Properties

Label 10.22.a.d
Level $10$
Weight $22$
Character orbit 10.a
Self dual yes
Analytic conductor $27.948$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,22,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.9477344287\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1179649}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 294912 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 120\sqrt{1179649}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 1024 q^{2} + ( - \beta + 15486) q^{3} + 1048576 q^{4} - 9765625 q^{5} + ( - 1024 \beta + 15857664) q^{6} + (123 \beta - 219979678) q^{7} + 1073741824 q^{8} + ( - 30972 \beta + 6766408593) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 1024 q^{2} + ( - \beta + 15486) q^{3} + 1048576 q^{4} - 9765625 q^{5} + ( - 1024 \beta + 15857664) q^{6} + (123 \beta - 219979678) q^{7} + 1073741824 q^{8} + ( - 30972 \beta + 6766408593) q^{9} - 10000000000 q^{10} + ( - 741222 \beta + 52595888592) q^{11} + ( - 1048576 \beta + 16238247936) q^{12} + ( - 2571252 \beta + 154228324466) q^{13} + (125952 \beta - 225259190272) q^{14} + (9765625 \beta - 151230468750) q^{15} + 1099511627776 q^{16} + (28650372 \beta + 9196998050202) q^{17} + ( - 31715328 \beta + 6928802399232) q^{18} + (177355728 \beta + 11910608357900) q^{19} - 10240000000000 q^{20} + (221884456 \beta - 5495999602308) q^{21} + ( - 759011328 \beta + 53858189918208) q^{22} + ( - 454003431 \beta - 41293021489434) q^{23} + ( - 1073741824 \beta + 16627965886464) q^{24} + 95367431640625 q^{25} + ( - 2632962048 \beta + 157929804253184) q^{26} + (3214312218 \beta + 468915252892740) q^{27} + (128974848 \beta - 230665410838528) q^{28} + (21005116056 \beta - 83519444223210) q^{29} + (10000000000 \beta - 154860000000000) q^{30} + ( - 11980172694 \beta + 26\!\cdots\!92) q^{31}+ \cdots + ( - 66\!\cdots\!70 \beta + 74\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2048 q^{2} + 30972 q^{3} + 2097152 q^{4} - 19531250 q^{5} + 31715328 q^{6} - 439959356 q^{7} + 2147483648 q^{8} + 13532817186 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2048 q^{2} + 30972 q^{3} + 2097152 q^{4} - 19531250 q^{5} + 31715328 q^{6} - 439959356 q^{7} + 2147483648 q^{8} + 13532817186 q^{9} - 20000000000 q^{10} + 105191777184 q^{11} + 32476495872 q^{12} + 308456648932 q^{13} - 450518380544 q^{14} - 302460937500 q^{15} + 2199023255552 q^{16} + 18393996100404 q^{17} + 13857604798464 q^{18} + 23821216715800 q^{19} - 20480000000000 q^{20} - 10991999204616 q^{21} + 107716379836416 q^{22} - 82586042978868 q^{23} + 33255931772928 q^{24} + 190734863281250 q^{25} + 315859608506368 q^{26} + 937830505785480 q^{27} - 461330821677056 q^{28} - 167038888446420 q^{29} - 309720000000000 q^{30} + 53\!\cdots\!84 q^{31}+ \cdots + 14\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
543.558
−542.558
1024.00 −114848. 1.04858e6 −9.76562e6 −1.17604e8 −2.03949e8 1.07374e9 2.72970e9 −1.00000e10
1.2 1024.00 145820. 1.04858e6 −9.76562e6 1.49320e8 −2.36011e8 1.07374e9 1.08031e10 −1.00000e10
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.22.a.d 2
4.b odd 2 1 80.22.a.c 2
5.b even 2 1 50.22.a.d 2
5.c odd 4 2 50.22.b.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.22.a.d 2 1.a even 1 1 trivial
50.22.a.d 2 5.b even 2 1
50.22.b.e 4 5.c odd 4 2
80.22.a.c 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 30972T_{3} - 16747129404 \) acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1024)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 16747129404 \) Copy content Toggle raw display
$5$ \( (T + 9765625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots + 48\!\cdots\!84 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 65\!\cdots\!36 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 88\!\cdots\!44 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 70\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 39\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 17\!\cdots\!44 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 74\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 47\!\cdots\!64 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 15\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 98\!\cdots\!24 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 38\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 10\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 25\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 22\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 29\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 19\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 65\!\cdots\!64 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 23\!\cdots\!64 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 29\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 36\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 20\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 60\!\cdots\!96 \) Copy content Toggle raw display
show more
show less