Defining parameters
| Level: | \( N \) | \(=\) | \( 10 = 2 \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 11 \) |
| Character orbit: | \([\chi]\) | \(=\) | 10.c (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(16\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{11}(10, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 34 | 10 | 24 |
| Cusp forms | 26 | 10 | 16 |
| Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{11}^{\mathrm{new}}(10, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 10.11.c.a | $2$ | $6.354$ | \(\Q(\sqrt{-1}) \) | None | \(32\) | \(-366\) | \(-3750\) | \(-16814\) | \(q+(16 i+16)q^{2}+(183 i-183)q^{3}+\cdots\) |
| 10.11.c.b | $2$ | $6.354$ | \(\Q(\sqrt{-1}) \) | None | \(32\) | \(114\) | \(5850\) | \(13906\) | \(q+(16 i+16)q^{2}+(-57 i+57)q^{3}+\cdots\) |
| 10.11.c.c | $6$ | $6.354$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-96\) | \(128\) | \(5460\) | \(13512\) | \(q+(-2^{4}-2^{4}\beta _{1})q^{2}+(21-21\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\) |
Decomposition of \(S_{11}^{\mathrm{old}}(10, [\chi])\) into lower level spaces
\( S_{11}^{\mathrm{old}}(10, [\chi]) \simeq \) \(S_{11}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)