Defining parameters
Level: | \( N \) | = | \( 10 = 2 \cdot 5 \) |
Weight: | \( k \) | = | \( 12 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(10))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 37 | 11 | 26 |
Cusp forms | 29 | 11 | 18 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
10.12.a | \(\chi_{10}(1, \cdot)\) | 10.12.a.a | 1 | 1 |
10.12.a.b | 1 | |||
10.12.a.c | 1 | |||
10.12.a.d | 2 | |||
10.12.b | \(\chi_{10}(9, \cdot)\) | 10.12.b.a | 6 | 1 |
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)