Properties

Label 10.22.a.b
Level $10$
Weight $22$
Character orbit 10.a
Self dual yes
Analytic conductor $27.948$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,22,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.9477344287\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{157921}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 39480 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 5\cdot 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 280\sqrt{157921}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 1024 q^{2} + ( - \beta - 63346) q^{3} + 1048576 q^{4} - 9765625 q^{5} + (1024 \beta + 64866304) q^{6} + ( - 7317 \beta - 146299342) q^{7} - 1073741824 q^{8} + (126692 \beta + 5933368913) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 1024 q^{2} + ( - \beta - 63346) q^{3} + 1048576 q^{4} - 9765625 q^{5} + (1024 \beta + 64866304) q^{6} + ( - 7317 \beta - 146299342) q^{7} - 1073741824 q^{8} + (126692 \beta + 5933368913) q^{9} + 10000000000 q^{10} + (953802 \beta - 20663415888) q^{11} + ( - 1048576 \beta - 66423095296) q^{12} + (276588 \beta + 943525736114) q^{13} + (7492608 \beta + 149810526208) q^{14} + (9765625 \beta + 618613281250) q^{15} + 1099511627776 q^{16} + ( - 91257948 \beta - 1550206966182) q^{17} + ( - 129732608 \beta - 6075769766912) q^{18} + (94588992 \beta + 3587897326220) q^{19} - 10240000000000 q^{20} + (609802024 \beta + 99859301947132) q^{21} + ( - 976693248 \beta + 21159337869312) q^{22} + (1367788329 \beta - 178779995050026) q^{23} + (1073741824 \beta + 68017249583104) q^{24} + 95367431640625 q^{25} + ( - 283226112 \beta - 966170353780736) q^{26} + ( - 3498447142 \beta - 12\!\cdots\!60) q^{27}+ \cdots + (30\!\cdots\!30 \beta + 13\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2048 q^{2} - 126692 q^{3} + 2097152 q^{4} - 19531250 q^{5} + 129732608 q^{6} - 292598684 q^{7} - 2147483648 q^{8} + 11866737826 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2048 q^{2} - 126692 q^{3} + 2097152 q^{4} - 19531250 q^{5} + 129732608 q^{6} - 292598684 q^{7} - 2147483648 q^{8} + 11866737826 q^{9} + 20000000000 q^{10} - 41326831776 q^{11} - 132846190592 q^{12} + 1887051472228 q^{13} + 299621052416 q^{14} + 1237226562500 q^{15} + 2199023255552 q^{16} - 3100413932364 q^{17} - 12151539533824 q^{18} + 7175794652440 q^{19} - 20480000000000 q^{20} + 199718603894264 q^{21} + 42318675738624 q^{22} - 357559990100052 q^{23} + 136034499166208 q^{24} + 190734863281250 q^{25} - 19\!\cdots\!72 q^{26}+ \cdots + 27\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
199.196
−198.196
−1024.00 −174616. 1.04858e6 −9.76562e6 1.78807e8 −9.60462e8 −1.07374e9 2.00304e10 1.00000e10
1.2 −1024.00 47924.0 1.04858e6 −9.76562e6 −4.90741e7 6.67863e8 −1.07374e9 −8.16365e9 1.00000e10
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.22.a.b 2
4.b odd 2 1 80.22.a.d 2
5.b even 2 1 50.22.a.f 2
5.c odd 4 2 50.22.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.22.a.b 2 1.a even 1 1 trivial
50.22.a.f 2 5.b even 2 1
50.22.b.f 4 5.c odd 4 2
80.22.a.d 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 126692T_{3} - 8368290684 \) acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1024)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 8368290684 \) Copy content Toggle raw display
$5$ \( (T + 9765625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 64\!\cdots\!36 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 10\!\cdots\!56 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 88\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 10\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 97\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 87\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 56\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 25\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 47\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 75\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 65\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 72\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 11\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 24\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 10\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 15\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 12\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 18\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 57\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 13\!\cdots\!96 \) Copy content Toggle raw display
show more
show less