Properties

Label 1.70.a.a.1.2
Level 1
Weight 70
Character 1.1
Self dual Yes
Analytic conductor 30.151
Analytic rank 1
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 70 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(30.1514953292\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{43}\cdot 3^{17}\cdot 5^{5}\cdot 7^{2}\cdot 17\cdot 23 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(5.13065e7\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.83774e10 q^{2} +2.28315e16 q^{3} -2.52566e20 q^{4} +1.12358e24 q^{5} -4.19583e26 q^{6} -8.82897e28 q^{7} +1.54896e31 q^{8} -3.13110e32 q^{9} +O(q^{10})\) \(q-1.83774e10 q^{2} +2.28315e16 q^{3} -2.52566e20 q^{4} +1.12358e24 q^{5} -4.19583e26 q^{6} -8.82897e28 q^{7} +1.54896e31 q^{8} -3.13110e32 q^{9} -2.06484e34 q^{10} -6.35095e35 q^{11} -5.76645e36 q^{12} +1.50107e38 q^{13} +1.62254e39 q^{14} +2.56529e40 q^{15} -1.35571e41 q^{16} +5.11299e42 q^{17} +5.75416e42 q^{18} -8.09143e43 q^{19} -2.83777e44 q^{20} -2.01578e45 q^{21} +1.16714e46 q^{22} -3.60398e46 q^{23} +3.53651e47 q^{24} -4.31642e47 q^{25} -2.75859e48 q^{26} -2.61990e49 q^{27} +2.22990e49 q^{28} +5.01375e49 q^{29} -4.71434e50 q^{30} -5.34810e51 q^{31} -6.65202e51 q^{32} -1.45001e52 q^{33} -9.39635e52 q^{34} -9.92003e52 q^{35} +7.90809e52 q^{36} -1.65367e54 q^{37} +1.48700e54 q^{38} +3.42717e54 q^{39} +1.74038e55 q^{40} +6.67526e55 q^{41} +3.70449e55 q^{42} -2.02257e56 q^{43} +1.60403e56 q^{44} -3.51803e56 q^{45} +6.62318e56 q^{46} -7.63503e57 q^{47} -3.09528e57 q^{48} -1.27054e58 q^{49} +7.93246e57 q^{50} +1.16737e59 q^{51} -3.79120e58 q^{52} +2.97628e59 q^{53} +4.81470e59 q^{54} -7.13578e59 q^{55} -1.36758e60 q^{56} -1.84739e60 q^{57} -9.21399e59 q^{58} +1.35785e60 q^{59} -6.47904e60 q^{60} -5.28661e61 q^{61} +9.82844e61 q^{62} +2.76444e61 q^{63} +2.02274e62 q^{64} +1.68657e62 q^{65} +2.66475e62 q^{66} -1.38691e63 q^{67} -1.29137e63 q^{68} -8.22840e62 q^{69} +1.82305e63 q^{70} -2.36872e63 q^{71} -4.84996e63 q^{72} +1.10475e64 q^{73} +3.03903e64 q^{74} -9.85500e63 q^{75} +2.04362e64 q^{76} +5.60723e64 q^{77} -6.29825e64 q^{78} -7.32931e64 q^{79} -1.52324e65 q^{80} -3.36906e65 q^{81} -1.22674e66 q^{82} +3.62072e65 q^{83} +5.09118e65 q^{84} +5.74483e66 q^{85} +3.71696e66 q^{86} +1.14471e66 q^{87} -9.83738e66 q^{88} -6.55747e66 q^{89} +6.46524e66 q^{90} -1.32529e67 q^{91} +9.10241e66 q^{92} -1.22105e68 q^{93} +1.40312e68 q^{94} -9.09134e67 q^{95} -1.51875e68 q^{96} +4.82901e68 q^{97} +2.33493e68 q^{98} +1.98855e68 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5q - 18005734368q^{2} - 4858082326815804q^{3} + \)\(12\!\cdots\!60\)\(q^{4} - \)\(18\!\cdots\!50\)\(q^{5} + \)\(65\!\cdots\!60\)\(q^{6} + \)\(76\!\cdots\!92\)\(q^{7} - \)\(45\!\cdots\!00\)\(q^{8} - \)\(31\!\cdots\!35\)\(q^{9} + O(q^{10}) \) \( 5q - 18005734368q^{2} - 4858082326815804q^{3} + \)\(12\!\cdots\!60\)\(q^{4} - \)\(18\!\cdots\!50\)\(q^{5} + \)\(65\!\cdots\!60\)\(q^{6} + \)\(76\!\cdots\!92\)\(q^{7} - \)\(45\!\cdots\!00\)\(q^{8} - \)\(31\!\cdots\!35\)\(q^{9} + \)\(44\!\cdots\!00\)\(q^{10} - \)\(60\!\cdots\!40\)\(q^{11} - \)\(11\!\cdots\!48\)\(q^{12} + \)\(24\!\cdots\!86\)\(q^{13} + \)\(35\!\cdots\!20\)\(q^{14} - \)\(22\!\cdots\!00\)\(q^{15} + \)\(95\!\cdots\!80\)\(q^{16} - \)\(34\!\cdots\!38\)\(q^{17} + \)\(24\!\cdots\!56\)\(q^{18} + \)\(50\!\cdots\!00\)\(q^{19} - \)\(14\!\cdots\!00\)\(q^{20} + \)\(30\!\cdots\!60\)\(q^{21} - \)\(11\!\cdots\!56\)\(q^{22} + \)\(49\!\cdots\!76\)\(q^{23} - \)\(37\!\cdots\!00\)\(q^{24} + \)\(46\!\cdots\!75\)\(q^{25} - \)\(16\!\cdots\!40\)\(q^{26} - \)\(46\!\cdots\!00\)\(q^{27} - \)\(14\!\cdots\!96\)\(q^{28} - \)\(62\!\cdots\!50\)\(q^{29} - \)\(33\!\cdots\!00\)\(q^{30} - \)\(77\!\cdots\!40\)\(q^{31} - \)\(59\!\cdots\!08\)\(q^{32} - \)\(11\!\cdots\!68\)\(q^{33} - \)\(25\!\cdots\!80\)\(q^{34} - \)\(74\!\cdots\!00\)\(q^{35} - \)\(20\!\cdots\!20\)\(q^{36} + \)\(11\!\cdots\!02\)\(q^{37} + \)\(11\!\cdots\!00\)\(q^{38} + \)\(14\!\cdots\!80\)\(q^{39} + \)\(11\!\cdots\!00\)\(q^{40} + \)\(12\!\cdots\!10\)\(q^{41} + \)\(29\!\cdots\!24\)\(q^{42} + \)\(18\!\cdots\!56\)\(q^{43} - \)\(20\!\cdots\!80\)\(q^{44} - \)\(16\!\cdots\!50\)\(q^{45} - \)\(10\!\cdots\!40\)\(q^{46} - \)\(10\!\cdots\!28\)\(q^{47} - \)\(32\!\cdots\!24\)\(q^{48} - \)\(18\!\cdots\!15\)\(q^{49} + \)\(36\!\cdots\!00\)\(q^{50} + \)\(11\!\cdots\!60\)\(q^{51} + \)\(94\!\cdots\!32\)\(q^{52} + \)\(63\!\cdots\!46\)\(q^{53} + \)\(18\!\cdots\!00\)\(q^{54} + \)\(90\!\cdots\!00\)\(q^{55} - \)\(33\!\cdots\!00\)\(q^{56} - \)\(10\!\cdots\!00\)\(q^{57} - \)\(21\!\cdots\!00\)\(q^{58} - \)\(33\!\cdots\!00\)\(q^{59} + \)\(41\!\cdots\!00\)\(q^{60} + \)\(26\!\cdots\!10\)\(q^{61} + \)\(44\!\cdots\!04\)\(q^{62} + \)\(32\!\cdots\!36\)\(q^{63} + \)\(11\!\cdots\!60\)\(q^{64} + \)\(32\!\cdots\!00\)\(q^{65} - \)\(33\!\cdots\!80\)\(q^{66} - \)\(12\!\cdots\!88\)\(q^{67} - \)\(42\!\cdots\!56\)\(q^{68} - \)\(68\!\cdots\!20\)\(q^{69} - \)\(12\!\cdots\!00\)\(q^{70} - \)\(11\!\cdots\!40\)\(q^{71} + \)\(33\!\cdots\!00\)\(q^{72} + \)\(33\!\cdots\!26\)\(q^{73} + \)\(33\!\cdots\!20\)\(q^{74} + \)\(13\!\cdots\!00\)\(q^{75} + \)\(18\!\cdots\!00\)\(q^{76} - \)\(68\!\cdots\!36\)\(q^{77} - \)\(57\!\cdots\!08\)\(q^{78} - \)\(36\!\cdots\!00\)\(q^{79} - \)\(22\!\cdots\!00\)\(q^{80} - \)\(11\!\cdots\!95\)\(q^{81} - \)\(93\!\cdots\!16\)\(q^{82} + \)\(11\!\cdots\!16\)\(q^{83} + \)\(29\!\cdots\!20\)\(q^{84} + \)\(74\!\cdots\!00\)\(q^{85} + \)\(18\!\cdots\!60\)\(q^{86} + \)\(12\!\cdots\!00\)\(q^{87} + \)\(15\!\cdots\!00\)\(q^{88} - \)\(18\!\cdots\!50\)\(q^{89} - \)\(85\!\cdots\!00\)\(q^{90} - \)\(80\!\cdots\!40\)\(q^{91} - \)\(21\!\cdots\!88\)\(q^{92} - \)\(11\!\cdots\!88\)\(q^{93} - \)\(32\!\cdots\!80\)\(q^{94} + \)\(15\!\cdots\!00\)\(q^{95} + \)\(78\!\cdots\!60\)\(q^{96} + \)\(36\!\cdots\!22\)\(q^{97} + \)\(17\!\cdots\!24\)\(q^{98} + \)\(58\!\cdots\!80\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.83774e10 −0.756397 −0.378199 0.925724i \(-0.623456\pi\)
−0.378199 + 0.925724i \(0.623456\pi\)
\(3\) 2.28315e16 0.790406 0.395203 0.918594i \(-0.370674\pi\)
0.395203 + 0.918594i \(0.370674\pi\)
\(4\) −2.52566e20 −0.427863
\(5\) 1.12358e24 0.863252 0.431626 0.902053i \(-0.357940\pi\)
0.431626 + 0.902053i \(0.357940\pi\)
\(6\) −4.19583e26 −0.597861
\(7\) −8.82897e28 −0.616634 −0.308317 0.951284i \(-0.599766\pi\)
−0.308317 + 0.951284i \(0.599766\pi\)
\(8\) 1.54896e31 1.08003
\(9\) −3.13110e32 −0.375258
\(10\) −2.06484e34 −0.652961
\(11\) −6.35095e35 −0.749533 −0.374767 0.927119i \(-0.622277\pi\)
−0.374767 + 0.927119i \(0.622277\pi\)
\(12\) −5.76645e36 −0.338186
\(13\) 1.50107e38 0.556360 0.278180 0.960529i \(-0.410269\pi\)
0.278180 + 0.960529i \(0.410269\pi\)
\(14\) 1.62254e39 0.466421
\(15\) 2.56529e40 0.682319
\(16\) −1.35571e41 −0.389070
\(17\) 5.11299e42 1.81212 0.906060 0.423150i \(-0.139076\pi\)
0.906060 + 0.423150i \(0.139076\pi\)
\(18\) 5.75416e42 0.283844
\(19\) −8.09143e43 −0.618054 −0.309027 0.951053i \(-0.600003\pi\)
−0.309027 + 0.951053i \(0.600003\pi\)
\(20\) −2.83777e44 −0.369354
\(21\) −2.01578e45 −0.487392
\(22\) 1.16714e46 0.566945
\(23\) −3.60398e46 −0.377721 −0.188861 0.982004i \(-0.560479\pi\)
−0.188861 + 0.982004i \(0.560479\pi\)
\(24\) 3.53651e47 0.853664
\(25\) −4.31642e47 −0.254796
\(26\) −2.75859e48 −0.420829
\(27\) −2.61990e49 −1.08701
\(28\) 2.22990e49 0.263835
\(29\) 5.01375e49 0.176780 0.0883898 0.996086i \(-0.471828\pi\)
0.0883898 + 0.996086i \(0.471828\pi\)
\(30\) −4.71434e50 −0.516104
\(31\) −5.34810e51 −1.88895 −0.944477 0.328578i \(-0.893431\pi\)
−0.944477 + 0.328578i \(0.893431\pi\)
\(32\) −6.65202e51 −0.785741
\(33\) −1.45001e52 −0.592436
\(34\) −9.39635e52 −1.37068
\(35\) −9.92003e52 −0.532311
\(36\) 7.90809e52 0.160559
\(37\) −1.65367e54 −1.30464 −0.652319 0.757944i \(-0.726204\pi\)
−0.652319 + 0.757944i \(0.726204\pi\)
\(38\) 1.48700e54 0.467494
\(39\) 3.42717e54 0.439751
\(40\) 1.74038e55 0.932339
\(41\) 6.67526e55 1.52554 0.762772 0.646667i \(-0.223838\pi\)
0.762772 + 0.646667i \(0.223838\pi\)
\(42\) 3.70449e55 0.368662
\(43\) −2.02257e56 −0.893802 −0.446901 0.894584i \(-0.647472\pi\)
−0.446901 + 0.894584i \(0.647472\pi\)
\(44\) 1.60403e56 0.320698
\(45\) −3.51803e56 −0.323943
\(46\) 6.62318e56 0.285707
\(47\) −7.63503e57 −1.56832 −0.784160 0.620559i \(-0.786906\pi\)
−0.784160 + 0.620559i \(0.786906\pi\)
\(48\) −3.09528e57 −0.307523
\(49\) −1.27054e58 −0.619762
\(50\) 7.93246e57 0.192727
\(51\) 1.16737e59 1.43231
\(52\) −3.79120e58 −0.238046
\(53\) 2.97628e59 0.968627 0.484313 0.874895i \(-0.339069\pi\)
0.484313 + 0.874895i \(0.339069\pi\)
\(54\) 4.81470e59 0.822213
\(55\) −7.13578e59 −0.647036
\(56\) −1.36758e60 −0.665985
\(57\) −1.84739e60 −0.488513
\(58\) −9.21399e59 −0.133716
\(59\) 1.35785e60 0.109259 0.0546294 0.998507i \(-0.482602\pi\)
0.0546294 + 0.998507i \(0.482602\pi\)
\(60\) −6.47904e60 −0.291939
\(61\) −5.28661e61 −1.34678 −0.673392 0.739286i \(-0.735163\pi\)
−0.673392 + 0.739286i \(0.735163\pi\)
\(62\) 9.82844e61 1.42880
\(63\) 2.76444e61 0.231397
\(64\) 2.02274e62 0.983402
\(65\) 1.68657e62 0.480279
\(66\) 2.66475e62 0.448117
\(67\) −1.38691e63 −1.38825 −0.694123 0.719856i \(-0.744208\pi\)
−0.694123 + 0.719856i \(0.744208\pi\)
\(68\) −1.29137e63 −0.775340
\(69\) −8.22840e62 −0.298553
\(70\) 1.82305e63 0.402638
\(71\) −2.36872e63 −0.320701 −0.160351 0.987060i \(-0.551262\pi\)
−0.160351 + 0.987060i \(0.551262\pi\)
\(72\) −4.84996e63 −0.405291
\(73\) 1.10475e64 0.573622 0.286811 0.957987i \(-0.407405\pi\)
0.286811 + 0.957987i \(0.407405\pi\)
\(74\) 3.03903e64 0.986825
\(75\) −9.85500e63 −0.201392
\(76\) 2.04362e64 0.264443
\(77\) 5.60723e64 0.462188
\(78\) −6.29825e64 −0.332626
\(79\) −7.32931e64 −0.249418 −0.124709 0.992193i \(-0.539800\pi\)
−0.124709 + 0.992193i \(0.539800\pi\)
\(80\) −1.52324e65 −0.335865
\(81\) −3.36906e65 −0.483923
\(82\) −1.22674e66 −1.15392
\(83\) 3.62072e65 0.224182 0.112091 0.993698i \(-0.464245\pi\)
0.112091 + 0.993698i \(0.464245\pi\)
\(84\) 5.09118e65 0.208537
\(85\) 5.74483e66 1.56432
\(86\) 3.71696e66 0.676069
\(87\) 1.14471e66 0.139728
\(88\) −9.83738e66 −0.809520
\(89\) −6.55747e66 −0.365411 −0.182705 0.983168i \(-0.558485\pi\)
−0.182705 + 0.983168i \(0.558485\pi\)
\(90\) 6.46524e66 0.245029
\(91\) −1.32529e67 −0.343071
\(92\) 9.10241e66 0.161613
\(93\) −1.22105e68 −1.49304
\(94\) 1.40312e68 1.18627
\(95\) −9.09134e67 −0.533536
\(96\) −1.51875e68 −0.621054
\(97\) 4.82901e68 1.38113 0.690564 0.723272i \(-0.257363\pi\)
0.690564 + 0.723272i \(0.257363\pi\)
\(98\) 2.33493e68 0.468786
\(99\) 1.98855e68 0.281269
\(100\) 1.09018e68 0.109018
\(101\) 7.33834e68 0.520608 0.260304 0.965527i \(-0.416177\pi\)
0.260304 + 0.965527i \(0.416177\pi\)
\(102\) −2.14532e69 −1.08340
\(103\) −3.22980e69 −1.16491 −0.582453 0.812864i \(-0.697907\pi\)
−0.582453 + 0.812864i \(0.697907\pi\)
\(104\) 2.32511e69 0.600887
\(105\) −2.26489e69 −0.420742
\(106\) −5.46964e69 −0.732667
\(107\) 1.18986e69 0.115281 0.0576403 0.998337i \(-0.481642\pi\)
0.0576403 + 0.998337i \(0.481642\pi\)
\(108\) 6.61697e69 0.465093
\(109\) 3.32583e70 1.70093 0.850465 0.526032i \(-0.176321\pi\)
0.850465 + 0.526032i \(0.176321\pi\)
\(110\) 1.31137e70 0.489416
\(111\) −3.77558e70 −1.03119
\(112\) 1.19695e70 0.239914
\(113\) −4.20663e70 −0.620481 −0.310240 0.950658i \(-0.600410\pi\)
−0.310240 + 0.950658i \(0.600410\pi\)
\(114\) 3.39503e70 0.369510
\(115\) −4.04934e70 −0.326069
\(116\) −1.26630e70 −0.0756375
\(117\) −4.70001e70 −0.208779
\(118\) −2.49537e70 −0.0826431
\(119\) −4.51424e71 −1.11742
\(120\) 3.97354e71 0.736927
\(121\) −3.14606e71 −0.438200
\(122\) 9.71543e71 1.01870
\(123\) 1.52406e72 1.20580
\(124\) 1.35075e72 0.808214
\(125\) −2.38840e72 −1.08321
\(126\) −5.08033e71 −0.175028
\(127\) −2.36558e72 −0.620454 −0.310227 0.950663i \(-0.600405\pi\)
−0.310227 + 0.950663i \(0.600405\pi\)
\(128\) 2.09383e71 0.0418984
\(129\) −4.61781e72 −0.706466
\(130\) −3.09948e72 −0.363282
\(131\) −1.20684e72 −0.108590 −0.0542952 0.998525i \(-0.517291\pi\)
−0.0542952 + 0.998525i \(0.517291\pi\)
\(132\) 3.66224e72 0.253481
\(133\) 7.14390e72 0.381113
\(134\) 2.54878e73 1.05007
\(135\) −2.94366e73 −0.938366
\(136\) 7.91983e73 1.95715
\(137\) −6.91263e73 −1.32673 −0.663367 0.748294i \(-0.730873\pi\)
−0.663367 + 0.748294i \(0.730873\pi\)
\(138\) 1.51217e73 0.225825
\(139\) 6.50475e72 0.0757216 0.0378608 0.999283i \(-0.487946\pi\)
0.0378608 + 0.999283i \(0.487946\pi\)
\(140\) 2.50546e73 0.227756
\(141\) −1.74319e74 −1.23961
\(142\) 4.35310e73 0.242577
\(143\) −9.53324e73 −0.417011
\(144\) 4.24486e73 0.146002
\(145\) 5.63334e73 0.152605
\(146\) −2.03025e74 −0.433886
\(147\) −2.90084e74 −0.489864
\(148\) 4.17662e74 0.558207
\(149\) 1.06021e75 1.12322 0.561612 0.827401i \(-0.310182\pi\)
0.561612 + 0.827401i \(0.310182\pi\)
\(150\) 1.81110e74 0.152333
\(151\) 2.31654e75 1.54930 0.774649 0.632391i \(-0.217926\pi\)
0.774649 + 0.632391i \(0.217926\pi\)
\(152\) −1.25333e75 −0.667518
\(153\) −1.60093e75 −0.680013
\(154\) −1.03047e75 −0.349598
\(155\) −6.00900e75 −1.63064
\(156\) −8.65586e74 −0.188153
\(157\) 2.67081e75 0.465698 0.232849 0.972513i \(-0.425195\pi\)
0.232849 + 0.972513i \(0.425195\pi\)
\(158\) 1.34694e75 0.188659
\(159\) 6.79528e75 0.765608
\(160\) −7.47405e75 −0.678292
\(161\) 3.18194e75 0.232916
\(162\) 6.19147e75 0.366038
\(163\) 2.81849e76 1.34755 0.673773 0.738938i \(-0.264672\pi\)
0.673773 + 0.738938i \(0.264672\pi\)
\(164\) −1.68594e76 −0.652725
\(165\) −1.62920e76 −0.511421
\(166\) −6.65395e75 −0.169571
\(167\) 6.56343e76 1.35960 0.679802 0.733396i \(-0.262066\pi\)
0.679802 + 0.733396i \(0.262066\pi\)
\(168\) −3.12237e76 −0.526398
\(169\) −5.02611e76 −0.690463
\(170\) −1.05575e77 −1.18324
\(171\) 2.53351e76 0.231930
\(172\) 5.10831e76 0.382425
\(173\) −3.03200e76 −0.185839 −0.0929197 0.995674i \(-0.529620\pi\)
−0.0929197 + 0.995674i \(0.529620\pi\)
\(174\) −2.10369e76 −0.105690
\(175\) 3.81095e76 0.157116
\(176\) 8.61004e76 0.291621
\(177\) 3.10016e76 0.0863588
\(178\) 1.20509e77 0.276396
\(179\) 7.88055e77 1.48980 0.744898 0.667178i \(-0.232498\pi\)
0.744898 + 0.667178i \(0.232498\pi\)
\(180\) 8.88535e76 0.138603
\(181\) −6.89713e77 −0.888705 −0.444352 0.895852i \(-0.646566\pi\)
−0.444352 + 0.895852i \(0.646566\pi\)
\(182\) 2.43555e77 0.259498
\(183\) −1.20701e78 −1.06451
\(184\) −5.58243e77 −0.407951
\(185\) −1.85803e78 −1.12623
\(186\) 2.24397e78 1.12933
\(187\) −3.24723e78 −1.35824
\(188\) 1.92835e78 0.671027
\(189\) 2.31310e78 0.670289
\(190\) 1.67076e78 0.403565
\(191\) 3.54584e78 0.714607 0.357304 0.933988i \(-0.383696\pi\)
0.357304 + 0.933988i \(0.383696\pi\)
\(192\) 4.61821e78 0.777287
\(193\) −4.62550e78 −0.650776 −0.325388 0.945581i \(-0.605495\pi\)
−0.325388 + 0.945581i \(0.605495\pi\)
\(194\) −8.87449e78 −1.04468
\(195\) 3.85069e78 0.379615
\(196\) 3.20896e78 0.265173
\(197\) −1.64821e78 −0.114269 −0.0571346 0.998366i \(-0.518196\pi\)
−0.0571346 + 0.998366i \(0.518196\pi\)
\(198\) −3.65444e78 −0.212751
\(199\) 1.17255e79 0.573721 0.286860 0.957972i \(-0.407388\pi\)
0.286860 + 0.957972i \(0.407388\pi\)
\(200\) −6.68597e78 −0.275188
\(201\) −3.16651e79 −1.09728
\(202\) −1.34860e79 −0.393786
\(203\) −4.42663e78 −0.109008
\(204\) −2.94838e79 −0.612833
\(205\) 7.50016e79 1.31693
\(206\) 5.93554e79 0.881132
\(207\) 1.12844e79 0.141743
\(208\) −2.03502e79 −0.216463
\(209\) 5.13883e79 0.463252
\(210\) 4.16228e79 0.318248
\(211\) 9.43238e78 0.0612177 0.0306088 0.999531i \(-0.490255\pi\)
0.0306088 + 0.999531i \(0.490255\pi\)
\(212\) −7.51707e79 −0.414440
\(213\) −5.40813e79 −0.253484
\(214\) −2.18666e79 −0.0871980
\(215\) −2.27251e80 −0.771576
\(216\) −4.05813e80 −1.17401
\(217\) 4.72183e80 1.16479
\(218\) −6.11203e80 −1.28658
\(219\) 2.52231e80 0.453394
\(220\) 1.80225e80 0.276843
\(221\) 7.67497e80 1.00819
\(222\) 6.93854e80 0.779992
\(223\) −4.99323e80 −0.480689 −0.240344 0.970688i \(-0.577260\pi\)
−0.240344 + 0.970688i \(0.577260\pi\)
\(224\) 5.87305e80 0.484515
\(225\) 1.35151e80 0.0956144
\(226\) 7.73071e80 0.469330
\(227\) −2.13100e81 −1.11094 −0.555472 0.831535i \(-0.687462\pi\)
−0.555472 + 0.831535i \(0.687462\pi\)
\(228\) 4.66588e80 0.209017
\(229\) −3.36412e81 −1.29583 −0.647915 0.761713i \(-0.724359\pi\)
−0.647915 + 0.761713i \(0.724359\pi\)
\(230\) 7.44165e80 0.246637
\(231\) 1.28021e81 0.365316
\(232\) 7.76612e80 0.190928
\(233\) 7.16036e78 0.00151759 0.000758797 1.00000i \(-0.499758\pi\)
0.000758797 1.00000i \(0.499758\pi\)
\(234\) 8.63741e80 0.157920
\(235\) −8.57854e81 −1.35386
\(236\) −3.42946e80 −0.0467478
\(237\) −1.67339e81 −0.197142
\(238\) 8.29602e81 0.845210
\(239\) 1.50435e82 1.32623 0.663117 0.748516i \(-0.269233\pi\)
0.663117 + 0.748516i \(0.269233\pi\)
\(240\) −3.47779e81 −0.265470
\(241\) −3.33974e81 −0.220864 −0.110432 0.993884i \(-0.535223\pi\)
−0.110432 + 0.993884i \(0.535223\pi\)
\(242\) 5.78166e81 0.331453
\(243\) 1.41680e82 0.704517
\(244\) 1.33522e82 0.576240
\(245\) −1.42755e82 −0.535011
\(246\) −2.80083e82 −0.912063
\(247\) −1.21458e82 −0.343861
\(248\) −8.28401e82 −2.04013
\(249\) 8.26663e81 0.177195
\(250\) 4.38926e82 0.819333
\(251\) 1.19634e82 0.194587 0.0972933 0.995256i \(-0.468982\pi\)
0.0972933 + 0.995256i \(0.468982\pi\)
\(252\) −6.98203e81 −0.0990064
\(253\) 2.28887e82 0.283115
\(254\) 4.34733e82 0.469310
\(255\) 1.31163e83 1.23644
\(256\) −1.23249e83 −1.01509
\(257\) −2.11787e82 −0.152477 −0.0762387 0.997090i \(-0.524291\pi\)
−0.0762387 + 0.997090i \(0.524291\pi\)
\(258\) 8.48635e82 0.534369
\(259\) 1.46002e83 0.804485
\(260\) −4.25970e82 −0.205494
\(261\) −1.56986e82 −0.0663380
\(262\) 2.21787e82 0.0821374
\(263\) −5.20789e83 −1.69118 −0.845588 0.533837i \(-0.820750\pi\)
−0.845588 + 0.533837i \(0.820750\pi\)
\(264\) −2.24602e83 −0.639849
\(265\) 3.34408e83 0.836169
\(266\) −1.31287e83 −0.288273
\(267\) −1.49717e83 −0.288823
\(268\) 3.50285e83 0.593980
\(269\) −2.43999e83 −0.363860 −0.181930 0.983311i \(-0.558234\pi\)
−0.181930 + 0.983311i \(0.558234\pi\)
\(270\) 5.40968e83 0.709777
\(271\) 1.78874e83 0.206589 0.103294 0.994651i \(-0.467062\pi\)
0.103294 + 0.994651i \(0.467062\pi\)
\(272\) −6.93173e83 −0.705041
\(273\) −3.02584e83 −0.271165
\(274\) 1.27036e84 1.00354
\(275\) 2.74133e83 0.190978
\(276\) 2.07821e83 0.127740
\(277\) 8.95601e83 0.485918 0.242959 0.970037i \(-0.421882\pi\)
0.242959 + 0.970037i \(0.421882\pi\)
\(278\) −1.19540e83 −0.0572756
\(279\) 1.67454e84 0.708846
\(280\) −1.53658e84 −0.574913
\(281\) −4.12597e84 −1.36508 −0.682540 0.730848i \(-0.739125\pi\)
−0.682540 + 0.730848i \(0.739125\pi\)
\(282\) 3.20353e84 0.937637
\(283\) −7.03383e84 −1.82205 −0.911023 0.412354i \(-0.864707\pi\)
−0.911023 + 0.412354i \(0.864707\pi\)
\(284\) 5.98258e83 0.137216
\(285\) −2.07569e84 −0.421710
\(286\) 1.75196e84 0.315426
\(287\) −5.89357e84 −0.940704
\(288\) 2.08281e84 0.294856
\(289\) 1.81815e85 2.28378
\(290\) −1.03526e84 −0.115430
\(291\) 1.10253e85 1.09165
\(292\) −2.79022e84 −0.245432
\(293\) −6.51453e84 −0.509272 −0.254636 0.967037i \(-0.581956\pi\)
−0.254636 + 0.967037i \(0.581956\pi\)
\(294\) 5.33099e84 0.370531
\(295\) 1.52565e84 0.0943179
\(296\) −2.56148e85 −1.40905
\(297\) 1.66388e85 0.814752
\(298\) −1.94839e85 −0.849603
\(299\) −5.40983e84 −0.210149
\(300\) 2.48904e84 0.0861684
\(301\) 1.78572e85 0.551149
\(302\) −4.25720e85 −1.17188
\(303\) 1.67545e85 0.411491
\(304\) 1.09696e85 0.240466
\(305\) −5.93991e85 −1.16261
\(306\) 2.94209e85 0.514360
\(307\) 9.02219e85 1.40941 0.704706 0.709499i \(-0.251079\pi\)
0.704706 + 0.709499i \(0.251079\pi\)
\(308\) −1.41620e85 −0.197753
\(309\) −7.37410e85 −0.920749
\(310\) 1.10430e86 1.23341
\(311\) −4.22710e85 −0.422483 −0.211242 0.977434i \(-0.567751\pi\)
−0.211242 + 0.977434i \(0.567751\pi\)
\(312\) 5.30856e85 0.474945
\(313\) 9.49223e85 0.760482 0.380241 0.924888i \(-0.375841\pi\)
0.380241 + 0.924888i \(0.375841\pi\)
\(314\) −4.90825e85 −0.352253
\(315\) 3.10606e85 0.199754
\(316\) 1.85113e85 0.106717
\(317\) −2.99712e86 −1.54939 −0.774693 0.632338i \(-0.782096\pi\)
−0.774693 + 0.632338i \(0.782096\pi\)
\(318\) −1.24880e86 −0.579104
\(319\) −3.18421e85 −0.132502
\(320\) 2.27270e86 0.848923
\(321\) 2.71663e85 0.0911185
\(322\) −5.84759e85 −0.176177
\(323\) −4.13714e86 −1.11999
\(324\) 8.50911e85 0.207053
\(325\) −6.47926e85 −0.141759
\(326\) −5.17966e86 −1.01928
\(327\) 7.59336e86 1.34443
\(328\) 1.03397e87 1.64764
\(329\) 6.74095e86 0.967080
\(330\) 2.99405e86 0.386837
\(331\) −6.30305e86 −0.733644 −0.366822 0.930291i \(-0.619554\pi\)
−0.366822 + 0.930291i \(0.619554\pi\)
\(332\) −9.14470e85 −0.0959192
\(333\) 5.17782e86 0.489577
\(334\) −1.20619e87 −1.02840
\(335\) −1.55830e87 −1.19841
\(336\) 2.73282e86 0.189629
\(337\) −1.24071e87 −0.777034 −0.388517 0.921442i \(-0.627013\pi\)
−0.388517 + 0.921442i \(0.627013\pi\)
\(338\) 9.23669e86 0.522264
\(339\) −9.60435e86 −0.490432
\(340\) −1.45095e87 −0.669313
\(341\) 3.39655e87 1.41583
\(342\) −4.65594e86 −0.175431
\(343\) 2.93174e87 0.998801
\(344\) −3.13288e87 −0.965334
\(345\) −9.24524e86 −0.257727
\(346\) 5.57203e86 0.140568
\(347\) 5.12646e87 1.17071 0.585357 0.810776i \(-0.300954\pi\)
0.585357 + 0.810776i \(0.300954\pi\)
\(348\) −2.89115e86 −0.0597843
\(349\) 6.17210e85 0.0115599 0.00577997 0.999983i \(-0.498160\pi\)
0.00577997 + 0.999983i \(0.498160\pi\)
\(350\) −7.00355e86 −0.118842
\(351\) −3.93266e87 −0.604771
\(352\) 4.22466e87 0.588939
\(353\) 5.76707e87 0.729001 0.364500 0.931203i \(-0.381240\pi\)
0.364500 + 0.931203i \(0.381240\pi\)
\(354\) −5.69730e86 −0.0653216
\(355\) −2.66144e87 −0.276846
\(356\) 1.65619e87 0.156346
\(357\) −1.03067e88 −0.883212
\(358\) −1.44824e88 −1.12688
\(359\) 5.64791e87 0.399144 0.199572 0.979883i \(-0.436045\pi\)
0.199572 + 0.979883i \(0.436045\pi\)
\(360\) −5.44930e87 −0.349868
\(361\) −1.05924e88 −0.618010
\(362\) 1.26752e88 0.672214
\(363\) −7.18292e87 −0.346356
\(364\) 3.34724e87 0.146787
\(365\) 1.24127e88 0.495180
\(366\) 2.21817e88 0.805190
\(367\) 1.92969e88 0.637540 0.318770 0.947832i \(-0.396730\pi\)
0.318770 + 0.947832i \(0.396730\pi\)
\(368\) 4.88595e87 0.146960
\(369\) −2.09009e88 −0.572474
\(370\) 3.41458e88 0.851878
\(371\) −2.62775e88 −0.597289
\(372\) 3.08395e88 0.638817
\(373\) −2.69870e88 −0.509565 −0.254783 0.966998i \(-0.582004\pi\)
−0.254783 + 0.966998i \(0.582004\pi\)
\(374\) 5.96758e88 1.02737
\(375\) −5.45305e88 −0.856172
\(376\) −1.18264e89 −1.69384
\(377\) 7.52601e87 0.0983531
\(378\) −4.25088e88 −0.507005
\(379\) 6.27131e87 0.0682819 0.0341410 0.999417i \(-0.489130\pi\)
0.0341410 + 0.999417i \(0.489130\pi\)
\(380\) 2.29616e88 0.228280
\(381\) −5.40097e88 −0.490411
\(382\) −6.51634e88 −0.540527
\(383\) 1.89265e89 1.43454 0.717269 0.696796i \(-0.245392\pi\)
0.717269 + 0.696796i \(0.245392\pi\)
\(384\) 4.78051e87 0.0331167
\(385\) 6.30016e88 0.398985
\(386\) 8.50047e88 0.492245
\(387\) 6.33286e88 0.335407
\(388\) −1.21964e89 −0.590934
\(389\) 3.32775e89 1.47533 0.737666 0.675166i \(-0.235928\pi\)
0.737666 + 0.675166i \(0.235928\pi\)
\(390\) −7.07657e88 −0.287140
\(391\) −1.84271e89 −0.684476
\(392\) −1.96803e89 −0.669363
\(393\) −2.75540e88 −0.0858305
\(394\) 3.02899e88 0.0864329
\(395\) −8.23504e88 −0.215311
\(396\) −5.02239e88 −0.120345
\(397\) 3.94681e89 0.866910 0.433455 0.901175i \(-0.357294\pi\)
0.433455 + 0.901175i \(0.357294\pi\)
\(398\) −2.15485e89 −0.433961
\(399\) 1.63106e89 0.301234
\(400\) 5.85181e88 0.0991335
\(401\) −1.06622e90 −1.65717 −0.828585 0.559863i \(-0.810854\pi\)
−0.828585 + 0.559863i \(0.810854\pi\)
\(402\) 5.81923e89 0.829978
\(403\) −8.02789e89 −1.05094
\(404\) −1.85342e89 −0.222749
\(405\) −3.78540e89 −0.417747
\(406\) 8.13501e88 0.0824536
\(407\) 1.05024e90 0.977870
\(408\) 1.80821e90 1.54694
\(409\) 2.49992e90 1.96549 0.982747 0.184956i \(-0.0592143\pi\)
0.982747 + 0.184956i \(0.0592143\pi\)
\(410\) −1.37834e90 −0.996122
\(411\) −1.57825e90 −1.04866
\(412\) 8.15737e89 0.498421
\(413\) −1.19884e89 −0.0673728
\(414\) −2.07378e89 −0.107214
\(415\) 4.06815e89 0.193525
\(416\) −9.98517e89 −0.437155
\(417\) 1.48513e89 0.0598508
\(418\) −9.44384e89 −0.350402
\(419\) −4.53380e90 −1.54910 −0.774548 0.632515i \(-0.782023\pi\)
−0.774548 + 0.632515i \(0.782023\pi\)
\(420\) 5.72033e89 0.180020
\(421\) −2.79687e90 −0.810850 −0.405425 0.914128i \(-0.632876\pi\)
−0.405425 + 0.914128i \(0.632876\pi\)
\(422\) −1.73343e89 −0.0463049
\(423\) 2.39060e90 0.588525
\(424\) 4.61015e90 1.04615
\(425\) −2.20698e90 −0.461721
\(426\) 9.93875e89 0.191735
\(427\) 4.66753e90 0.830474
\(428\) −3.00519e89 −0.0493244
\(429\) −2.17658e90 −0.329608
\(430\) 4.17629e90 0.583618
\(431\) 1.36412e90 0.175949 0.0879747 0.996123i \(-0.471961\pi\)
0.0879747 + 0.996123i \(0.471961\pi\)
\(432\) 3.55182e90 0.422924
\(433\) 5.03925e90 0.554030 0.277015 0.960866i \(-0.410655\pi\)
0.277015 + 0.960866i \(0.410655\pi\)
\(434\) −8.67750e90 −0.881047
\(435\) 1.28617e90 0.120620
\(436\) −8.39992e90 −0.727766
\(437\) 2.91613e90 0.233452
\(438\) −4.63535e90 −0.342946
\(439\) 3.57299e89 0.0244347 0.0122173 0.999925i \(-0.496111\pi\)
0.0122173 + 0.999925i \(0.496111\pi\)
\(440\) −1.10531e91 −0.698819
\(441\) 3.97820e90 0.232571
\(442\) −1.41046e91 −0.762593
\(443\) 1.15300e90 0.0576635 0.0288317 0.999584i \(-0.490821\pi\)
0.0288317 + 0.999584i \(0.490821\pi\)
\(444\) 9.53582e90 0.441210
\(445\) −7.36782e90 −0.315441
\(446\) 9.17628e90 0.363592
\(447\) 2.42062e91 0.887802
\(448\) −1.78587e91 −0.606399
\(449\) 1.27562e91 0.401072 0.200536 0.979686i \(-0.435732\pi\)
0.200536 + 0.979686i \(0.435732\pi\)
\(450\) −2.48373e90 −0.0723225
\(451\) −4.23942e91 −1.14345
\(452\) 1.06245e91 0.265481
\(453\) 5.28900e91 1.22457
\(454\) 3.91624e91 0.840315
\(455\) −1.48907e91 −0.296157
\(456\) −2.86154e91 −0.527610
\(457\) 6.82027e91 1.16598 0.582992 0.812478i \(-0.301882\pi\)
0.582992 + 0.812478i \(0.301882\pi\)
\(458\) 6.18240e91 0.980162
\(459\) −1.33955e92 −1.96980
\(460\) 1.02273e91 0.139513
\(461\) −9.86987e90 −0.124919 −0.0624596 0.998047i \(-0.519894\pi\)
−0.0624596 + 0.998047i \(0.519894\pi\)
\(462\) −2.35270e91 −0.276324
\(463\) −8.33764e91 −0.908864 −0.454432 0.890782i \(-0.650158\pi\)
−0.454432 + 0.890782i \(0.650158\pi\)
\(464\) −6.79719e90 −0.0687796
\(465\) −1.37194e92 −1.28887
\(466\) −1.31589e89 −0.00114790
\(467\) −2.02146e91 −0.163770 −0.0818848 0.996642i \(-0.526094\pi\)
−0.0818848 + 0.996642i \(0.526094\pi\)
\(468\) 1.18706e91 0.0893288
\(469\) 1.22450e92 0.856040
\(470\) 1.57652e92 1.02405
\(471\) 6.09784e91 0.368090
\(472\) 2.10326e91 0.118003
\(473\) 1.28452e92 0.669934
\(474\) 3.07526e91 0.149117
\(475\) 3.49260e91 0.157478
\(476\) 1.14014e92 0.478101
\(477\) −9.31904e91 −0.363485
\(478\) −2.76460e92 −1.00316
\(479\) 8.35529e91 0.282089 0.141045 0.990003i \(-0.454954\pi\)
0.141045 + 0.990003i \(0.454954\pi\)
\(480\) −1.70643e92 −0.536126
\(481\) −2.48228e92 −0.725849
\(482\) 6.13759e91 0.167061
\(483\) 7.26483e91 0.184098
\(484\) 7.94589e91 0.187490
\(485\) 5.42577e92 1.19226
\(486\) −2.60371e92 −0.532895
\(487\) −8.46053e92 −1.61305 −0.806526 0.591199i \(-0.798655\pi\)
−0.806526 + 0.591199i \(0.798655\pi\)
\(488\) −8.18876e92 −1.45457
\(489\) 6.43502e92 1.06511
\(490\) 2.62348e92 0.404681
\(491\) 4.79826e92 0.689878 0.344939 0.938625i \(-0.387900\pi\)
0.344939 + 0.938625i \(0.387900\pi\)
\(492\) −3.84925e92 −0.515917
\(493\) 2.56353e92 0.320346
\(494\) 2.23209e92 0.260095
\(495\) 2.23428e92 0.242806
\(496\) 7.25048e92 0.734935
\(497\) 2.09134e92 0.197755
\(498\) −1.51919e92 −0.134030
\(499\) −1.37532e93 −1.13223 −0.566114 0.824327i \(-0.691554\pi\)
−0.566114 + 0.824327i \(0.691554\pi\)
\(500\) 6.03227e92 0.463464
\(501\) 1.49853e93 1.07464
\(502\) −2.19857e92 −0.147185
\(503\) −1.11814e93 −0.698879 −0.349440 0.936959i \(-0.613628\pi\)
−0.349440 + 0.936959i \(0.613628\pi\)
\(504\) 4.28202e92 0.249916
\(505\) 8.24519e92 0.449416
\(506\) −4.20635e92 −0.214147
\(507\) −1.14753e93 −0.545746
\(508\) 5.97465e92 0.265469
\(509\) −3.09546e93 −1.28517 −0.642587 0.766213i \(-0.722139\pi\)
−0.642587 + 0.766213i \(0.722139\pi\)
\(510\) −2.41044e93 −0.935243
\(511\) −9.75381e92 −0.353715
\(512\) 2.14141e93 0.725915
\(513\) 2.11987e93 0.671832
\(514\) 3.89209e92 0.115334
\(515\) −3.62893e93 −1.00561
\(516\) 1.16630e93 0.302271
\(517\) 4.84897e93 1.17551
\(518\) −2.68315e93 −0.608510
\(519\) −6.92249e92 −0.146889
\(520\) 2.61244e93 0.518717
\(521\) 8.60888e93 1.59973 0.799863 0.600183i \(-0.204906\pi\)
0.799863 + 0.600183i \(0.204906\pi\)
\(522\) 2.88499e92 0.0501779
\(523\) 2.70276e93 0.440047 0.220023 0.975495i \(-0.429387\pi\)
0.220023 + 0.975495i \(0.429387\pi\)
\(524\) 3.04808e92 0.0464618
\(525\) 8.70096e92 0.124186
\(526\) 9.57077e93 1.27920
\(527\) −2.73448e94 −3.42301
\(528\) 1.96580e93 0.230499
\(529\) −7.80489e93 −0.857327
\(530\) −6.14556e93 −0.632476
\(531\) −4.25156e92 −0.0410003
\(532\) −1.80431e93 −0.163064
\(533\) 1.00200e94 0.848753
\(534\) 2.75141e93 0.218465
\(535\) 1.33690e93 0.0995162
\(536\) −2.14827e94 −1.49935
\(537\) 1.79924e94 1.17754
\(538\) 4.48408e93 0.275223
\(539\) 8.06916e93 0.464532
\(540\) 7.43467e93 0.401492
\(541\) 1.15494e94 0.585130 0.292565 0.956246i \(-0.405491\pi\)
0.292565 + 0.956246i \(0.405491\pi\)
\(542\) −3.28724e93 −0.156263
\(543\) −1.57471e94 −0.702438
\(544\) −3.40117e94 −1.42386
\(545\) 3.73683e94 1.46833
\(546\) 5.56071e93 0.205109
\(547\) −5.12485e93 −0.177467 −0.0887336 0.996055i \(-0.528282\pi\)
−0.0887336 + 0.996055i \(0.528282\pi\)
\(548\) 1.74590e94 0.567661
\(549\) 1.65529e94 0.505392
\(550\) −5.03787e93 −0.144455
\(551\) −4.05684e93 −0.109259
\(552\) −1.27455e94 −0.322447
\(553\) 6.47103e93 0.153800
\(554\) −1.64588e94 −0.367547
\(555\) −4.24215e94 −0.890180
\(556\) −1.64288e93 −0.0323985
\(557\) 9.14290e93 0.169465 0.0847325 0.996404i \(-0.472996\pi\)
0.0847325 + 0.996404i \(0.472996\pi\)
\(558\) −3.07738e94 −0.536169
\(559\) −3.03602e94 −0.497276
\(560\) 1.34487e94 0.207106
\(561\) −7.41390e94 −1.07356
\(562\) 7.58248e94 1.03254
\(563\) 6.40420e93 0.0820210 0.0410105 0.999159i \(-0.486942\pi\)
0.0410105 + 0.999159i \(0.486942\pi\)
\(564\) 4.40270e94 0.530383
\(565\) −4.72647e94 −0.535631
\(566\) 1.29264e95 1.37819
\(567\) 2.97454e94 0.298403
\(568\) −3.66906e94 −0.346367
\(569\) 1.41851e95 1.26026 0.630128 0.776491i \(-0.283002\pi\)
0.630128 + 0.776491i \(0.283002\pi\)
\(570\) 3.81458e94 0.318980
\(571\) −2.33130e95 −1.83507 −0.917535 0.397654i \(-0.869824\pi\)
−0.917535 + 0.397654i \(0.869824\pi\)
\(572\) 2.40777e94 0.178424
\(573\) 8.09566e94 0.564830
\(574\) 1.08309e95 0.711546
\(575\) 1.55563e94 0.0962420
\(576\) −6.33340e94 −0.369030
\(577\) 9.49740e94 0.521242 0.260621 0.965441i \(-0.416073\pi\)
0.260621 + 0.965441i \(0.416073\pi\)
\(578\) −3.34129e95 −1.72744
\(579\) −1.05607e95 −0.514377
\(580\) −1.42279e94 −0.0652942
\(581\) −3.19672e94 −0.138238
\(582\) −2.02617e95 −0.825722
\(583\) −1.89022e95 −0.726018
\(584\) 1.71122e95 0.619529
\(585\) −5.28082e94 −0.180229
\(586\) 1.19720e95 0.385212
\(587\) 2.11763e95 0.642444 0.321222 0.947004i \(-0.395906\pi\)
0.321222 + 0.947004i \(0.395906\pi\)
\(588\) 7.32652e94 0.209595
\(589\) 4.32738e95 1.16747
\(590\) −2.80374e94 −0.0713418
\(591\) −3.76311e94 −0.0903190
\(592\) 2.24190e95 0.507595
\(593\) 5.07974e95 1.08506 0.542531 0.840035i \(-0.317466\pi\)
0.542531 + 0.840035i \(0.317466\pi\)
\(594\) −3.05779e95 −0.616276
\(595\) −5.07210e95 −0.964611
\(596\) −2.67773e95 −0.480586
\(597\) 2.67710e95 0.453472
\(598\) 9.94188e94 0.158956
\(599\) 3.02956e95 0.457251 0.228626 0.973514i \(-0.426577\pi\)
0.228626 + 0.973514i \(0.426577\pi\)
\(600\) −1.52650e95 −0.217510
\(601\) −4.18382e95 −0.562865 −0.281432 0.959581i \(-0.590809\pi\)
−0.281432 + 0.959581i \(0.590809\pi\)
\(602\) −3.28169e95 −0.416887
\(603\) 4.34254e95 0.520951
\(604\) −5.85079e95 −0.662888
\(605\) −3.53484e95 −0.378277
\(606\) −3.07905e95 −0.311251
\(607\) 2.90050e95 0.276989 0.138494 0.990363i \(-0.455774\pi\)
0.138494 + 0.990363i \(0.455774\pi\)
\(608\) 5.38244e95 0.485630
\(609\) −1.01066e95 −0.0861609
\(610\) 1.09160e96 0.879398
\(611\) −1.14607e96 −0.872551
\(612\) 4.04340e95 0.290953
\(613\) −1.72442e96 −1.17289 −0.586445 0.809989i \(-0.699473\pi\)
−0.586445 + 0.809989i \(0.699473\pi\)
\(614\) −1.65805e96 −1.06608
\(615\) 1.71240e96 1.04091
\(616\) 8.68540e95 0.499178
\(617\) −4.52024e95 −0.245654 −0.122827 0.992428i \(-0.539196\pi\)
−0.122827 + 0.992428i \(0.539196\pi\)
\(618\) 1.35517e96 0.696452
\(619\) 1.70981e96 0.831039 0.415519 0.909584i \(-0.363600\pi\)
0.415519 + 0.909584i \(0.363600\pi\)
\(620\) 1.51767e96 0.697692
\(621\) 9.44205e95 0.410588
\(622\) 7.76833e95 0.319565
\(623\) 5.78957e95 0.225325
\(624\) −4.64625e95 −0.171094
\(625\) −1.95232e96 −0.680283
\(626\) −1.74443e96 −0.575226
\(627\) 1.17327e96 0.366157
\(628\) −6.74554e95 −0.199255
\(629\) −8.45521e96 −2.36416
\(630\) −5.70814e95 −0.151093
\(631\) 1.73259e96 0.434194 0.217097 0.976150i \(-0.430341\pi\)
0.217097 + 0.976150i \(0.430341\pi\)
\(632\) −1.13528e96 −0.269380
\(633\) 2.15355e95 0.0483868
\(634\) 5.50794e96 1.17195
\(635\) −2.65791e96 −0.535608
\(636\) −1.71626e96 −0.327576
\(637\) −1.90718e96 −0.344811
\(638\) 5.85176e95 0.100224
\(639\) 7.41670e95 0.120346
\(640\) 2.35258e95 0.0361688
\(641\) 1.24042e97 1.80703 0.903516 0.428555i \(-0.140977\pi\)
0.903516 + 0.428555i \(0.140977\pi\)
\(642\) −4.99246e95 −0.0689218
\(643\) 4.85935e96 0.635770 0.317885 0.948129i \(-0.397027\pi\)
0.317885 + 0.948129i \(0.397027\pi\)
\(644\) −8.03650e95 −0.0996562
\(645\) −5.18847e96 −0.609858
\(646\) 7.60300e96 0.847155
\(647\) −1.58911e96 −0.167863 −0.0839317 0.996472i \(-0.526748\pi\)
−0.0839317 + 0.996472i \(0.526748\pi\)
\(648\) −5.21855e96 −0.522652
\(649\) −8.62362e95 −0.0818931
\(650\) 1.19072e96 0.107226
\(651\) 1.07806e97 0.920660
\(652\) −7.11854e96 −0.576566
\(653\) −3.72042e96 −0.285816 −0.142908 0.989736i \(-0.545645\pi\)
−0.142908 + 0.989736i \(0.545645\pi\)
\(654\) −1.39546e97 −1.01692
\(655\) −1.35598e96 −0.0937408
\(656\) −9.04971e96 −0.593543
\(657\) −3.45908e96 −0.215256
\(658\) −1.23881e97 −0.731497
\(659\) 1.80448e97 1.01112 0.505562 0.862790i \(-0.331285\pi\)
0.505562 + 0.862790i \(0.331285\pi\)
\(660\) 4.11481e96 0.218818
\(661\) −1.61074e97 −0.812970 −0.406485 0.913657i \(-0.633246\pi\)
−0.406485 + 0.913657i \(0.633246\pi\)
\(662\) 1.15834e97 0.554926
\(663\) 1.75231e97 0.796881
\(664\) 5.60836e96 0.242124
\(665\) 8.02672e96 0.328997
\(666\) −9.51550e96 −0.370314
\(667\) −1.80694e96 −0.0667734
\(668\) −1.65770e97 −0.581725
\(669\) −1.14003e97 −0.379939
\(670\) 2.86375e97 0.906471
\(671\) 3.35750e97 1.00946
\(672\) 1.34090e97 0.382963
\(673\) −6.18856e97 −1.67907 −0.839536 0.543303i \(-0.817173\pi\)
−0.839536 + 0.543303i \(0.817173\pi\)
\(674\) 2.28011e97 0.587746
\(675\) 1.13086e97 0.276967
\(676\) 1.26942e97 0.295424
\(677\) 8.78367e96 0.194253 0.0971264 0.995272i \(-0.469035\pi\)
0.0971264 + 0.995272i \(0.469035\pi\)
\(678\) 1.76503e97 0.370961
\(679\) −4.26352e97 −0.851651
\(680\) 8.89853e97 1.68951
\(681\) −4.86539e97 −0.878097
\(682\) −6.24199e97 −1.07093
\(683\) −7.98957e96 −0.130319 −0.0651597 0.997875i \(-0.520756\pi\)
−0.0651597 + 0.997875i \(0.520756\pi\)
\(684\) −6.39878e96 −0.0992343
\(685\) −7.76687e97 −1.14531
\(686\) −5.38779e97 −0.755490
\(687\) −7.68078e97 −1.02423
\(688\) 2.74201e97 0.347751
\(689\) 4.46762e97 0.538906
\(690\) 1.69904e97 0.194944
\(691\) 1.70561e98 1.86161 0.930804 0.365518i \(-0.119108\pi\)
0.930804 + 0.365518i \(0.119108\pi\)
\(692\) 7.65779e96 0.0795139
\(693\) −1.75568e97 −0.173440
\(694\) −9.42112e97 −0.885525
\(695\) 7.30858e96 0.0653668
\(696\) 1.77312e97 0.150910
\(697\) 3.41305e98 2.76447
\(698\) −1.13427e96 −0.00874391
\(699\) 1.63481e95 0.00119952
\(700\) −9.62517e96 −0.0672242
\(701\) −1.83692e98 −1.22129 −0.610643 0.791906i \(-0.709089\pi\)
−0.610643 + 0.791906i \(0.709089\pi\)
\(702\) 7.22722e97 0.457447
\(703\) 1.33806e98 0.806337
\(704\) −1.28463e98 −0.737092
\(705\) −1.95861e98 −1.07010
\(706\) −1.05984e98 −0.551414
\(707\) −6.47900e97 −0.321025
\(708\) −7.82995e96 −0.0369498
\(709\) −1.26968e98 −0.570690 −0.285345 0.958425i \(-0.592108\pi\)
−0.285345 + 0.958425i \(0.592108\pi\)
\(710\) 4.89104e97 0.209405
\(711\) 2.29488e97 0.0935963
\(712\) −1.01573e98 −0.394655
\(713\) 1.92744e98 0.713498
\(714\) 1.89410e98 0.668059
\(715\) −1.07113e98 −0.359985
\(716\) −1.99036e98 −0.637429
\(717\) 3.43464e98 1.04826
\(718\) −1.03794e98 −0.301911
\(719\) −3.68969e98 −1.02292 −0.511462 0.859306i \(-0.670896\pi\)
−0.511462 + 0.859306i \(0.670896\pi\)
\(720\) 4.76943e97 0.126036
\(721\) 2.85158e98 0.718322
\(722\) 1.94661e98 0.467461
\(723\) −7.62512e97 −0.174572
\(724\) 1.74198e98 0.380244
\(725\) −2.16414e97 −0.0450428
\(726\) 1.32004e98 0.261983
\(727\) 5.94826e98 1.12578 0.562889 0.826533i \(-0.309690\pi\)
0.562889 + 0.826533i \(0.309690\pi\)
\(728\) −2.05283e98 −0.370528
\(729\) 6.04585e98 1.04078
\(730\) −2.28114e98 −0.374553
\(731\) −1.03414e99 −1.61968
\(732\) 3.04850e98 0.455463
\(733\) −5.69595e98 −0.811857 −0.405928 0.913905i \(-0.633052\pi\)
−0.405928 + 0.913905i \(0.633052\pi\)
\(734\) −3.54627e98 −0.482234
\(735\) −3.25931e98 −0.422876
\(736\) 2.39737e98 0.296791
\(737\) 8.80817e98 1.04054
\(738\) 3.84105e98 0.433017
\(739\) −1.30994e99 −1.40935 −0.704673 0.709532i \(-0.748906\pi\)
−0.704673 + 0.709532i \(0.748906\pi\)
\(740\) 4.69275e98 0.481873
\(741\) −2.77307e98 −0.271789
\(742\) 4.82913e98 0.451787
\(743\) −1.09338e99 −0.976466 −0.488233 0.872713i \(-0.662358\pi\)
−0.488233 + 0.872713i \(0.662358\pi\)
\(744\) −1.89136e99 −1.61253
\(745\) 1.19123e99 0.969624
\(746\) 4.95951e98 0.385434
\(747\) −1.13368e98 −0.0841262
\(748\) 8.20140e98 0.581143
\(749\) −1.05053e98 −0.0710860
\(750\) 1.00213e99 0.647606
\(751\) −7.23723e97 −0.0446678 −0.0223339 0.999751i \(-0.507110\pi\)
−0.0223339 + 0.999751i \(0.507110\pi\)
\(752\) 1.03509e99 0.610186
\(753\) 2.73143e98 0.153802
\(754\) −1.38309e98 −0.0743940
\(755\) 2.60281e99 1.33743
\(756\) −5.84210e98 −0.286792
\(757\) 7.29435e98 0.342120 0.171060 0.985261i \(-0.445281\pi\)
0.171060 + 0.985261i \(0.445281\pi\)
\(758\) −1.15251e98 −0.0516483
\(759\) 5.22581e98 0.223776
\(760\) −1.40822e99 −0.576236
\(761\) −2.12780e99 −0.832072 −0.416036 0.909348i \(-0.636581\pi\)
−0.416036 + 0.909348i \(0.636581\pi\)
\(762\) 9.92559e98 0.370945
\(763\) −2.93637e99 −1.04885
\(764\) −8.95557e98 −0.305754
\(765\) −1.79876e99 −0.587023
\(766\) −3.47820e99 −1.08508
\(767\) 2.03823e98 0.0607873
\(768\) −2.81396e99 −0.802336
\(769\) 5.23656e99 1.42754 0.713769 0.700382i \(-0.246987\pi\)
0.713769 + 0.700382i \(0.246987\pi\)
\(770\) −1.15781e99 −0.301791
\(771\) −4.83540e98 −0.120519
\(772\) 1.16824e99 0.278443
\(773\) 4.81316e99 1.09708 0.548539 0.836125i \(-0.315184\pi\)
0.548539 + 0.836125i \(0.315184\pi\)
\(774\) −1.16382e99 −0.253701
\(775\) 2.30846e99 0.481298
\(776\) 7.47996e99 1.49166
\(777\) 3.33345e99 0.635870
\(778\) −6.11555e99 −1.11594
\(779\) −5.40124e99 −0.942869
\(780\) −9.72552e98 −0.162424
\(781\) 1.50436e99 0.240376
\(782\) 3.38642e99 0.517736
\(783\) −1.31355e99 −0.192162
\(784\) 1.72249e99 0.241131
\(785\) 3.00085e99 0.402015
\(786\) 5.06371e98 0.0649219
\(787\) −5.33226e98 −0.0654309 −0.0327154 0.999465i \(-0.510416\pi\)
−0.0327154 + 0.999465i \(0.510416\pi\)
\(788\) 4.16283e98 0.0488916
\(789\) −1.18904e100 −1.33671
\(790\) 1.51339e99 0.162861
\(791\) 3.71402e99 0.382610
\(792\) 3.08018e99 0.303779
\(793\) −7.93559e99 −0.749297
\(794\) −7.25323e99 −0.655728
\(795\) 7.63502e99 0.660913
\(796\) −2.96146e99 −0.245474
\(797\) 1.41086e100 1.11988 0.559941 0.828533i \(-0.310824\pi\)
0.559941 + 0.828533i \(0.310824\pi\)
\(798\) −2.99746e99 −0.227853
\(799\) −3.90378e100 −2.84198
\(800\) 2.87129e99 0.200204
\(801\) 2.05321e99 0.137123
\(802\) 1.95944e100 1.25348
\(803\) −7.01621e99 −0.429948
\(804\) 7.99752e99 0.469485
\(805\) 3.57515e99 0.201065
\(806\) 1.47532e100 0.794927
\(807\) −5.57085e99 −0.287597
\(808\) 1.13668e100 0.562273
\(809\) −2.53533e100 −1.20174 −0.600871 0.799346i \(-0.705179\pi\)
−0.600871 + 0.799346i \(0.705179\pi\)
\(810\) 6.95659e99 0.315983
\(811\) 4.13280e100 1.79897 0.899487 0.436948i \(-0.143941\pi\)
0.899487 + 0.436948i \(0.143941\pi\)
\(812\) 1.11802e99 0.0466407
\(813\) 4.08395e99 0.163289
\(814\) −1.93007e100 −0.739658
\(815\) 3.16679e100 1.16327
\(816\) −1.58261e100 −0.557268
\(817\) 1.63655e100 0.552417
\(818\) −4.59421e100 −1.48669
\(819\) 4.14963e99 0.128740
\(820\) −1.89429e100 −0.563466
\(821\) −5.53997e100 −1.58004 −0.790021 0.613080i \(-0.789930\pi\)
−0.790021 + 0.613080i \(0.789930\pi\)
\(822\) 2.90043e100 0.793202
\(823\) 2.61490e100 0.685743 0.342872 0.939382i \(-0.388600\pi\)
0.342872 + 0.939382i \(0.388600\pi\)
\(824\) −5.00284e100 −1.25814
\(825\) 6.25886e99 0.150950
\(826\) 2.20316e99 0.0509606
\(827\) 2.23696e100 0.496271 0.248136 0.968725i \(-0.420182\pi\)
0.248136 + 0.968725i \(0.420182\pi\)
\(828\) −2.85006e99 −0.0606467
\(829\) −4.96571e100 −1.01356 −0.506781 0.862075i \(-0.669165\pi\)
−0.506781 + 0.862075i \(0.669165\pi\)
\(830\) −7.47622e99 −0.146382
\(831\) 2.04479e100 0.384072
\(832\) 3.03628e100 0.547126
\(833\) −6.49627e100 −1.12308
\(834\) −2.72928e99 −0.0452710
\(835\) 7.37451e100 1.17368
\(836\) −1.29789e100 −0.198208
\(837\) 1.40115e101 2.05332
\(838\) 8.33196e100 1.17173
\(839\) 5.71823e100 0.771745 0.385872 0.922552i \(-0.373901\pi\)
0.385872 + 0.922552i \(0.373901\pi\)
\(840\) −3.50823e100 −0.454414
\(841\) −7.79243e100 −0.968749
\(842\) 5.13993e100 0.613324
\(843\) −9.42020e100 −1.07897
\(844\) −2.38230e99 −0.0261928
\(845\) −5.64722e100 −0.596044
\(846\) −4.39332e100 −0.445159
\(847\) 2.77765e100 0.270209
\(848\) −4.03497e100 −0.376863
\(849\) −1.60592e101 −1.44016
\(850\) 4.05586e100 0.349245
\(851\) 5.95980e100 0.492790
\(852\) 1.36591e100 0.108457
\(853\) 1.15331e100 0.0879433 0.0439717 0.999033i \(-0.485999\pi\)
0.0439717 + 0.999033i \(0.485999\pi\)
\(854\) −8.57773e100 −0.628168
\(855\) 2.84659e100 0.200214
\(856\) 1.84305e100 0.124507
\(857\) 1.79317e101 1.16355 0.581773 0.813352i \(-0.302359\pi\)
0.581773 + 0.813352i \(0.302359\pi\)
\(858\) 3.99999e100 0.249314
\(859\) −2.06109e101 −1.23405 −0.617025 0.786943i \(-0.711662\pi\)
−0.617025 + 0.786943i \(0.711662\pi\)
\(860\) 5.73958e100 0.330129
\(861\) −1.34559e101 −0.743538
\(862\) −2.50691e100 −0.133088
\(863\) −2.70544e100 −0.137996 −0.0689979 0.997617i \(-0.521980\pi\)
−0.0689979 + 0.997617i \(0.521980\pi\)
\(864\) 1.74276e101 0.854110
\(865\) −3.40668e100 −0.160426
\(866\) −9.26084e100 −0.419067
\(867\) 4.15110e101 1.80511
\(868\) −1.19257e101 −0.498373
\(869\) 4.65481e100 0.186947
\(870\) −2.36365e100 −0.0912367
\(871\) −2.08185e101 −0.772365
\(872\) 5.15160e101 1.83706
\(873\) −1.51201e101 −0.518280
\(874\) −5.35910e100 −0.176582
\(875\) 2.10871e101 0.667942
\(876\) −6.37048e100 −0.193991
\(877\) 1.39865e101 0.409471 0.204735 0.978817i \(-0.434367\pi\)
0.204735 + 0.978817i \(0.434367\pi\)
\(878\) −6.56624e99 −0.0184823
\(879\) −1.48736e101 −0.402532
\(880\) 9.67404e100 0.251742
\(881\) −4.46892e101 −1.11824 −0.559118 0.829088i \(-0.688860\pi\)
−0.559118 + 0.829088i \(0.688860\pi\)
\(882\) −7.31091e100 −0.175916
\(883\) −7.72337e101 −1.78716 −0.893578 0.448907i \(-0.851813\pi\)
−0.893578 + 0.448907i \(0.851813\pi\)
\(884\) −1.93844e101 −0.431368
\(885\) 3.48327e100 0.0745494
\(886\) −2.11892e100 −0.0436165
\(887\) 5.11089e101 1.01189 0.505943 0.862567i \(-0.331145\pi\)
0.505943 + 0.862567i \(0.331145\pi\)
\(888\) −5.84823e101 −1.11372
\(889\) 2.08857e101 0.382593
\(890\) 1.35402e101 0.238599
\(891\) 2.13967e101 0.362716
\(892\) 1.26112e101 0.205669
\(893\) 6.17783e101 0.969306
\(894\) −4.44847e101 −0.671531
\(895\) 8.85440e101 1.28607
\(896\) −1.84863e100 −0.0258360
\(897\) −1.23514e101 −0.166103
\(898\) −2.34426e101 −0.303370
\(899\) −2.68141e101 −0.333928
\(900\) −3.41346e100 −0.0409099
\(901\) 1.52177e102 1.75527
\(902\) 7.79097e101 0.864900
\(903\) 4.07705e101 0.435631
\(904\) −6.51592e101 −0.670139
\(905\) −7.74945e101 −0.767176
\(906\) −9.71982e101 −0.926265
\(907\) −7.73852e101 −0.709915 −0.354958 0.934882i \(-0.615505\pi\)
−0.354958 + 0.934882i \(0.615505\pi\)
\(908\) 5.38219e101 0.475332
\(909\) −2.29771e101 −0.195362
\(910\) 2.73653e101 0.224012
\(911\) −9.32355e101 −0.734848 −0.367424 0.930054i \(-0.619760\pi\)
−0.367424 + 0.930054i \(0.619760\pi\)
\(912\) 2.50453e101 0.190066
\(913\) −2.29950e101 −0.168032
\(914\) −1.25339e102 −0.881948
\(915\) −1.35617e102 −0.918937
\(916\) 8.49663e101 0.554438
\(917\) 1.06552e101 0.0669606
\(918\) 2.46175e102 1.48995
\(919\) −1.85343e102 −1.08041 −0.540207 0.841532i \(-0.681654\pi\)
−0.540207 + 0.841532i \(0.681654\pi\)
\(920\) −6.27228e101 −0.352164
\(921\) 2.05990e102 1.11401
\(922\) 1.81383e101 0.0944886
\(923\) −3.55562e101 −0.178425
\(924\) −3.23338e101 −0.156305
\(925\) 7.13794e101 0.332417
\(926\) 1.53224e102 0.687462
\(927\) 1.01128e102 0.437141
\(928\) −3.33516e101 −0.138903
\(929\) −1.39993e102 −0.561778 −0.280889 0.959740i \(-0.590629\pi\)
−0.280889 + 0.959740i \(0.590629\pi\)
\(930\) 2.52128e102 0.974897
\(931\) 1.02805e102 0.383046
\(932\) −1.80846e99 −0.000649323 0
\(933\) −9.65109e101 −0.333933
\(934\) 3.71493e101 0.123875
\(935\) −3.64851e102 −1.17251
\(936\) −7.28014e101 −0.225488
\(937\) 7.09610e101 0.211838 0.105919 0.994375i \(-0.466222\pi\)
0.105919 + 0.994375i \(0.466222\pi\)
\(938\) −2.25031e102 −0.647507
\(939\) 2.16721e102 0.601089
\(940\) 2.16665e102 0.579265
\(941\) 1.31529e102 0.338985 0.169492 0.985531i \(-0.445787\pi\)
0.169492 + 0.985531i \(0.445787\pi\)
\(942\) −1.12063e102 −0.278423
\(943\) −2.40575e102 −0.576231
\(944\) −1.84085e101 −0.0425093
\(945\) 2.59895e102 0.578629
\(946\) −2.36062e102 −0.506736
\(947\) −4.24962e102 −0.879580 −0.439790 0.898101i \(-0.644947\pi\)
−0.439790 + 0.898101i \(0.644947\pi\)
\(948\) 4.22641e101 0.0843497
\(949\) 1.65831e102 0.319140
\(950\) −6.41850e101 −0.119116
\(951\) −6.84286e102 −1.22464
\(952\) −6.99239e102 −1.20684
\(953\) 7.22436e102 1.20252 0.601262 0.799052i \(-0.294665\pi\)
0.601262 + 0.799052i \(0.294665\pi\)
\(954\) 1.71260e102 0.274939
\(955\) 3.98402e102 0.616886
\(956\) −3.79947e102 −0.567447
\(957\) −7.27001e101 −0.104730
\(958\) −1.53549e102 −0.213371
\(959\) 6.10314e102 0.818110
\(960\) 5.18891e102 0.670994
\(961\) 2.05862e103 2.56815
\(962\) 4.56180e102 0.549030
\(963\) −3.72558e101 −0.0432600
\(964\) 8.43506e101 0.0944997
\(965\) −5.19710e102 −0.561783
\(966\) −1.33509e102 −0.139251
\(967\) −4.25077e102 −0.427813 −0.213907 0.976854i \(-0.568619\pi\)
−0.213907 + 0.976854i \(0.568619\pi\)
\(968\) −4.87314e102 −0.473270
\(969\) −9.44569e102 −0.885245
\(970\) −9.97116e102 −0.901822
\(971\) −3.95129e102 −0.344886 −0.172443 0.985020i \(-0.555166\pi\)
−0.172443 + 0.985020i \(0.555166\pi\)
\(972\) −3.57835e102 −0.301437
\(973\) −5.74302e101 −0.0466925
\(974\) 1.55483e103 1.22011
\(975\) −1.47931e102 −0.112047
\(976\) 7.16711e102 0.523993
\(977\) −2.08430e103 −1.47095 −0.735475 0.677552i \(-0.763041\pi\)
−0.735475 + 0.677552i \(0.763041\pi\)
\(978\) −1.18259e103 −0.805645
\(979\) 4.16462e102 0.273887
\(980\) 3.60551e102 0.228911
\(981\) −1.04135e103 −0.638288
\(982\) −8.81797e102 −0.521822
\(983\) 1.66610e103 0.951927 0.475964 0.879465i \(-0.342099\pi\)
0.475964 + 0.879465i \(0.342099\pi\)
\(984\) 2.36071e103 1.30230
\(985\) −1.85190e102 −0.0986430
\(986\) −4.71110e102 −0.242309
\(987\) 1.53906e103 0.764386
\(988\) 3.06762e102 0.147125
\(989\) 7.28928e102 0.337608
\(990\) −4.10604e102 −0.183658
\(991\) −1.55619e103 −0.672237 −0.336118 0.941820i \(-0.609114\pi\)
−0.336118 + 0.941820i \(0.609114\pi\)
\(992\) 3.55757e103 1.48423
\(993\) −1.43908e103 −0.579876
\(994\) −3.84334e102 −0.149582
\(995\) 1.31745e103 0.495266
\(996\) −2.08787e102 −0.0758151
\(997\) −3.68617e103 −1.29298 −0.646491 0.762921i \(-0.723764\pi\)
−0.646491 + 0.762921i \(0.723764\pi\)
\(998\) 2.52748e103 0.856415
\(999\) 4.33246e103 1.41816
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))