Defining parameters
Level: | \( N \) | \(=\) | \( 10 = 2 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 10.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(33\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(10))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 33 | 7 | 26 |
Cusp forms | 29 | 7 | 22 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(3\) | |
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
10.22.a.a | $1$ | $27.948$ | \(\Q\) | None | \(1024\) | \(-21924\) | \(9765625\) | \(-722753248\) | $-$ | $-$ | \(q+2^{10}q^{2}-21924q^{3}+2^{20}q^{4}+5^{10}q^{5}+\cdots\) | |
10.22.a.b | $2$ | $27.948$ | \(\Q(\sqrt{157921}) \) | None | \(-2048\) | \(-126692\) | \(-19531250\) | \(-292598684\) | $+$ | $+$ | \(q-2^{10}q^{2}+(-63346-\beta )q^{3}+2^{20}q^{4}+\cdots\) | |
10.22.a.c | $2$ | $27.948$ | \(\Q(\sqrt{474529}) \) | None | \(-2048\) | \(100308\) | \(19531250\) | \(1328895316\) | $+$ | $-$ | \(q-2^{10}q^{2}+(50154-\beta )q^{3}+2^{20}q^{4}+\cdots\) | |
10.22.a.d | $2$ | $27.948$ | \(\Q(\sqrt{1179649}) \) | None | \(2048\) | \(30972\) | \(-19531250\) | \(-439959356\) | $-$ | $+$ | \(q+2^{10}q^{2}+(15486-\beta )q^{3}+2^{20}q^{4}+\cdots\) |
Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces
\( S_{22}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)