Properties

Label 1.88.a
Level $1$
Weight $88$
Character orbit 1.a
Rep. character $\chi_{1}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $1$
Sturm bound $7$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1 \)
Weight: \( k \) \(=\) \( 88 \)
Character orbit: \([\chi]\) \(=\) 1.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(7\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{88}(\Gamma_0(1))\).

Total New Old
Modular forms 8 8 0
Cusp forms 7 7 0
Eisenstein series 1 1 0

Trace form

\( 7 q + 18197022042936 q^{2} - 75\!\cdots\!48 q^{3} + 37\!\cdots\!36 q^{4} + 33\!\cdots\!50 q^{5} + 16\!\cdots\!44 q^{6} + 45\!\cdots\!56 q^{7} + 27\!\cdots\!40 q^{8} + 67\!\cdots\!39 q^{9} - 36\!\cdots\!00 q^{10}+ \cdots + 15\!\cdots\!08 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{88}^{\mathrm{new}}(\Gamma_0(1))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1.88.a.a 1.a 1.a $7$ $47.933$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 1.88.a.a \(18\!\cdots\!36\) \(-75\!\cdots\!48\) \(33\!\cdots\!50\) \(45\!\cdots\!56\) $+$ $\mathrm{SU}(2)$ \(q+(2599574577562+\beta _{1})q^{2}+\cdots\)