Properties

Label 10.22.a.c
Level $10$
Weight $22$
Character orbit 10.a
Self dual yes
Analytic conductor $27.948$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,22,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.9477344287\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{474529}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 118632 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5\cdot 7 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 210\sqrt{474529}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 1024 q^{2} + ( - \beta + 50154) q^{3} + 1048576 q^{4} + 9765625 q^{5} + (1024 \beta - 51357696) q^{6} + ( - 2067 \beta + 664447658) q^{7} - 1073741824 q^{8} + ( - 100308 \beta + 12981799413) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 1024 q^{2} + ( - \beta + 50154) q^{3} + 1048576 q^{4} + 9765625 q^{5} + (1024 \beta - 51357696) q^{6} + ( - 2067 \beta + 664447658) q^{7} - 1073741824 q^{8} + ( - 100308 \beta + 12981799413) q^{9} - 10000000000 q^{10} + ( - 346698 \beta + 10934597112) q^{11} + ( - 1048576 \beta + 52590280704) q^{12} + ( - 1787412 \beta - 206030069386) q^{13} + (2116608 \beta - 680394401792) q^{14} + ( - 9765625 \beta + 489785156250) q^{15} + 1099511627776 q^{16} + (39959052 \beta - 5537381728182) q^{17} + (102715392 \beta - 13293362598912) q^{18} + (133329492 \beta - 26036430505780) q^{19} + 10240000000000 q^{20} + ( - 768115976 \beta + 76580256475632) q^{21} + (355018752 \beta - 11197027442688) q^{22} + ( - 1428146421 \beta + 40494437575974) q^{23} + (1073741824 \beta - 53852447440896) q^{24} + 95367431640625 q^{25} + (1830309888 \beta + 210974791051264) q^{26} + ( - 7552293642 \beta + 22\!\cdots\!40) q^{27}+ \cdots + ( - 55\!\cdots\!70 \beta + 86\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2048 q^{2} + 100308 q^{3} + 2097152 q^{4} + 19531250 q^{5} - 102715392 q^{6} + 1328895316 q^{7} - 2147483648 q^{8} + 25963598826 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2048 q^{2} + 100308 q^{3} + 2097152 q^{4} + 19531250 q^{5} - 102715392 q^{6} + 1328895316 q^{7} - 2147483648 q^{8} + 25963598826 q^{9} - 20000000000 q^{10} + 21869194224 q^{11} + 105180561408 q^{12} - 412060138772 q^{13} - 1360788803584 q^{14} + 979570312500 q^{15} + 2199023255552 q^{16} - 11074763456364 q^{17} - 26586725197824 q^{18} - 52072861011560 q^{19} + 20480000000000 q^{20} + 153160512951264 q^{21} - 22394054885376 q^{22} + 80988875151948 q^{23} - 107704894881792 q^{24} + 190734863281250 q^{25} + 421949582102528 q^{26} + 44\!\cdots\!80 q^{27}+ \cdots + 17\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
344.930
−343.930
−1024.00 −94506.7 1.04858e6 9.76562e6 9.67749e7 3.65434e8 −1.07374e9 −1.52883e9 −1.00000e10
1.2 −1024.00 194815. 1.04858e6 9.76562e6 −1.99490e8 9.63461e8 −1.07374e9 2.74924e10 −1.00000e10
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.22.a.c 2
4.b odd 2 1 80.22.a.b 2
5.b even 2 1 50.22.a.e 2
5.c odd 4 2 50.22.b.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.22.a.c 2 1.a even 1 1 trivial
50.22.a.e 2 5.b even 2 1
50.22.b.d 4 5.c odd 4 2
80.22.a.b 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 100308T_{3} - 18411305184 \) acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1024)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 18411305184 \) Copy content Toggle raw display
$5$ \( (T - 9765625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots + 35\!\cdots\!64 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 23\!\cdots\!56 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 24\!\cdots\!04 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 27\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 41\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 73\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 47\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 52\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 10\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 25\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 35\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 29\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 63\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 78\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 10\!\cdots\!16 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 76\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 47\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 40\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 83\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 56\!\cdots\!04 \) Copy content Toggle raw display
show more
show less