Properties

Label 10.12
Level 10
Weight 12
Dimension 11
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 72
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(72\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(10))\).

Total New Old
Modular forms 37 11 26
Cusp forms 29 11 18
Eisenstein series 8 0 8

Trace form

\( 11 q + 32 q^{2} + 1012 q^{3} - 1024 q^{4} + 3655 q^{5} + 2944 q^{6} - 45224 q^{7} + 32768 q^{8} - 159637 q^{9} - 285920 q^{10} + 29932 q^{11} + 1036288 q^{12} - 2191418 q^{13} - 4302592 q^{14} - 161180 q^{15}+ \cdots + 667711166156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.12.a \(\chi_{10}(1, \cdot)\) 10.12.a.a 1 1
10.12.a.b 1
10.12.a.c 1
10.12.a.d 2
10.12.b \(\chi_{10}(9, \cdot)\) 10.12.b.a 6 1

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)