Defining parameters
Level: | \( N \) | \(=\) | \( 1 \) |
Weight: | \( k \) | \(=\) | \( 76 \) |
Character orbit: | \([\chi]\) | \(=\) | 1.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(6\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{76}(\Gamma_0(1))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7 | 7 | 0 |
Cusp forms | 6 | 6 | 0 |
Eisenstein series | 1 | 1 | 0 |
Trace form
Decomposition of \(S_{76}^{\mathrm{new}}(\Gamma_0(1))\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | Fricke sign | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | |||||||
1.76.a.a | \(6\) | \(35.623\) | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-57080822040\) | \(-7\!\cdots\!40\) | \(-3\!\cdots\!40\) | \(19\!\cdots\!00\) | \(+\) | \(q+(-9513470340+\beta _{1})q^{2}+\cdots\) |