Properties

Label 10.22
Level 10
Weight 22
Dimension 17
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 132
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 22 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(132\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_1(10))\).

Total New Old
Modular forms 67 17 50
Cusp forms 59 17 42
Eisenstein series 8 0 8

Trace form

\( 17 q - 1024 q^{2} - 17336 q^{3} - 3145728 q^{4} + 17956525 q^{5} - 194465792 q^{6} - 126415972 q^{7} - 1073741824 q^{8} + 28671539681 q^{9} - 32426931200 q^{10} - 63724698476 q^{11} - 18178113536 q^{12}+ \cdots + 75\!\cdots\!32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.22.a \(\chi_{10}(1, \cdot)\) 10.22.a.a 1 1
10.22.a.b 2
10.22.a.c 2
10.22.a.d 2
10.22.b \(\chi_{10}(9, \cdot)\) 10.22.b.a 10 1

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{22}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)