Properties

Label 10.22.a
Level $10$
Weight $22$
Character orbit 10.a
Rep. character $\chi_{10}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $4$
Sturm bound $33$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(33\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(10))\).

Total New Old
Modular forms 33 7 26
Cusp forms 29 7 22
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(3\)
Minus space\(-\)\(4\)

Trace form

\( 7 q - 1024 q^{2} - 17336 q^{3} + 7340032 q^{4} - 9765625 q^{5} + 36282368 q^{6} - 126415972 q^{7} - 1073741824 q^{8} + 41383462411 q^{9} - 10000000000 q^{10} + 135710538204 q^{11} - 18178113536 q^{12} + 1759096582034 q^{13}+ \cdots + 54\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
10.22.a.a 10.a 1.a $1$ $27.948$ \(\Q\) None 10.22.a.a \(1024\) \(-21924\) \(9765625\) \(-722753248\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{10}q^{2}-21924q^{3}+2^{20}q^{4}+5^{10}q^{5}+\cdots\)
10.22.a.b 10.a 1.a $2$ $27.948$ \(\Q(\sqrt{157921}) \) None 10.22.a.b \(-2048\) \(-126692\) \(-19531250\) \(-292598684\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{10}q^{2}+(-63346-\beta )q^{3}+2^{20}q^{4}+\cdots\)
10.22.a.c 10.a 1.a $2$ $27.948$ \(\Q(\sqrt{474529}) \) None 10.22.a.c \(-2048\) \(100308\) \(19531250\) \(1328895316\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{10}q^{2}+(50154-\beta )q^{3}+2^{20}q^{4}+\cdots\)
10.22.a.d 10.a 1.a $2$ $27.948$ \(\Q(\sqrt{1179649}) \) None 10.22.a.d \(2048\) \(30972\) \(-19531250\) \(-439959356\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{10}q^{2}+(15486-\beta )q^{3}+2^{20}q^{4}+\cdots\)

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)