Properties

Label 10.18
Level 10
Weight 18
Dimension 15
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 108
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 18 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(108\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_1(10))\).

Total New Old
Modular forms 55 15 40
Cusp forms 47 15 32
Eisenstein series 8 0 8

Trace form

\( 15 q - 256 q^{2} - 4964 q^{3} - 65536 q^{4} - 1616185 q^{5} + 1653760 q^{6} + 49640552 q^{7} - 16777216 q^{8} + 83530787 q^{9} - 240779520 q^{10} - 156359820 q^{11} - 325320704 q^{12} - 5259218734 q^{13}+ \cdots - 67\!\cdots\!56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.18.a \(\chi_{10}(1, \cdot)\) 10.18.a.a 1 1
10.18.a.b 2
10.18.a.c 2
10.18.a.d 2
10.18.b \(\chi_{10}(9, \cdot)\) 10.18.b.a 8 1

Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{18}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{18}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)