Properties

Label 10.16
Level 10
Weight 16
Dimension 13
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 96
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 16 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(96\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_1(10))\).

Total New Old
Modular forms 49 13 36
Cusp forms 41 13 28
Eisenstein series 8 0 8

Trace form

\( 13 q + 128 q^{2} - 9632 q^{3} - 49152 q^{4} + 329525 q^{5} + 374272 q^{6} + 535804 q^{7} + 2097152 q^{8} - 32081191 q^{9} + 14403200 q^{10} + 74291676 q^{11} - 157810688 q^{12} + 744201478 q^{13} - 843293696 q^{14}+ \cdots + 31\!\cdots\!68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.16.a \(\chi_{10}(1, \cdot)\) 10.16.a.a 1 1
10.16.a.b 1
10.16.a.c 1
10.16.a.d 2
10.16.b \(\chi_{10}(9, \cdot)\) 10.16.b.a 8 1

Decomposition of \(S_{16}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{16}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{16}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)