −0.0752685
\(663\) 3.89815e29 0.922500
\(664\) 1.49584e29 0.348435
\(665\) −2.58249e28 −0.0592122
\(666\) 6.35486e29 1.43426
\(667\) −5.04404e28 −0.112062
\(668\) 7.41856e28 0.162243
\(669\) −7.47866e29 −1.61009
\(670\) 1.13372e29 0.240281
\(671\) 5.43502e29 1.13400
\(672\) −3.87479e28 −0.0795923
\(673\) 6.36881e29 1.28795 0.643977 0.765045i \(-0.277283\pi\)
0.643977 + 0.765045i \(0.277283\pi\)
\(674\) −1.16071e29 −0.231096
\(675\) 4.76657e27 0.00934365
\(676\) −7.97052e27 −0.0153832
\(677\) 4.25804e29 0.809149 0.404575 0.914505i \(-0.367420\pi\)
0.404575 + 0.914505i \(0.367420\pi\)
\(678\) −6.60226e29 −1.23532
\(679\) 2.16885e29 0.399574
\(680\) −5.72825e28 −0.103915
\(681\) −9.23531e29 −1.64971
\(682\) 6.49018e29 1.14162
\(683\) −4.90070e29 −0.848869 −0.424435 0.905459i \(-0.639527\pi\)
−0.424435 + 0.905459i \(0.639527\pi\)
\(684\) −1.26927e29 −0.216504
\(685\) −3.60858e29 −0.606158
\(686\) 2.56512e29 0.424330
\(687\) −1.61673e29 −0.263385
\(688\) −2.88230e29 −0.462445
\(689\) −1.21336e30 −1.91729
\(690\) −2.60712e28 −0.0405738
\(691\) −9.54239e29 −1.46264 −0.731320 0.682034i \(-0.761095\pi\)
−0.731320 + 0.682034i \(0.761095\pi\)
\(692\) −6.99695e28 −0.105632
\(693\) −3.80414e29 −0.565662
\(694\) 2.51126e28 0.0367804
\(695\) 1.15173e29 0.166154
\(696\) −4.41724e29 −0.627702
\(697\) −1.91902e29 −0.268618
\(698\) −5.48144e28 −0.0755810
\(699\) 2.66542e29 0.362039
\(700\) −2.36011e28 −0.0315793
\(701\) 1.07881e30 1.42202 0.711009 0.703183i \(-0.248238\pi\)
0.711009 + 0.703183i \(0.248238\pi\)
\(702\) 2.50453e28 0.0325227
\(703\) −6.43671e29 −0.823442
\(704\) 1.72019e29 0.216802
\(705\) −1.54373e29 −0.191684
\(706\) 9.63343e29 1.17851
\(707\) −8.82852e28 −0.106410
\(708\) 3.27609e28 0.0389051
\(709\) −3.07083e29 −0.359311 −0.179656 0.983730i \(-0.557498\pi\)
−0.179656 + 0.983730i \(0.557498\pi\)
\(710\) −2.44087e29 −0.281406
\(711\) 7.38752e29 0.839205
\(712\) −4.34669e29 −0.486540
\(713\) 7.59496e28 0.0837694
\(714\) −1.92518e29 −0.209237
\(715\) −7.13009e29 −0.763627
\(716\) 3.72036e29 0.392643
\(717\) 2.23559e30 2.32509
\(718\) 5.69742e28 0.0583945
\(719\) 4.72676e29 0.477431 0.238715 0.971090i \(-0.423274\pi\)
0.238715 + 0.971090i \(0.423274\pi\)
\(720\) −1.15998e29 −0.115467
\(721\) −3.37594e29 −0.331188
\(722\) −6.02788e29 −0.582806
\(723\) 1.67579e30 1.59686
\(724\) 4.87003e29 0.457380
\(725\) −2.69051e29 −0.249049
\(726\) 2.21905e30 2.02457
\(727\) −6.61062e29 −0.594472 −0.297236 0.954804i \(-0.596065\pi\)
−0.297236 + 0.954804i \(0.596065\pi\)
\(728\) −1.24008e29 −0.109919
\(729\) −1.21830e30 −1.06443
\(730\) 4.12244e29 0.355029
\(731\) −1.43206e30 −1.21571
\(732\) 5.56983e29 0.466096
\(733\) 2.18574e30 1.80304 0.901522 0.432733i \(-0.142451\pi\)
0.901522 + 0.432733i \(0.142451\pi\)
\(734\) −6.45844e29 −0.525193
\(735\) 7.16063e29 0.574029
\(736\) 2.01300e28 0.0159084
\(737\) −1.69153e30 −1.31787
\(738\) −3.88603e29 −0.298480
\(739\) 3.79526e29 0.287392 0.143696 0.989622i \(-0.454101\pi\)
0.143696 + 0.989622i \(0.454101\pi\)
\(740\) −5.88244e29 −0.439161
\(741\) −7.99546e29 −0.588508
\(742\) 5.99241e29 0.434871
\(743\) −2.37676e29 −0.170060 −0.0850301 0.996378i \(-0.527099\pi\)
−0.0850301 + 0.996378i \(0.527099\pi\)
\(744\) 6.65117e29 0.469226
\(745\) 6.98440e28 0.0485835
\(746\) 5.19730e29 0.356468
\(747\) 1.50499e30 1.01781
\(748\) 8.54667e29 0.569942
\(749\) 5.96089e28 0.0391969
\(750\) −1.39065e29 −0.0901724
\(751\) −1.40557e30 −0.898736 −0.449368 0.893347i \(-0.648351\pi\)
−0.449368 + 0.893347i \(0.648351\pi\)
\(752\) 1.19194e29 0.0751566
\(753\) 4.19678e30 2.60957
\(754\) −1.41369e30 −0.866870
\(755\) −4.73531e29 −0.286356
\(756\) −1.23691e28 −0.00737665
\(757\) −2.92590e30 −1.72089 −0.860445 0.509544i \(-0.829814\pi\)
−0.860445 + 0.509544i \(0.829814\pi\)
\(758\) −1.01485e30 −0.588675
\(759\) 3.88989e29 0.222535
\(760\) 1.17492e29 0.0662924
\(761\) −5.26624e29 −0.293063 −0.146532 0.989206i \(-0.546811\pi\)
−0.146532 + 0.989206i \(0.546811\pi\)
\(762\) −2.56730e30 −1.40912
\(763\) 4.15383e29 0.224875
\(764\) 9.16194e29 0.489223
\(765\) −5.76329e29 −0.303547
\(766\) 6.91433e29 0.359210
\(767\) 1.04848e29 0.0537288
\(768\) 1.76286e29 0.0891095
\(769\) −3.65277e30 −1.82136 −0.910680 0.413113i \(-0.864441\pi\)
−0.910680 + 0.413113i \(0.864441\pi\)
\(770\) 3.52133e29 0.173203
\(771\) 1.68160e30 0.815928
\(772\) 1.33299e30 0.638036
\(773\) 3.30545e29 0.156079 0.0780397 0.996950i \(-0.475134\pi\)
0.0780397 + 0.996950i \(0.475134\pi\)
\(774\) −2.89993e30 −1.35085
\(775\) 4.05118e29 0.186172
\(776\) −9.86729e29 −0.447353
\(777\) −1.97700e30 −0.884271
\(778\) −3.70466e28 −0.0163479
\(779\) 3.93608e29 0.171365
\(780\) −7.30695e29 −0.313865
\(781\) 3.64184e30 1.54342
\(782\) 1.00015e29 0.0418211
\(783\) −1.41007e29 −0.0581757
\(784\) −5.52884e29 −0.225069
\(785\) −7.43597e29 −0.298680
\(786\) −4.71577e30 −1.86903
\(787\) −1.40282e30 −0.548616 −0.274308 0.961642i \(-0.588449\pi\)
−0.274308 + 0.961642i \(0.588449\pi\)
\(788\) −4.31157e29 −0.166384
\(789\) 2.11860e29 0.0806753
\(790\) −6.83832e29 −0.256960
\(791\) 1.04354e30 0.386949
\(792\) 1.73071e30 0.633301
\(793\) 1.78256e30 0.643689
\(794\) 1.36303e30 0.485726
\(795\) 3.53091e30 1.24174
\(796\) −2.58863e30 −0.898428
\(797\) 1.75762e30 0.602023 0.301011 0.953621i \(-0.402676\pi\)
0.301011 + 0.953621i \(0.402676\pi\)
\(798\) 3.94871e29 0.133483
\(799\) 5.92211e29 0.197576
\(800\) 1.07374e29 0.0353553
\(801\) −4.37328e30 −1.42124
\(802\) −2.07100e30 −0.664276
\(803\) −6.15077e30 −1.94723
\(804\) −1.73349e30 −0.541668
\(805\) 4.12075e28 0.0127092
\(806\) 2.12863e30 0.648011
\(807\) 8.94990e30 2.68934
\(808\) 4.01658e29 0.119134
\(809\) 3.77067e30 1.10397 0.551987 0.833853i \(-0.313870\pi\)
0.551987 + 0.833853i \(0.313870\pi\)
\(810\) 1.05716e30 0.305526
\(811\) 3.20340e30 0.913885 0.456943 0.889496i \(-0.348944\pi\)
0.456943 + 0.889496i \(0.348944\pi\)
\(812\) 6.98177e29 0.196620
\(813\) −9.52140e30 −2.64698
\(814\) 8.77673e30 2.40867
\(815\) −2.37491e30 −0.643417
\(816\) 8.75868e29 0.234257
\(817\) 2.93728e30 0.775558
\(818\) −8.67561e29 −0.226147
\(819\) −1.24767e30 −0.321084
\(820\) 3.59714e29 0.0913928
\(821\) 4.79109e30 1.20180 0.600899 0.799325i \(-0.294810\pi\)
0.600899 + 0.799325i \(0.294810\pi\)
\(822\) 5.51765e30 1.36647
\(823\) 2.15990e30 0.528123 0.264062 0.964506i \(-0.414938\pi\)
0.264062 + 0.964506i \(0.414938\pi\)
\(824\) 1.53590e30 0.370789
\(825\) 2.07488e30 0.494568
\(826\) −5.17810e28 −0.0121865
\(827\) −7.12411e30 −1.65548 −0.827738 0.561115i \(-0.810373\pi\)
−0.827738 + 0.561115i \(0.810373\pi\)
\(828\) 2.02532e29 0.0464702
\(829\) 4.53775e30 1.02806 0.514029 0.857773i \(-0.328152\pi\)
0.514029 + 0.857773i \(0.328152\pi\)
\(830\) −1.39311e30 −0.311649
\(831\) −3.76820e30 −0.832382
\(832\) 5.64182e29 0.123062
\(833\) −2.74698e30 −0.591675
\(834\) −1.76104e30 −0.374564
\(835\) −6.90907e29 −0.145115
\(836\) −1.75300e30 −0.363594
\(837\) 2.12318e29 0.0434881
\(838\) 1.24003e29 0.0250825
\(839\) −7.62675e30 −1.52349 −0.761743 0.647879i \(-0.775656\pi\)
−0.761743 + 0.647879i \(0.775656\pi\)
\(840\) 3.60868e29 0.0711895
\(841\) 2.82633e30 0.550635
\(842\) −2.19649e30 −0.422622
\(843\) −6.24565e30 −1.18683
\(844\) −2.09865e30 −0.393861
\(845\) 7.42312e28 0.0137591
\(846\) 1.19923e30 0.219540
\(847\) −3.50737e30 −0.634171
\(848\) −2.72627e30 −0.486870
\(849\) 3.72875e30 0.657707
\(850\) 5.33484e29 0.0929444
\(851\) 1.02707e30 0.176743
\(852\) 3.73218e30 0.634376
\(853\) 1.80719e30 0.303416 0.151708 0.988425i \(-0.451523\pi\)
0.151708 + 0.988425i \(0.451523\pi\)
\(854\) −8.80353e29 −0.145999
\(855\) 1.18210e30 0.193647
\(856\) −2.71193e29 −0.0438838
\(857\) 1.07620e30 0.172026 0.0860132 0.996294i \(-0.472587\pi\)
0.0860132 + 0.996294i \(0.472587\pi\)
\(858\) 1.09021e31 1.72145
\(859\) −1.30046e29 −0.0202847 −0.0101423 0.999949i \(-0.503228\pi\)
−0.0101423 + 0.999949i \(0.503228\pi\)
\(860\) 2.68435e30 0.413624
\(861\) 1.20894e30 0.184024
\(862\) −6.69816e30 −1.00723
\(863\) −2.62521e28 −0.00389987 −0.00194993 0.999998i \(-0.500621\pi\)
−0.00194993 + 0.999998i \(0.500621\pi\)
\(864\) 5.62738e28 0.00825870
\(865\) 6.51642e29 0.0944800
\(866\) −5.13540e30 −0.735591
\(867\) −5.72327e30 −0.809923
\(868\) −1.05127e30 −0.146979
\(869\) 1.02029e31 1.40935
\(870\) 4.11387e30 0.561434
\(871\) −5.54785e30 −0.748055
\(872\) −1.88980e30 −0.251764
\(873\) −9.92767e30 −1.30677
\(874\) −2.05140e29 −0.0266797
\(875\) 2.19802e29 0.0282454
\(876\) −6.30334e30 −0.800346
\(877\) 6.55749e30 0.822701 0.411350 0.911477i \(-0.365057\pi\)
0.411350 + 0.911477i \(0.365057\pi\)
\(878\) −1.73244e29 −0.0214766
\(879\) 1.17278e31 1.43659
\(880\) −1.60205e30 −0.193913
\(881\) −6.61120e29 −0.0790739 −0.0395370 0.999218i \(-0.512588\pi\)
−0.0395370 + 0.999218i \(0.512588\pi\)
\(882\) −5.56266e30 −0.657450
\(883\) −6.57705e30 −0.768145 −0.384073 0.923303i \(-0.625479\pi\)
−0.384073 + 0.923303i \(0.625479\pi\)
\(884\) 2.80312e30 0.323513
\(885\) −3.05109e29 −0.0347978
\(886\) −9.84819e29 −0.110995
\(887\) −1.00815e31 −1.12287 −0.561433 0.827522i \(-0.689750\pi\)
−0.561433 + 0.827522i \(0.689750\pi\)
\(888\) 8.99444e30 0.990006
\(889\) 4.05780e30 0.441390
\(890\) 4.04817e30 0.435175
\(891\) −1.57731e31 −1.67572
\(892\) −5.37783e30 −0.564646
\(893\) −1.21468e30 −0.126044
\(894\) −1.06794e30 −0.109522
\(895\) −3.46486e30 −0.351191
\(896\) −2.78632e29 −0.0279124
\(897\) 1.27580e30 0.126317
\(898\) 6.39016e30 0.625332
\(899\) −1.19844e31 −1.15915
\(900\) 1.08031e30 0.103277
\(901\) −1.35454e31 −1.27992
\(902\) −5.36702e30 −0.501262
\(903\) 9.02169e30 0.832850
\(904\) −4.74761e30 −0.433218
\(905\) −4.53557e30 −0.409093
\(906\) 7.24045e30 0.645535
\(907\) 1.41780e31 1.24950 0.624751 0.780824i \(-0.285200\pi\)
0.624751 + 0.780824i \(0.285200\pi\)
\(908\) −6.64101e30 −0.578539
\(909\) 4.04115e30 0.348004
\(910\) 1.15492e30 0.0983143
\(911\) 2.18902e31 1.84208 0.921038 0.389472i \(-0.127343\pi\)
0.921038 + 0.389472i \(0.127343\pi\)
\(912\) −1.79649e30 −0.149444
\(913\) 2.07856e31 1.70930
\(914\) 3.60481e30 0.293054
\(915\) −5.18731e30 −0.416889
\(916\) −1.16257e30 −0.0923671
\(917\) 7.45362e30 0.585449
\(918\) 2.79594e29 0.0217110
\(919\) 1.03315e31 0.793144 0.396572 0.918004i \(-0.370200\pi\)
0.396572 + 0.918004i \(0.370200\pi\)
\(920\) −1.87475e29 −0.0142289
\(921\) 2.46035e31 1.84616
\(922\) −1.23792e31 −0.918369
\(923\) 1.19444e31 0.876086
\(924\) −5.38424e30 −0.390453
\(925\) 5.47844e30 0.392798
\(926\) 1.14312e31 0.810360
\(927\) 1.54529e31 1.08311
\(928\) −3.17639e30 −0.220130
\(929\) 1.11191e31 0.761912 0.380956 0.924593i \(-0.375595\pi\)
0.380956 + 0.924593i \(0.375595\pi\)
\(930\) −6.19438e30 −0.419689
\(931\) 5.63431e30 0.377458
\(932\) 1.91667e30 0.126964
\(933\) −2.16618e31 −1.41885
\(934\) −8.14937e29 −0.0527815
\(935\) −7.95971e30 −0.509771
\(936\) 5.67634e30 0.359478
\(937\) 3.58584e30 0.224556 0.112278 0.993677i \(-0.464185\pi\)
0.112278 + 0.993677i \(0.464185\pi\)
\(938\) 2.73991e30 0.169671
\(939\) −2.99025e31 −1.83113
\(940\) −1.11008e30 −0.0672221
\(941\) −3.45702e30 −0.207019 −0.103510 0.994628i \(-0.533007\pi\)
−0.103510 + 0.994628i \(0.533007\pi\)
\(942\) 1.13698e31 0.673318
\(943\) −6.28061e29 −0.0367815
\(944\) 2.35580e29 0.0136437
\(945\) 1.15196e29 0.00659788
\(946\) −4.00511e31 −2.26860
\(947\) 2.52124e31 1.41234 0.706170 0.708043i \(-0.250422\pi\)
0.706170 + 0.708043i \(0.250422\pi\)
\(948\) 1.04560e31 0.579267
\(949\) −2.01731e31 −1.10530
\(950\) −1.09423e30 −0.0592938
\(951\) 1.88239e31 1.00882
\(952\) −1.38437e30 −0.0733779
\(953\) −1.95398e31 −1.02434 −0.512169 0.858884i \(-0.671158\pi\)
−0.512169 + 0.858884i \(0.671158\pi\)
\(954\) −2.74295e31 −1.42220
\(955\) −8.53272e30 −0.437575
\(956\) 1.60759e31 0.815392
\(957\) −6.13799e31 −3.07929
\(958\) −2.22717e31 −1.10513
\(959\) −8.72105e30 −0.428029
\(960\) −1.64179e30 −0.0797019
\(961\) −2.78029e30 −0.133504
\(962\) 2.87857e31 1.36722
\(963\) −2.72853e30 −0.128189
\(964\) 1.20504e31 0.560008
\(965\) −1.24144e31 −0.570677
\(966\) −6.30076e29 −0.0286506
\(967\) 5.59458e30 0.251646 0.125823 0.992053i \(-0.459843\pi\)
0.125823 + 0.992053i \(0.459843\pi\)
\(968\) 1.59570e31 0.710001
\(969\) −8.92577e30 −0.392867
\(970\) 9.18963e30 0.400124
\(971\) 1.38546e31 0.596749 0.298374 0.954449i \(-0.403556\pi\)
0.298374 + 0.954449i \(0.403556\pi\)
\(972\) −1.67126e31 −0.712110
\(973\) 2.78345e30 0.117327
\(974\) 5.87190e30 0.244855
\(975\) 6.80513e30 0.280730
\(976\) 4.00521e30 0.163456
\(977\) 2.01846e31 0.814945 0.407472 0.913218i \(-0.366410\pi\)
0.407472 + 0.913218i \(0.366410\pi\)
\(978\) 3.63132e31 1.45046
\(979\) −6.03996e31 −2.38680
\(980\) 5.14913e30 0.201308
\(981\) −1.90136e31 −0.735429
\(982\) 2.63648e31 1.00891
\(983\) 1.07859e31 0.408361 0.204181 0.978933i \(-0.434547\pi\)
0.204181 + 0.978933i \(0.434547\pi\)
\(984\) −5.50015e30 −0.206028
\(985\) 4.01547e30 0.148818
\(986\) −1.57818e31 −0.578693
\(987\) −3.73081e30 −0.135355
\(988\) −5.74945e30 −0.206385
\(989\) −4.68688e30 −0.166465
\(990\) −1.61185e31 −0.566441
\(991\) 3.01081e31 1.04691 0.523456 0.852053i \(-0.324642\pi\)
0.523456 + 0.852053i \(0.324642\pi\)
\(992\) 4.78278e30 0.164554
\(993\) −4.45799e30 −0.151765
\(994\) −5.89898e30 −0.198710
\(995\) 2.41085e31 0.803578
\(996\) 2.13012e31 0.702554
\(997\) −4.18588e31 −1.36612 −0.683058 0.730364i \(-0.739350\pi\)
−0.683058 + 0.730364i \(0.739350\pi\)
\(998\) −8.67327e30 −0.280099
\(999\) 2.87120e30 0.0917542
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.22.a.d.1.2 2
4.3 odd 2 80.22.a.c.1.1 2
5.2 odd 4 50.22.b.e.49.3 4
5.3 odd 4 50.22.b.e.49.2 4
5.4 even 2 50.22.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.22.a.d.1.2 2 1.1 even 1 trivial
50.22.a.d.1.1 2 5.4 even 2
50.22.b.e.49.2 4 5.3 odd 4
50.22.b.e.49.3 4 5.2 odd 4
80.22.a.c.1.1 2 4.3 odd 2