Properties

Label 10.16.a.d
Level $10$
Weight $16$
Character orbit 10.a
Self dual yes
Analytic conductor $14.269$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,16,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.2693505100\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{239569}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 59892 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 10\sqrt{239569}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 128 q^{2} + ( - \beta - 922) q^{3} + 16384 q^{4} + 78125 q^{5} + ( - 128 \beta - 118016) q^{6} + ( - 423 \beta - 492466) q^{7} + 2097152 q^{8} + (1844 \beta + 10458077) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 128 q^{2} + ( - \beta - 922) q^{3} + 16384 q^{4} + 78125 q^{5} + ( - 128 \beta - 118016) q^{6} + ( - 423 \beta - 492466) q^{7} + 2097152 q^{8} + (1844 \beta + 10458077) q^{9} + 10000000 q^{10} + (12006 \beta + 55776072) q^{11} + ( - 16384 \beta - 15106048) q^{12} + (28548 \beta + 144656798) q^{13} + ( - 54144 \beta - 63035648) q^{14} + ( - 78125 \beta - 72031250) q^{15} + 268435456 q^{16} + (13428 \beta + 710869674) q^{17} + (236032 \beta + 1338633856) q^{18} + (134964 \beta + 3079703060) q^{19} + 1280000000 q^{20} + (882472 \beta + 10587822352) q^{21} + (1536768 \beta + 7139337216) q^{22} + ( - 5204241 \beta - 2165082942) q^{23} + ( - 2097152 \beta - 1933574144) q^{24} + 6103515625 q^{25} + (3654144 \beta + 18516070144) q^{26} + (2190662 \beta - 40589178340) q^{27} + ( - 6930432 \beta - 8068562944) q^{28} + (20046888 \beta - 82147970970) q^{29} + ( - 10000000 \beta - 9220000000) q^{30} + (29450862 \beta - 141355482508) q^{31} + 34359738368 q^{32} + ( - 66845604 \beta - 339052079784) q^{33} + (1718784 \beta + 90991318272) q^{34} + ( - 33046875 \beta - 38473906250) q^{35} + (30212096 \beta + 171345133568) q^{36} + (59426568 \beta + 395052579614) q^{37} + (17275392 \beta + 394201991680) q^{38} + ( - 170978054 \beta - 817295148956) q^{39} + 163840000000 q^{40} + (224037468 \beta - 187358632638) q^{41} + (112956416 \beta + 1355241261056) q^{42} + (10226907 \beta - 461912216602) q^{43} + (196706304 \beta + 913835163648) q^{44} + (144062500 \beta + 817037265625) q^{45} + ( - 666142848 \beta - 277130616576) q^{46} + ( - 577835703 \beta + 2398358606214) q^{47} + ( - 268435456 \beta - 247497490432) q^{48} + (416626236 \beta - 218454588687) q^{49} + 781250000000 q^{50} + ( - 723250290 \beta - 977115092628) q^{51} + (467730432 \beta + 2370056978432) q^{52} + (2557045548 \beta - 1384460646042) q^{53} + (280404736 \beta - 5195414827520) q^{54} + (937968750 \beta + 4357505625000) q^{55} + ( - 887095296 \beta - 1032776056832) q^{56} + ( - 3204139868 \beta - 6072805272920) q^{57} + (2566001664 \beta - 10514940284160) q^{58} + ( - 3981059784 \beta - 10368616994940) q^{59} + ( - 1280000000 \beta - 1180160000000) q^{60} + (3129160464 \beta + 288943862582) q^{61} + (3769710336 \beta - 18093501761024) q^{62} + ( - 5331873875 \beta - 23836916830682) q^{63} + 4398046511104 q^{64} + (2230312500 \beta + 11301312343750) q^{65} + ( - 8556237312 \beta - 43398666212352) q^{66} + (4385860641 \beta + 43276629038834) q^{67} + (220004352 \beta + 11646888738816) q^{68} + (6963393144 \beta + 126673687685424) q^{69} + ( - 4230000000 \beta - 4924660000000) q^{70} + (20725115814 \beta + 36919453344732) q^{71} + (3867148288 \beta + 21932177096704) q^{72} + ( - 15861716892 \beta + 19986863510738) q^{73} + (7606600704 \beta + 50566730190592) q^{74} + ( - 6103515625 \beta - 5627441406250) q^{75} + (2211250176 \beta + 50457854935040) q^{76} + ( - 29505825252 \beta - 149133846085752) q^{77} + ( - 21885190912 \beta - 104613779066368) q^{78} + ( - 5107258116 \beta + 210832652437400) q^{79} + 20971520000000 q^{80} + (12110003468 \beta - 165120222310159) q^{81} + (28676795904 \beta - 23981904977664) q^{82} + (10814315895 \beta - 360573330019482) q^{83} + (14458421248 \beta + 173470881415168) q^{84} + (1049062500 \beta + 55536693281250) q^{85} + (1309044096 \beta - 59124763725056) q^{86} + (63664740234 \beta - 404520861892860) q^{87} + (25178406912 \beta + 116970900946944) q^{88} + ( - 74280619080 \beta + 181856418311610) q^{89} + (18440000000 \beta + 104580770000000) q^{90} + ( - 75248744922 \beta - 360537383531468) q^{91} + ( - 85266284544 \beta - 35472718921728) q^{92} + (114201787744 \beta - 575221600975424) q^{93} + ( - 73962969984 \beta + 306989901595392) q^{94} + (10544062500 \beta + 240601801562500) q^{95} + ( - 34359738368 \beta - 31679678775296) q^{96} + ( - 66757883220 \beta + 144515049698474) q^{97} + (53328158208 \beta - 27962187351936) q^{98} + (228410749230 \beta + 11\!\cdots\!44) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 256 q^{2} - 1844 q^{3} + 32768 q^{4} + 156250 q^{5} - 236032 q^{6} - 984932 q^{7} + 4194304 q^{8} + 20916154 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 256 q^{2} - 1844 q^{3} + 32768 q^{4} + 156250 q^{5} - 236032 q^{6} - 984932 q^{7} + 4194304 q^{8} + 20916154 q^{9} + 20000000 q^{10} + 111552144 q^{11} - 30212096 q^{12} + 289313596 q^{13} - 126071296 q^{14} - 144062500 q^{15} + 536870912 q^{16} + 1421739348 q^{17} + 2677267712 q^{18} + 6159406120 q^{19} + 2560000000 q^{20} + 21175644704 q^{21} + 14278674432 q^{22} - 4330165884 q^{23} - 3867148288 q^{24} + 12207031250 q^{25} + 37032140288 q^{26} - 81178356680 q^{27} - 16137125888 q^{28} - 164295941940 q^{29} - 18440000000 q^{30} - 282710965016 q^{31} + 68719476736 q^{32} - 678104159568 q^{33} + 181982636544 q^{34} - 76947812500 q^{35} + 342690267136 q^{36} + 790105159228 q^{37} + 788403983360 q^{38} - 1634590297912 q^{39} + 327680000000 q^{40} - 374717265276 q^{41} + 2710482522112 q^{42} - 923824433204 q^{43} + 1827670327296 q^{44} + 1634074531250 q^{45} - 554261233152 q^{46} + 4796717212428 q^{47} - 494994980864 q^{48} - 436909177374 q^{49} + 1562500000000 q^{50} - 1954230185256 q^{51} + 4740113956864 q^{52} - 2768921292084 q^{53} - 10390829655040 q^{54} + 8715011250000 q^{55} - 2065552113664 q^{56} - 12145610545840 q^{57} - 21029880568320 q^{58} - 20737233989880 q^{59} - 2360320000000 q^{60} + 577887725164 q^{61} - 36187003522048 q^{62} - 47673833661364 q^{63} + 8796093022208 q^{64} + 22602624687500 q^{65} - 86797332424704 q^{66} + 86553258077668 q^{67} + 23293777477632 q^{68} + 253347375370848 q^{69} - 9849320000000 q^{70} + 73838906689464 q^{71} + 43864354193408 q^{72} + 39973727021476 q^{73} + 101133460381184 q^{74} - 11254882812500 q^{75} + 100915709870080 q^{76} - 298267692171504 q^{77} - 209227558132736 q^{78} + 421665304874800 q^{79} + 41943040000000 q^{80} - 330240444620318 q^{81} - 47963809955328 q^{82} - 721146660038964 q^{83} + 346941762830336 q^{84} + 111073386562500 q^{85} - 118249527450112 q^{86} - 809041723785720 q^{87} + 233941801893888 q^{88} + 363712836623220 q^{89} + 209161540000000 q^{90} - 721074767062936 q^{91} - 70945437843456 q^{92} - 11\!\cdots\!48 q^{93}+ \cdots + 22\!\cdots\!88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
245.229
−244.229
128.000 −5816.58 16384.0 78125.0 −744522. −2.56287e6 2.09715e6 1.94837e7 1.00000e7
1.2 128.000 3972.58 16384.0 78125.0 508490. 1.57794e6 2.09715e6 1.43247e6 1.00000e7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.16.a.d 2
3.b odd 2 1 90.16.a.j 2
4.b odd 2 1 80.16.a.f 2
5.b even 2 1 50.16.a.f 2
5.c odd 4 2 50.16.b.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.16.a.d 2 1.a even 1 1 trivial
50.16.a.f 2 5.b even 2 1
50.16.b.e 4 5.c odd 4 2
80.16.a.f 2 4.b odd 2 1
90.16.a.j 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 1844T_{3} - 23106816 \) acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 128)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1844 T - 23106816 \) Copy content Toggle raw display
$5$ \( (T - 78125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 4044061398944 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 342274048299216 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 14\!\cdots\!04 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 50\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 90\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 64\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 28\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 79\!\cdots\!36 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 71\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 11\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 21\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 22\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 15\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 27\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 23\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 14\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 89\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 56\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 12\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 99\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 85\!\cdots\!24 \) Copy content Toggle raw display
show more
show less