Properties

Label 1.64.a.a.1.5
Level $1$
Weight $64$
Character 1.1
Self dual yes
Analytic conductor $25.136$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1 \)
Weight: \( k \) \(=\) \( 64 \)
Character orbit: \([\chi]\) \(=\) 1.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(25.1360966918\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Defining polynomial: \(x^{5} - 2 x^{4} - 5096287552528786 x^{3} + 574038763744383494840 x^{2} + 3502610791787684740809332695881 x - 35880030333954415007358004861309901934\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{37}\cdot 3^{17}\cdot 5^{3}\cdot 7^{2}\cdot 13 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-6.41810e7\) of defining polynomial
Character \(\chi\) \(=\) 1.1

$q$-expansion

\(f(q)\) \(=\) \(q+4.72250e9 q^{2} +8.02316e14 q^{3} +1.30786e19 q^{4} +1.36438e22 q^{5} +3.78894e24 q^{6} +4.00095e26 q^{7} +1.82063e28 q^{8} -5.00850e29 q^{9} +O(q^{10})\) \(q+4.72250e9 q^{2} +8.02316e14 q^{3} +1.30786e19 q^{4} +1.36438e22 q^{5} +3.78894e24 q^{6} +4.00095e26 q^{7} +1.82063e28 q^{8} -5.00850e29 q^{9} +6.44329e31 q^{10} -8.56884e32 q^{11} +1.04932e34 q^{12} +2.07398e35 q^{13} +1.88945e36 q^{14} +1.09467e37 q^{15} -3.46497e37 q^{16} -5.37140e38 q^{17} -2.36526e39 q^{18} -4.25177e39 q^{19} +1.78442e41 q^{20} +3.21003e41 q^{21} -4.04663e42 q^{22} +7.22439e42 q^{23} +1.46072e43 q^{24} +7.77338e43 q^{25} +9.79436e44 q^{26} -1.32014e45 q^{27} +5.23268e45 q^{28} +6.34966e45 q^{29} +5.16956e46 q^{30} +1.09199e47 q^{31} -3.31556e47 q^{32} -6.87492e47 q^{33} -2.53664e48 q^{34} +5.45883e48 q^{35} -6.55041e48 q^{36} -2.36747e49 q^{37} -2.00790e49 q^{38} +1.66399e50 q^{39} +2.48403e50 q^{40} +2.67628e50 q^{41} +1.51594e51 q^{42} -2.12019e51 q^{43} -1.12068e52 q^{44} -6.83350e51 q^{45} +3.41171e52 q^{46} -3.01357e52 q^{47} -2.78000e52 q^{48} -1.41752e52 q^{49} +3.67097e53 q^{50} -4.30956e53 q^{51} +2.71247e54 q^{52} -1.69213e52 q^{53} -6.23436e54 q^{54} -1.16912e55 q^{55} +7.28424e54 q^{56} -3.41127e54 q^{57} +2.99863e55 q^{58} -7.40118e54 q^{59} +1.43167e56 q^{60} -2.87222e56 q^{61} +5.15693e56 q^{62} -2.00388e56 q^{63} -1.24619e57 q^{64} +2.82970e57 q^{65} -3.24668e57 q^{66} -2.05697e57 q^{67} -7.02504e57 q^{68} +5.79624e57 q^{69} +2.57793e58 q^{70} +2.18652e58 q^{71} -9.11860e57 q^{72} -1.91991e58 q^{73} -1.11804e59 q^{74} +6.23671e58 q^{75} -5.56072e58 q^{76} -3.42835e59 q^{77} +7.85818e59 q^{78} -1.43780e59 q^{79} -4.72755e59 q^{80} -4.85917e59 q^{81} +1.26387e60 q^{82} +2.96542e60 q^{83} +4.19827e60 q^{84} -7.32865e60 q^{85} -1.00126e61 q^{86} +5.09444e60 q^{87} -1.56007e61 q^{88} -3.32533e60 q^{89} -3.22712e61 q^{90} +8.29790e61 q^{91} +9.44848e61 q^{92} +8.76123e61 q^{93} -1.42316e62 q^{94} -5.80104e61 q^{95} -2.66013e62 q^{96} -5.80025e61 q^{97} -6.69425e61 q^{98} +4.29170e62 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5q + 507315096q^{2} + 953245351116252q^{3} + 6772922881670488640q^{4} - \)\(50\!\cdots\!30\)\(q^{5} + \)\(10\!\cdots\!60\)\(q^{6} + \)\(37\!\cdots\!56\)\(q^{7} + \)\(73\!\cdots\!00\)\(q^{8} + \)\(63\!\cdots\!85\)\(q^{9} + O(q^{10}) \) \( 5q + 507315096q^{2} + 953245351116252q^{3} + 6772922881670488640q^{4} - \)\(50\!\cdots\!30\)\(q^{5} + \)\(10\!\cdots\!60\)\(q^{6} + \)\(37\!\cdots\!56\)\(q^{7} + \)\(73\!\cdots\!00\)\(q^{8} + \)\(63\!\cdots\!85\)\(q^{9} + \)\(34\!\cdots\!20\)\(q^{10} - \)\(54\!\cdots\!40\)\(q^{11} - \)\(26\!\cdots\!84\)\(q^{12} + \)\(10\!\cdots\!62\)\(q^{13} - \)\(54\!\cdots\!20\)\(q^{14} - \)\(34\!\cdots\!60\)\(q^{15} - \)\(15\!\cdots\!20\)\(q^{16} + \)\(23\!\cdots\!26\)\(q^{17} - \)\(87\!\cdots\!08\)\(q^{18} - \)\(78\!\cdots\!00\)\(q^{19} + \)\(11\!\cdots\!60\)\(q^{20} + \)\(12\!\cdots\!60\)\(q^{21} + \)\(52\!\cdots\!72\)\(q^{22} + \)\(15\!\cdots\!72\)\(q^{23} + \)\(81\!\cdots\!00\)\(q^{24} + \)\(29\!\cdots\!75\)\(q^{25} + \)\(18\!\cdots\!60\)\(q^{26} + \)\(59\!\cdots\!00\)\(q^{27} + \)\(20\!\cdots\!48\)\(q^{28} + \)\(50\!\cdots\!50\)\(q^{29} + \)\(11\!\cdots\!40\)\(q^{30} + \)\(15\!\cdots\!60\)\(q^{31} - \)\(28\!\cdots\!44\)\(q^{32} - \)\(19\!\cdots\!36\)\(q^{33} - \)\(77\!\cdots\!20\)\(q^{34} - \)\(10\!\cdots\!80\)\(q^{35} - \)\(37\!\cdots\!20\)\(q^{36} - \)\(17\!\cdots\!34\)\(q^{37} + \)\(96\!\cdots\!00\)\(q^{38} + \)\(49\!\cdots\!20\)\(q^{39} + \)\(89\!\cdots\!00\)\(q^{40} + \)\(15\!\cdots\!10\)\(q^{41} + \)\(20\!\cdots\!52\)\(q^{42} - \)\(29\!\cdots\!08\)\(q^{43} - \)\(18\!\cdots\!20\)\(q^{44} - \)\(42\!\cdots\!10\)\(q^{45} - \)\(51\!\cdots\!40\)\(q^{46} - \)\(48\!\cdots\!64\)\(q^{47} + \)\(10\!\cdots\!72\)\(q^{48} + \)\(33\!\cdots\!65\)\(q^{49} + \)\(11\!\cdots\!00\)\(q^{50} + \)\(15\!\cdots\!60\)\(q^{51} + \)\(11\!\cdots\!96\)\(q^{52} - \)\(69\!\cdots\!98\)\(q^{53} - \)\(12\!\cdots\!00\)\(q^{54} - \)\(20\!\cdots\!60\)\(q^{55} - \)\(23\!\cdots\!00\)\(q^{56} - \)\(17\!\cdots\!00\)\(q^{57} + \)\(24\!\cdots\!00\)\(q^{58} + \)\(10\!\cdots\!00\)\(q^{59} + \)\(34\!\cdots\!20\)\(q^{60} + \)\(39\!\cdots\!10\)\(q^{61} + \)\(51\!\cdots\!32\)\(q^{62} - \)\(68\!\cdots\!88\)\(q^{63} - \)\(21\!\cdots\!60\)\(q^{64} - \)\(17\!\cdots\!60\)\(q^{65} - \)\(55\!\cdots\!80\)\(q^{66} - \)\(47\!\cdots\!24\)\(q^{67} - \)\(12\!\cdots\!92\)\(q^{68} + \)\(17\!\cdots\!20\)\(q^{69} + \)\(40\!\cdots\!20\)\(q^{70} + \)\(50\!\cdots\!60\)\(q^{71} + \)\(61\!\cdots\!00\)\(q^{72} - \)\(29\!\cdots\!78\)\(q^{73} - \)\(14\!\cdots\!20\)\(q^{74} - \)\(20\!\cdots\!00\)\(q^{75} - \)\(45\!\cdots\!00\)\(q^{76} - \)\(58\!\cdots\!08\)\(q^{77} - \)\(22\!\cdots\!96\)\(q^{78} + \)\(58\!\cdots\!00\)\(q^{79} + \)\(10\!\cdots\!20\)\(q^{80} + \)\(45\!\cdots\!05\)\(q^{81} + \)\(39\!\cdots\!12\)\(q^{82} + \)\(27\!\cdots\!32\)\(q^{83} - \)\(12\!\cdots\!20\)\(q^{84} - \)\(12\!\cdots\!80\)\(q^{85} - \)\(25\!\cdots\!40\)\(q^{86} - \)\(16\!\cdots\!00\)\(q^{87} - \)\(37\!\cdots\!00\)\(q^{88} + \)\(32\!\cdots\!50\)\(q^{89} + \)\(39\!\cdots\!40\)\(q^{90} + \)\(10\!\cdots\!60\)\(q^{91} + \)\(16\!\cdots\!76\)\(q^{92} + \)\(37\!\cdots\!84\)\(q^{93} - \)\(20\!\cdots\!20\)\(q^{94} + \)\(13\!\cdots\!00\)\(q^{95} - \)\(90\!\cdots\!40\)\(q^{96} - \)\(17\!\cdots\!14\)\(q^{97} - \)\(19\!\cdots\!72\)\(q^{98} - \)\(12\!\cdots\!80\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.72250e9 1.55499 0.777493 0.628891i \(-0.216491\pi\)
0.777493 + 0.628891i \(0.216491\pi\)
\(3\) 8.02316e14 0.749939 0.374970 0.927037i \(-0.377653\pi\)
0.374970 + 0.927037i \(0.377653\pi\)
\(4\) 1.30786e19 1.41798
\(5\) 1.36438e22 1.31033 0.655166 0.755485i \(-0.272599\pi\)
0.655166 + 0.755485i \(0.272599\pi\)
\(6\) 3.78894e24 1.16615
\(7\) 4.00095e26 0.958463 0.479231 0.877689i \(-0.340915\pi\)
0.479231 + 0.877689i \(0.340915\pi\)
\(8\) 1.82063e28 0.649959
\(9\) −5.00850e29 −0.437591
\(10\) 6.44329e31 2.03755
\(11\) −8.56884e32 −1.34602 −0.673012 0.739632i \(-0.735000\pi\)
−0.673012 + 0.739632i \(0.735000\pi\)
\(12\) 1.04932e34 1.06340
\(13\) 2.07398e35 1.68884 0.844421 0.535680i \(-0.179945\pi\)
0.844421 + 0.535680i \(0.179945\pi\)
\(14\) 1.88945e36 1.49040
\(15\) 1.09467e37 0.982669
\(16\) −3.46497e37 −0.407306
\(17\) −5.37140e38 −0.935291 −0.467645 0.883916i \(-0.654898\pi\)
−0.467645 + 0.883916i \(0.654898\pi\)
\(18\) −2.36526e39 −0.680448
\(19\) −4.25177e39 −0.222757 −0.111379 0.993778i \(-0.535527\pi\)
−0.111379 + 0.993778i \(0.535527\pi\)
\(20\) 1.78442e41 1.85803
\(21\) 3.21003e41 0.718789
\(22\) −4.04663e42 −2.09305
\(23\) 7.22439e42 0.921243 0.460621 0.887597i \(-0.347627\pi\)
0.460621 + 0.887597i \(0.347627\pi\)
\(24\) 1.46072e43 0.487430
\(25\) 7.77338e43 0.716967
\(26\) 9.79436e44 2.62613
\(27\) −1.32014e45 −1.07811
\(28\) 5.23268e45 1.35908
\(29\) 6.34966e45 0.546027 0.273013 0.962010i \(-0.411980\pi\)
0.273013 + 0.962010i \(0.411980\pi\)
\(30\) 5.16956e46 1.52804
\(31\) 1.09199e47 1.14902 0.574508 0.818499i \(-0.305193\pi\)
0.574508 + 0.818499i \(0.305193\pi\)
\(32\) −3.31556e47 −1.28331
\(33\) −6.87492e47 −1.00944
\(34\) −2.53664e48 −1.45436
\(35\) 5.45883e48 1.25590
\(36\) −6.55041e48 −0.620497
\(37\) −2.36747e49 −0.946087 −0.473043 0.881039i \(-0.656845\pi\)
−0.473043 + 0.881039i \(0.656845\pi\)
\(38\) −2.00790e49 −0.346384
\(39\) 1.66399e50 1.26653
\(40\) 2.48403e50 0.851662
\(41\) 2.67628e50 0.421542 0.210771 0.977535i \(-0.432403\pi\)
0.210771 + 0.977535i \(0.432403\pi\)
\(42\) 1.51594e51 1.11771
\(43\) −2.12019e51 −0.744936 −0.372468 0.928045i \(-0.621488\pi\)
−0.372468 + 0.928045i \(0.621488\pi\)
\(44\) −1.12068e52 −1.90864
\(45\) −6.83350e51 −0.573389
\(46\) 3.41171e52 1.43252
\(47\) −3.01357e52 −0.642686 −0.321343 0.946963i \(-0.604134\pi\)
−0.321343 + 0.946963i \(0.604134\pi\)
\(48\) −2.78000e52 −0.305454
\(49\) −1.41752e52 −0.0813493
\(50\) 3.67097e53 1.11487
\(51\) −4.30956e53 −0.701411
\(52\) 2.71247e54 2.39475
\(53\) −1.69213e52 −0.00819867 −0.00409934 0.999992i \(-0.501305\pi\)
−0.00409934 + 0.999992i \(0.501305\pi\)
\(54\) −6.23436e54 −1.67644
\(55\) −1.16912e55 −1.76374
\(56\) 7.28424e54 0.622962
\(57\) −3.41127e54 −0.167054
\(58\) 2.99863e55 0.849064
\(59\) −7.40118e54 −0.122310 −0.0611551 0.998128i \(-0.519478\pi\)
−0.0611551 + 0.998128i \(0.519478\pi\)
\(60\) 1.43167e56 1.39341
\(61\) −2.87222e56 −1.66084 −0.830420 0.557137i \(-0.811900\pi\)
−0.830420 + 0.557137i \(0.811900\pi\)
\(62\) 5.15693e56 1.78670
\(63\) −2.00388e56 −0.419415
\(64\) −1.24619e57 −1.58823
\(65\) 2.82970e57 2.21294
\(66\) −3.24668e57 −1.56966
\(67\) −2.05697e57 −0.619258 −0.309629 0.950857i \(-0.600205\pi\)
−0.309629 + 0.950857i \(0.600205\pi\)
\(68\) −7.02504e57 −1.32623
\(69\) 5.79624e57 0.690876
\(70\) 2.57793e58 1.95291
\(71\) 2.18652e58 1.05954 0.529768 0.848142i \(-0.322279\pi\)
0.529768 + 0.848142i \(0.322279\pi\)
\(72\) −9.11860e57 −0.284416
\(73\) −1.91991e58 −0.387803 −0.193902 0.981021i \(-0.562114\pi\)
−0.193902 + 0.981021i \(0.562114\pi\)
\(74\) −1.11804e59 −1.47115
\(75\) 6.23671e58 0.537682
\(76\) −5.56072e58 −0.315866
\(77\) −3.42835e59 −1.29011
\(78\) 7.85818e59 1.96944
\(79\) −1.43780e59 −0.241237 −0.120618 0.992699i \(-0.538488\pi\)
−0.120618 + 0.992699i \(0.538488\pi\)
\(80\) −4.72755e59 −0.533705
\(81\) −4.85917e59 −0.370923
\(82\) 1.26387e60 0.655492
\(83\) 2.96542e60 1.04985 0.524924 0.851149i \(-0.324094\pi\)
0.524924 + 0.851149i \(0.324094\pi\)
\(84\) 4.19827e60 1.01923
\(85\) −7.32865e60 −1.22554
\(86\) −1.00126e61 −1.15837
\(87\) 5.09444e60 0.409487
\(88\) −1.56007e61 −0.874861
\(89\) −3.32533e60 −0.130632 −0.0653161 0.997865i \(-0.520806\pi\)
−0.0653161 + 0.997865i \(0.520806\pi\)
\(90\) −3.22712e61 −0.891612
\(91\) 8.29790e61 1.61869
\(92\) 9.44848e61 1.30631
\(93\) 8.76123e61 0.861692
\(94\) −1.42316e62 −0.999368
\(95\) −5.80104e61 −0.291886
\(96\) −2.66013e62 −0.962408
\(97\) −5.80025e61 −0.151404 −0.0757020 0.997130i \(-0.524120\pi\)
−0.0757020 + 0.997130i \(0.524120\pi\)
\(98\) −6.69425e61 −0.126497
\(99\) 4.29170e62 0.589008
\(100\) 1.01665e63 1.01665
\(101\) −1.95277e63 −1.42734 −0.713671 0.700481i \(-0.752969\pi\)
−0.713671 + 0.700481i \(0.752969\pi\)
\(102\) −2.03519e63 −1.09069
\(103\) 1.61718e63 0.637363 0.318682 0.947862i \(-0.396760\pi\)
0.318682 + 0.947862i \(0.396760\pi\)
\(104\) 3.77594e63 1.09768
\(105\) 4.37971e63 0.941851
\(106\) −7.99107e61 −0.0127488
\(107\) 2.02228e63 0.240023 0.120011 0.992773i \(-0.461707\pi\)
0.120011 + 0.992773i \(0.461707\pi\)
\(108\) −1.72656e64 −1.52874
\(109\) 2.99199e64 1.98164 0.990821 0.135180i \(-0.0431613\pi\)
0.990821 + 0.135180i \(0.0431613\pi\)
\(110\) −5.52115e64 −2.74259
\(111\) −1.89946e64 −0.709508
\(112\) −1.38632e64 −0.390387
\(113\) 8.58568e64 1.82727 0.913637 0.406531i \(-0.133262\pi\)
0.913637 + 0.406531i \(0.133262\pi\)
\(114\) −1.61097e64 −0.259767
\(115\) 9.85683e64 1.20713
\(116\) 8.30447e64 0.774257
\(117\) −1.03875e65 −0.739022
\(118\) −3.49520e64 −0.190191
\(119\) −2.14907e65 −0.896441
\(120\) 1.99298e65 0.638695
\(121\) 3.28986e65 0.811779
\(122\) −1.35640e66 −2.58259
\(123\) 2.14723e65 0.316131
\(124\) 1.42817e66 1.62929
\(125\) −4.18681e65 −0.370866
\(126\) −9.46329e65 −0.652184
\(127\) 1.13001e66 0.607104 0.303552 0.952815i \(-0.401827\pi\)
0.303552 + 0.952815i \(0.401827\pi\)
\(128\) −2.82704e66 −1.18636
\(129\) −1.70106e66 −0.558657
\(130\) 1.33633e67 3.44110
\(131\) 4.17132e66 0.843776 0.421888 0.906648i \(-0.361368\pi\)
0.421888 + 0.906648i \(0.361368\pi\)
\(132\) −8.99143e66 −1.43136
\(133\) −1.70111e66 −0.213504
\(134\) −9.71403e66 −0.962938
\(135\) −1.80118e67 −1.41268
\(136\) −9.77932e66 −0.607901
\(137\) 1.55906e67 0.769422 0.384711 0.923037i \(-0.374301\pi\)
0.384711 + 0.923037i \(0.374301\pi\)
\(138\) 2.73727e67 1.07430
\(139\) −2.06837e67 −0.646640 −0.323320 0.946290i \(-0.604799\pi\)
−0.323320 + 0.946290i \(0.604799\pi\)
\(140\) 7.13938e67 1.78085
\(141\) −2.41784e67 −0.481976
\(142\) 1.03258e68 1.64757
\(143\) −1.77716e68 −2.27322
\(144\) 1.73543e67 0.178233
\(145\) 8.66337e67 0.715476
\(146\) −9.06678e67 −0.603029
\(147\) −1.13730e67 −0.0610071
\(148\) −3.09632e68 −1.34154
\(149\) 2.12773e68 0.745675 0.372838 0.927897i \(-0.378385\pi\)
0.372838 + 0.927897i \(0.378385\pi\)
\(150\) 2.94528e68 0.836089
\(151\) −2.22182e68 −0.511606 −0.255803 0.966729i \(-0.582340\pi\)
−0.255803 + 0.966729i \(0.582340\pi\)
\(152\) −7.74089e67 −0.144783
\(153\) 2.69026e68 0.409275
\(154\) −1.61904e69 −2.00611
\(155\) 1.48989e69 1.50559
\(156\) 2.17626e69 1.79592
\(157\) 3.83578e68 0.258830 0.129415 0.991591i \(-0.458690\pi\)
0.129415 + 0.991591i \(0.458690\pi\)
\(158\) −6.78998e68 −0.375120
\(159\) −1.35762e67 −0.00614851
\(160\) −4.52370e69 −1.68157
\(161\) 2.89044e69 0.882977
\(162\) −2.29474e69 −0.576781
\(163\) −7.56737e69 −1.56688 −0.783439 0.621468i \(-0.786537\pi\)
−0.783439 + 0.621468i \(0.786537\pi\)
\(164\) 3.50020e69 0.597740
\(165\) −9.38003e69 −1.32270
\(166\) 1.40042e70 1.63250
\(167\) 1.31868e70 1.27225 0.636124 0.771587i \(-0.280537\pi\)
0.636124 + 0.771587i \(0.280537\pi\)
\(168\) 5.84427e69 0.467184
\(169\) 2.79329e70 1.85219
\(170\) −3.46095e70 −1.90570
\(171\) 2.12950e69 0.0974765
\(172\) −2.77291e70 −1.05631
\(173\) −4.13644e70 −1.31273 −0.656364 0.754445i \(-0.727906\pi\)
−0.656364 + 0.754445i \(0.727906\pi\)
\(174\) 2.40585e70 0.636747
\(175\) 3.11009e70 0.687186
\(176\) 2.96908e70 0.548243
\(177\) −5.93809e69 −0.0917252
\(178\) −1.57039e70 −0.203131
\(179\) −1.07726e71 −1.16802 −0.584009 0.811747i \(-0.698517\pi\)
−0.584009 + 0.811747i \(0.698517\pi\)
\(180\) −8.93726e70 −0.813056
\(181\) 8.24880e70 0.630254 0.315127 0.949049i \(-0.397953\pi\)
0.315127 + 0.949049i \(0.397953\pi\)
\(182\) 3.91868e71 2.51705
\(183\) −2.30443e71 −1.24553
\(184\) 1.31529e71 0.598770
\(185\) −3.23014e71 −1.23969
\(186\) 4.13749e71 1.33992
\(187\) 4.60267e71 1.25892
\(188\) −3.94133e71 −0.911318
\(189\) −5.28182e71 −1.03332
\(190\) −2.73954e71 −0.453878
\(191\) 2.79537e70 0.0392544 0.0196272 0.999807i \(-0.493752\pi\)
0.0196272 + 0.999807i \(0.493752\pi\)
\(192\) −9.99836e71 −1.19108
\(193\) −2.20841e71 −0.223370 −0.111685 0.993744i \(-0.535625\pi\)
−0.111685 + 0.993744i \(0.535625\pi\)
\(194\) −2.73917e71 −0.235431
\(195\) 2.27032e72 1.65957
\(196\) −1.85392e71 −0.115352
\(197\) 2.04182e72 1.08226 0.541130 0.840939i \(-0.317997\pi\)
0.541130 + 0.840939i \(0.317997\pi\)
\(198\) 2.02675e72 0.915899
\(199\) −5.99449e71 −0.231143 −0.115571 0.993299i \(-0.536870\pi\)
−0.115571 + 0.993299i \(0.536870\pi\)
\(200\) 1.41524e72 0.466000
\(201\) −1.65034e72 −0.464406
\(202\) −9.22195e72 −2.21950
\(203\) 2.54047e72 0.523346
\(204\) −5.63630e72 −0.994590
\(205\) 3.65148e72 0.552359
\(206\) 7.63715e72 0.991091
\(207\) −3.61833e72 −0.403127
\(208\) −7.18629e72 −0.687875
\(209\) 3.64328e72 0.299836
\(210\) 2.06832e73 1.46457
\(211\) −2.24768e73 −1.37037 −0.685183 0.728371i \(-0.740278\pi\)
−0.685183 + 0.728371i \(0.740278\pi\)
\(212\) −2.21307e71 −0.0116256
\(213\) 1.75428e73 0.794588
\(214\) 9.55021e72 0.373232
\(215\) −2.89275e73 −0.976112
\(216\) −2.40348e73 −0.700725
\(217\) 4.36901e73 1.10129
\(218\) 1.41297e74 3.08143
\(219\) −1.54038e73 −0.290829
\(220\) −1.52904e74 −2.50095
\(221\) −1.11402e74 −1.57956
\(222\) −8.97021e73 −1.10327
\(223\) 1.34223e74 1.43293 0.716464 0.697624i \(-0.245759\pi\)
0.716464 + 0.697624i \(0.245759\pi\)
\(224\) −1.32654e74 −1.23001
\(225\) −3.89329e73 −0.313738
\(226\) 4.05458e74 2.84139
\(227\) 8.28902e73 0.505462 0.252731 0.967537i \(-0.418671\pi\)
0.252731 + 0.967537i \(0.418671\pi\)
\(228\) −4.46146e73 −0.236880
\(229\) −1.94712e74 −0.900688 −0.450344 0.892855i \(-0.648699\pi\)
−0.450344 + 0.892855i \(0.648699\pi\)
\(230\) 4.65488e74 1.87708
\(231\) −2.75062e74 −0.967507
\(232\) 1.15604e74 0.354895
\(233\) 1.85040e74 0.496083 0.248041 0.968749i \(-0.420213\pi\)
0.248041 + 0.968749i \(0.420213\pi\)
\(234\) −4.90550e74 −1.14917
\(235\) −4.11166e74 −0.842131
\(236\) −9.67970e73 −0.173434
\(237\) −1.15357e74 −0.180913
\(238\) −1.01490e75 −1.39395
\(239\) 1.17037e75 1.40861 0.704303 0.709900i \(-0.251260\pi\)
0.704303 + 0.709900i \(0.251260\pi\)
\(240\) −3.79299e74 −0.400246
\(241\) 1.07492e75 0.995035 0.497517 0.867454i \(-0.334245\pi\)
0.497517 + 0.867454i \(0.334245\pi\)
\(242\) 1.55363e75 1.26231
\(243\) 1.12112e75 0.799936
\(244\) −3.75646e75 −2.35505
\(245\) −1.93404e74 −0.106595
\(246\) 1.01403e75 0.491579
\(247\) −8.81809e74 −0.376202
\(248\) 1.98811e75 0.746814
\(249\) 2.37921e75 0.787323
\(250\) −1.97722e75 −0.576692
\(251\) 3.30820e75 0.850882 0.425441 0.904986i \(-0.360119\pi\)
0.425441 + 0.904986i \(0.360119\pi\)
\(252\) −2.62079e75 −0.594723
\(253\) −6.19046e75 −1.24001
\(254\) 5.33644e75 0.944039
\(255\) −5.87989e75 −0.919081
\(256\) −1.85665e75 −0.256549
\(257\) −3.83510e75 −0.468688 −0.234344 0.972154i \(-0.575294\pi\)
−0.234344 + 0.972154i \(0.575294\pi\)
\(258\) −8.03327e75 −0.868704
\(259\) −9.47215e75 −0.906789
\(260\) 3.70085e76 3.13792
\(261\) −3.18023e75 −0.238936
\(262\) 1.96990e76 1.31206
\(263\) 1.43118e76 0.845448 0.422724 0.906258i \(-0.361074\pi\)
0.422724 + 0.906258i \(0.361074\pi\)
\(264\) −1.25167e76 −0.656092
\(265\) −2.30871e74 −0.0107430
\(266\) −8.03350e75 −0.331996
\(267\) −2.66797e75 −0.0979662
\(268\) −2.69023e76 −0.878098
\(269\) 4.09775e75 0.118946 0.0594728 0.998230i \(-0.481058\pi\)
0.0594728 + 0.998230i \(0.481058\pi\)
\(270\) −8.50605e76 −2.19669
\(271\) −1.28815e76 −0.296097 −0.148049 0.988980i \(-0.547299\pi\)
−0.148049 + 0.988980i \(0.547299\pi\)
\(272\) 1.86118e76 0.380949
\(273\) 6.65754e76 1.21392
\(274\) 7.36265e76 1.19644
\(275\) −6.66088e76 −0.965055
\(276\) 7.58067e76 0.979651
\(277\) 4.42046e76 0.509747 0.254874 0.966974i \(-0.417966\pi\)
0.254874 + 0.966974i \(0.417966\pi\)
\(278\) −9.76789e76 −1.00552
\(279\) −5.46924e76 −0.502799
\(280\) 9.93849e76 0.816286
\(281\) −3.12493e76 −0.229399 −0.114699 0.993400i \(-0.536591\pi\)
−0.114699 + 0.993400i \(0.536591\pi\)
\(282\) −1.14182e77 −0.749466
\(283\) 2.35005e77 1.37976 0.689881 0.723923i \(-0.257663\pi\)
0.689881 + 0.723923i \(0.257663\pi\)
\(284\) 2.85966e77 1.50241
\(285\) −4.65427e76 −0.218896
\(286\) −8.39264e77 −3.53483
\(287\) 1.07077e77 0.404032
\(288\) 1.66060e77 0.561567
\(289\) −4.13043e76 −0.125231
\(290\) 4.09127e77 1.11256
\(291\) −4.65364e76 −0.113544
\(292\) −2.51098e77 −0.549899
\(293\) −4.60913e77 −0.906335 −0.453167 0.891425i \(-0.649706\pi\)
−0.453167 + 0.891425i \(0.649706\pi\)
\(294\) −5.37091e76 −0.0948652
\(295\) −1.00980e77 −0.160267
\(296\) −4.31029e77 −0.614918
\(297\) 1.13121e78 1.45116
\(298\) 1.00482e78 1.15951
\(299\) 1.49832e78 1.55583
\(300\) 8.15674e77 0.762425
\(301\) −8.48279e77 −0.713993
\(302\) −1.04926e78 −0.795541
\(303\) −1.56674e78 −1.07042
\(304\) 1.47323e77 0.0907302
\(305\) −3.91881e78 −2.17625
\(306\) 1.27048e78 0.636417
\(307\) 3.47715e77 0.157168 0.0785841 0.996907i \(-0.474960\pi\)
0.0785841 + 0.996907i \(0.474960\pi\)
\(308\) −4.48380e78 −1.82936
\(309\) 1.29749e78 0.477984
\(310\) 7.03602e78 2.34117
\(311\) −1.27935e78 −0.384626 −0.192313 0.981334i \(-0.561599\pi\)
−0.192313 + 0.981334i \(0.561599\pi\)
\(312\) 3.02950e78 0.823193
\(313\) 2.55012e77 0.0626490 0.0313245 0.999509i \(-0.490027\pi\)
0.0313245 + 0.999509i \(0.490027\pi\)
\(314\) 1.81145e78 0.402478
\(315\) −2.73405e78 −0.549572
\(316\) −1.88043e78 −0.342070
\(317\) 8.57182e78 1.41158 0.705791 0.708420i \(-0.250592\pi\)
0.705791 + 0.708420i \(0.250592\pi\)
\(318\) −6.41137e76 −0.00956085
\(319\) −5.44093e78 −0.734965
\(320\) −1.70027e79 −2.08111
\(321\) 1.62251e78 0.180002
\(322\) 1.36501e79 1.37302
\(323\) 2.28380e78 0.208343
\(324\) −6.35511e78 −0.525963
\(325\) 1.61218e79 1.21084
\(326\) −3.57369e79 −2.43648
\(327\) 2.40052e79 1.48611
\(328\) 4.87251e78 0.273985
\(329\) −1.20572e79 −0.615991
\(330\) −4.42971e79 −2.05677
\(331\) −1.19633e78 −0.0504973 −0.0252486 0.999681i \(-0.508038\pi\)
−0.0252486 + 0.999681i \(0.508038\pi\)
\(332\) 3.87836e79 1.48867
\(333\) 1.18575e79 0.413999
\(334\) 6.22748e79 1.97833
\(335\) −2.80649e79 −0.811433
\(336\) −1.11227e79 −0.292767
\(337\) −6.02075e79 −1.44314 −0.721571 0.692340i \(-0.756580\pi\)
−0.721571 + 0.692340i \(0.756580\pi\)
\(338\) 1.31913e80 2.88013
\(339\) 6.88843e79 1.37034
\(340\) −9.58484e79 −1.73780
\(341\) −9.35711e79 −1.54660
\(342\) 1.00565e79 0.151575
\(343\) −7.53887e79 −1.03643
\(344\) −3.86008e79 −0.484178
\(345\) 7.90829e79 0.905277
\(346\) −1.95343e80 −2.04127
\(347\) 1.32734e80 1.26650 0.633248 0.773949i \(-0.281721\pi\)
0.633248 + 0.773949i \(0.281721\pi\)
\(348\) 6.66281e79 0.580646
\(349\) −5.81469e79 −0.462941 −0.231471 0.972842i \(-0.574354\pi\)
−0.231471 + 0.972842i \(0.574354\pi\)
\(350\) 1.46874e80 1.06857
\(351\) −2.73795e80 −1.82075
\(352\) 2.84105e80 1.72737
\(353\) 2.98209e80 1.65813 0.829064 0.559154i \(-0.188874\pi\)
0.829064 + 0.559154i \(0.188874\pi\)
\(354\) −2.80426e79 −0.142632
\(355\) 2.98325e80 1.38834
\(356\) −4.34907e79 −0.185234
\(357\) −1.72424e80 −0.672277
\(358\) −5.08735e80 −1.81625
\(359\) −3.44639e80 −1.12691 −0.563455 0.826147i \(-0.690528\pi\)
−0.563455 + 0.826147i \(0.690528\pi\)
\(360\) −1.24413e80 −0.372680
\(361\) −3.46237e80 −0.950379
\(362\) 3.89549e80 0.980037
\(363\) 2.63951e80 0.608785
\(364\) 1.08525e81 2.29528
\(365\) −2.61950e80 −0.508151
\(366\) −1.08827e81 −1.93678
\(367\) 9.05746e80 1.47920 0.739598 0.673049i \(-0.235016\pi\)
0.739598 + 0.673049i \(0.235016\pi\)
\(368\) −2.50323e80 −0.375227
\(369\) −1.34042e80 −0.184463
\(370\) −1.52543e81 −1.92770
\(371\) −6.77013e78 −0.00785812
\(372\) 1.14585e81 1.22187
\(373\) 1.52085e80 0.149024 0.0745121 0.997220i \(-0.476260\pi\)
0.0745121 + 0.997220i \(0.476260\pi\)
\(374\) 2.17361e81 1.95761
\(375\) −3.35914e80 −0.278127
\(376\) −5.48659e80 −0.417720
\(377\) 1.31691e81 0.922153
\(378\) −2.49434e81 −1.60681
\(379\) 1.67737e81 0.994248 0.497124 0.867680i \(-0.334389\pi\)
0.497124 + 0.867680i \(0.334389\pi\)
\(380\) −7.58695e80 −0.413889
\(381\) 9.06622e80 0.455291
\(382\) 1.32011e80 0.0610401
\(383\) −1.23141e81 −0.524372 −0.262186 0.965017i \(-0.584443\pi\)
−0.262186 + 0.965017i \(0.584443\pi\)
\(384\) −2.26818e81 −0.889701
\(385\) −4.67759e81 −1.69048
\(386\) −1.04292e81 −0.347337
\(387\) 1.06190e81 0.325977
\(388\) −7.58592e80 −0.214688
\(389\) 1.48659e81 0.387954 0.193977 0.981006i \(-0.437861\pi\)
0.193977 + 0.981006i \(0.437861\pi\)
\(390\) 1.07216e82 2.58061
\(391\) −3.88051e81 −0.861630
\(392\) −2.58078e80 −0.0528738
\(393\) 3.34672e81 0.632781
\(394\) 9.64249e81 1.68290
\(395\) −1.96170e81 −0.316100
\(396\) 5.61294e81 0.835203
\(397\) −1.33902e82 −1.84029 −0.920146 0.391576i \(-0.871930\pi\)
−0.920146 + 0.391576i \(0.871930\pi\)
\(398\) −2.83090e81 −0.359424
\(399\) −1.36483e81 −0.160115
\(400\) −2.69345e81 −0.292025
\(401\) −5.92318e81 −0.593618 −0.296809 0.954937i \(-0.595923\pi\)
−0.296809 + 0.954937i \(0.595923\pi\)
\(402\) −7.79373e81 −0.722145
\(403\) 2.26477e82 1.94051
\(404\) −2.55395e82 −2.02395
\(405\) −6.62977e81 −0.486032
\(406\) 1.19974e82 0.813796
\(407\) 2.02865e82 1.27345
\(408\) −7.84611e81 −0.455889
\(409\) −1.97907e82 −1.06457 −0.532287 0.846564i \(-0.678667\pi\)
−0.532287 + 0.846564i \(0.678667\pi\)
\(410\) 1.72441e82 0.858912
\(411\) 1.25086e82 0.577020
\(412\) 2.11505e82 0.903771
\(413\) −2.96118e81 −0.117230
\(414\) −1.70876e82 −0.626858
\(415\) 4.04597e82 1.37565
\(416\) −6.87641e82 −2.16732
\(417\) −1.65949e82 −0.484941
\(418\) 1.72054e82 0.466241
\(419\) 5.68402e81 0.142861 0.0714306 0.997446i \(-0.477244\pi\)
0.0714306 + 0.997446i \(0.477244\pi\)
\(420\) 5.72804e82 1.33553
\(421\) 6.48979e82 1.40393 0.701964 0.712212i \(-0.252307\pi\)
0.701964 + 0.712212i \(0.252307\pi\)
\(422\) −1.06147e83 −2.13090
\(423\) 1.50935e82 0.281234
\(424\) −3.08073e80 −0.00532880
\(425\) −4.17539e82 −0.670573
\(426\) 8.28459e82 1.23557
\(427\) −1.14916e83 −1.59185
\(428\) 2.64486e82 0.340348
\(429\) −1.42585e83 −1.70478
\(430\) −1.36610e83 −1.51784
\(431\) 1.31954e83 1.36266 0.681331 0.731976i \(-0.261401\pi\)
0.681331 + 0.731976i \(0.261401\pi\)
\(432\) 4.57425e82 0.439119
\(433\) −4.32188e82 −0.385748 −0.192874 0.981224i \(-0.561781\pi\)
−0.192874 + 0.981224i \(0.561781\pi\)
\(434\) 2.06326e83 1.71249
\(435\) 6.95077e82 0.536563
\(436\) 3.91310e83 2.80994
\(437\) −3.07164e82 −0.205213
\(438\) −7.27443e82 −0.452235
\(439\) −3.04529e81 −0.0176196 −0.00880982 0.999961i \(-0.502804\pi\)
−0.00880982 + 0.999961i \(0.502804\pi\)
\(440\) −2.12853e83 −1.14636
\(441\) 7.09966e81 0.0355977
\(442\) −5.26095e83 −2.45619
\(443\) 1.28926e83 0.560560 0.280280 0.959918i \(-0.409573\pi\)
0.280280 + 0.959918i \(0.409573\pi\)
\(444\) −2.48423e83 −1.00607
\(445\) −4.53703e82 −0.171171
\(446\) 6.33869e83 2.22819
\(447\) 1.70712e83 0.559211
\(448\) −4.98593e83 −1.52226
\(449\) −4.12515e83 −1.17403 −0.587017 0.809575i \(-0.699698\pi\)
−0.587017 + 0.809575i \(0.699698\pi\)
\(450\) −1.83861e83 −0.487859
\(451\) −2.29327e83 −0.567405
\(452\) 1.12289e84 2.59104
\(453\) −1.78261e83 −0.383674
\(454\) 3.91448e83 0.785987
\(455\) 1.13215e84 2.12102
\(456\) −6.21064e82 −0.108579
\(457\) −9.82972e83 −1.60391 −0.801957 0.597382i \(-0.796208\pi\)
−0.801957 + 0.597382i \(0.796208\pi\)
\(458\) −9.19525e83 −1.40056
\(459\) 7.09100e83 1.00834
\(460\) 1.28913e84 1.71170
\(461\) −1.38498e84 −1.71737 −0.858685 0.512504i \(-0.828718\pi\)
−0.858685 + 0.512504i \(0.828718\pi\)
\(462\) −1.29898e84 −1.50446
\(463\) 7.43768e83 0.804705 0.402352 0.915485i \(-0.368193\pi\)
0.402352 + 0.915485i \(0.368193\pi\)
\(464\) −2.20014e83 −0.222400
\(465\) 1.19537e84 1.12910
\(466\) 8.73851e83 0.771402
\(467\) 4.43713e83 0.366118 0.183059 0.983102i \(-0.441400\pi\)
0.183059 + 0.983102i \(0.441400\pi\)
\(468\) −1.35854e84 −1.04792
\(469\) −8.22984e83 −0.593536
\(470\) −1.94173e84 −1.30950
\(471\) 3.07751e83 0.194107
\(472\) −1.34748e83 −0.0794967
\(473\) 1.81676e84 1.00270
\(474\) −5.44772e83 −0.281317
\(475\) −3.30506e83 −0.159710
\(476\) −2.81068e84 −1.27114
\(477\) 8.47502e81 0.00358766
\(478\) 5.52707e84 2.19036
\(479\) 3.88526e84 1.44162 0.720811 0.693132i \(-0.243770\pi\)
0.720811 + 0.693132i \(0.243770\pi\)
\(480\) −3.62944e84 −1.26107
\(481\) −4.91009e84 −1.59779
\(482\) 5.07629e84 1.54727
\(483\) 2.31905e84 0.662179
\(484\) 4.30267e84 1.15109
\(485\) −7.91377e83 −0.198389
\(486\) 5.29449e84 1.24389
\(487\) −6.87945e84 −1.51493 −0.757463 0.652878i \(-0.773561\pi\)
−0.757463 + 0.652878i \(0.773561\pi\)
\(488\) −5.22924e84 −1.07948
\(489\) −6.07143e84 −1.17506
\(490\) −9.13352e83 −0.165753
\(491\) −7.22668e84 −1.22991 −0.614953 0.788564i \(-0.710825\pi\)
−0.614953 + 0.788564i \(0.710825\pi\)
\(492\) 2.80827e84 0.448269
\(493\) −3.41066e84 −0.510694
\(494\) −4.16434e84 −0.584988
\(495\) 5.85552e84 0.771795
\(496\) −3.78372e84 −0.468000
\(497\) 8.74817e84 1.01553
\(498\) 1.12358e85 1.22428
\(499\) 1.29645e85 1.32613 0.663067 0.748560i \(-0.269255\pi\)
0.663067 + 0.748560i \(0.269255\pi\)
\(500\) −5.47575e84 −0.525883
\(501\) 1.05800e85 0.954109
\(502\) 1.56229e85 1.32311
\(503\) −1.26653e85 −1.00745 −0.503724 0.863865i \(-0.668037\pi\)
−0.503724 + 0.863865i \(0.668037\pi\)
\(504\) −3.64831e84 −0.272602
\(505\) −2.66433e85 −1.87029
\(506\) −2.92344e85 −1.92821
\(507\) 2.24110e85 1.38903
\(508\) 1.47789e85 0.860864
\(509\) 1.58987e85 0.870467 0.435233 0.900318i \(-0.356666\pi\)
0.435233 + 0.900318i \(0.356666\pi\)
\(510\) −2.77678e85 −1.42916
\(511\) −7.68148e84 −0.371695
\(512\) 1.73068e85 0.787433
\(513\) 5.61293e84 0.240156
\(514\) −1.81113e85 −0.728804
\(515\) 2.20646e85 0.835157
\(516\) −2.22475e85 −0.792166
\(517\) 2.58228e85 0.865070
\(518\) −4.47322e85 −1.41004
\(519\) −3.31873e85 −0.984466
\(520\) 5.15183e85 1.43832
\(521\) −3.41495e84 −0.0897420 −0.0448710 0.998993i \(-0.514288\pi\)
−0.0448710 + 0.998993i \(0.514288\pi\)
\(522\) −1.50186e85 −0.371543
\(523\) −2.46994e85 −0.575286 −0.287643 0.957738i \(-0.592872\pi\)
−0.287643 + 0.957738i \(0.592872\pi\)
\(524\) 5.45549e85 1.19646
\(525\) 2.49528e85 0.515348
\(526\) 6.75872e85 1.31466
\(527\) −5.86553e85 −1.07466
\(528\) 2.38214e85 0.411149
\(529\) −9.30521e84 −0.151312
\(530\) −1.09029e84 −0.0167052
\(531\) 3.70688e84 0.0535218
\(532\) −2.22482e85 −0.302746
\(533\) 5.55056e85 0.711918
\(534\) −1.25995e85 −0.152336
\(535\) 2.75916e85 0.314509
\(536\) −3.74498e85 −0.402493
\(537\) −8.64303e85 −0.875943
\(538\) 1.93516e85 0.184959
\(539\) 1.21465e85 0.109498
\(540\) −2.35569e86 −2.00315
\(541\) −2.40272e86 −1.92748 −0.963740 0.266842i \(-0.914020\pi\)
−0.963740 + 0.266842i \(0.914020\pi\)
\(542\) −6.08329e85 −0.460427
\(543\) 6.61815e85 0.472652
\(544\) 1.78092e86 1.20027
\(545\) 4.08222e86 2.59661
\(546\) 3.14402e86 1.88763
\(547\) −2.76159e86 −1.56516 −0.782579 0.622551i \(-0.786096\pi\)
−0.782579 + 0.622551i \(0.786096\pi\)
\(548\) 2.03903e86 1.09103
\(549\) 1.43855e86 0.726769
\(550\) −3.14560e86 −1.50065
\(551\) −2.69973e85 −0.121631
\(552\) 1.05528e86 0.449042
\(553\) −5.75255e85 −0.231217
\(554\) 2.08756e86 0.792650
\(555\) −2.59159e86 −0.929690
\(556\) −2.70514e86 −0.916926
\(557\) 3.40659e86 1.09114 0.545571 0.838065i \(-0.316313\pi\)
0.545571 + 0.838065i \(0.316313\pi\)
\(558\) −2.58284e86 −0.781846
\(559\) −4.39724e86 −1.25808
\(560\) −1.89147e86 −0.511536
\(561\) 3.69280e86 0.944116
\(562\) −1.47575e86 −0.356712
\(563\) −6.77865e86 −1.54928 −0.774638 0.632405i \(-0.782068\pi\)
−0.774638 + 0.632405i \(0.782068\pi\)
\(564\) −3.16219e86 −0.683434
\(565\) 1.17141e87 2.39433
\(566\) 1.10981e87 2.14551
\(567\) −1.94413e86 −0.355516
\(568\) 3.98084e86 0.688656
\(569\) −7.28196e86 −1.19182 −0.595912 0.803050i \(-0.703209\pi\)
−0.595912 + 0.803050i \(0.703209\pi\)
\(570\) −2.19798e86 −0.340381
\(571\) 1.03258e87 1.51316 0.756579 0.653902i \(-0.226869\pi\)
0.756579 + 0.653902i \(0.226869\pi\)
\(572\) −2.32428e87 −3.22339
\(573\) 2.24277e85 0.0294384
\(574\) 5.05670e86 0.628265
\(575\) 5.61579e86 0.660501
\(576\) 6.24152e86 0.694995
\(577\) −3.16007e85 −0.0333164 −0.0166582 0.999861i \(-0.505303\pi\)
−0.0166582 + 0.999861i \(0.505303\pi\)
\(578\) −1.95059e86 −0.194733
\(579\) −1.77184e86 −0.167514
\(580\) 1.13305e87 1.01453
\(581\) 1.18645e87 1.00624
\(582\) −2.19768e86 −0.176559
\(583\) 1.44996e85 0.0110356
\(584\) −3.49545e86 −0.252056
\(585\) −1.41726e87 −0.968363
\(586\) −2.17666e87 −1.40934
\(587\) −1.43853e87 −0.882711 −0.441356 0.897332i \(-0.645502\pi\)
−0.441356 + 0.897332i \(0.645502\pi\)
\(588\) −1.48743e86 −0.0865070
\(589\) −4.64290e86 −0.255951
\(590\) −4.76880e86 −0.249213
\(591\) 1.63819e87 0.811629
\(592\) 8.20323e86 0.385346
\(593\) −2.93573e87 −1.30765 −0.653827 0.756644i \(-0.726838\pi\)
−0.653827 + 0.756644i \(0.726838\pi\)
\(594\) 5.34212e87 2.25653
\(595\) −2.93216e87 −1.17463
\(596\) 2.78278e87 1.05736
\(597\) −4.80948e86 −0.173343
\(598\) 7.07583e87 2.41930
\(599\) −1.56895e87 −0.508938 −0.254469 0.967081i \(-0.581901\pi\)
−0.254469 + 0.967081i \(0.581901\pi\)
\(600\) 1.13547e87 0.349472
\(601\) 4.83029e86 0.141068 0.0705338 0.997509i \(-0.477530\pi\)
0.0705338 + 0.997509i \(0.477530\pi\)
\(602\) −4.00599e87 −1.11025
\(603\) 1.03023e87 0.270982
\(604\) −2.90583e87 −0.725450
\(605\) 4.48862e87 1.06370
\(606\) −7.39892e87 −1.66449
\(607\) 4.23483e87 0.904465 0.452232 0.891900i \(-0.350628\pi\)
0.452232 + 0.891900i \(0.350628\pi\)
\(608\) 1.40970e87 0.285867
\(609\) 2.03826e87 0.392478
\(610\) −1.85066e88 −3.38404
\(611\) −6.25009e87 −1.08540
\(612\) 3.51849e87 0.580345
\(613\) 5.92849e87 0.928836 0.464418 0.885616i \(-0.346263\pi\)
0.464418 + 0.885616i \(0.346263\pi\)
\(614\) 1.64208e87 0.244394
\(615\) 2.92964e87 0.414236
\(616\) −6.24175e87 −0.838521
\(617\) −1.01610e87 −0.129704 −0.0648522 0.997895i \(-0.520658\pi\)
−0.0648522 + 0.997895i \(0.520658\pi\)
\(618\) 6.12741e87 0.743258
\(619\) 1.56773e88 1.80724 0.903622 0.428330i \(-0.140898\pi\)
0.903622 + 0.428330i \(0.140898\pi\)
\(620\) 1.94857e88 2.13490
\(621\) −9.53720e87 −0.993197
\(622\) −6.04174e87 −0.598088
\(623\) −1.33045e87 −0.125206
\(624\) −5.76568e87 −0.515864
\(625\) −1.41403e88 −1.20293
\(626\) 1.20429e87 0.0974183
\(627\) 2.92306e87 0.224859
\(628\) 5.01666e87 0.367017
\(629\) 1.27167e88 0.884866
\(630\) −1.29116e88 −0.854577
\(631\) −5.69991e87 −0.358875 −0.179438 0.983769i \(-0.557428\pi\)
−0.179438 + 0.983769i \(0.557428\pi\)
\(632\) −2.61769e87 −0.156794
\(633\) −1.80335e88 −1.02769
\(634\) 4.04804e88 2.19499
\(635\) 1.54176e88 0.795507
\(636\) −1.77558e86 −0.00871848
\(637\) −2.93992e87 −0.137386
\(638\) −2.56948e88 −1.14286
\(639\) −1.09512e88 −0.463644
\(640\) −3.85716e88 −1.55453
\(641\) −3.75954e88 −1.44247 −0.721236 0.692690i \(-0.756426\pi\)
−0.721236 + 0.692690i \(0.756426\pi\)
\(642\) 7.66229e87 0.279902
\(643\) 5.08063e88 1.76714 0.883572 0.468296i \(-0.155132\pi\)
0.883572 + 0.468296i \(0.155132\pi\)
\(644\) 3.78029e88 1.25205
\(645\) −2.32090e88 −0.732025
\(646\) 1.07852e88 0.323970
\(647\) −1.87849e88 −0.537433 −0.268716 0.963219i \(-0.586599\pi\)
−0.268716 + 0.963219i \(0.586599\pi\)
\(648\) −8.84674e87 −0.241085
\(649\) 6.34196e87 0.164632
\(650\) 7.61353e88 1.88285
\(651\) 3.50533e88 0.825900
\(652\) −9.89705e88 −2.22181
\(653\) 6.60139e87 0.141211 0.0706057 0.997504i \(-0.477507\pi\)
0.0706057 + 0.997504i \(0.477507\pi\)
\(654\) 1.13365e89 2.31088
\(655\) 5.69127e88 1.10563
\(656\) −9.27325e87 −0.171696
\(657\) 9.61588e87 0.169699
\(658\) −5.69399e88 −0.957857
\(659\) −4.59134e88 −0.736289 −0.368145 0.929768i \(-0.620007\pi\)
−0.368145 + 0.929768i \(0.620007\pi\)
\(660\) −1.22678e89 −1.87556
\(661\) −1.18619e89 −1.72906 −0.864529 0.502583i \(-0.832383\pi\)
−0.864529 + 0.502583i \(0.832383\pi\)
\(662\) −5.64965e87 −0.0785226
\(663\) −8.93795e88 −1.18457
\(664\) 5.39893e88 0.682359
\(665\) −2.32097e88 −0.279761
\(666\) 5.59969e88 0.643763
\(667\) 4.58724e88 0.503023
\(668\) 1.72465e89 1.80403
\(669\) 1.07690e89 1.07461
\(670\) −1.32537e89 −1.26177
\(671\) 2.46116e89 2.23553
\(672\) −1.06431e89 −0.922432
\(673\) 4.18096e88 0.345781 0.172890 0.984941i \(-0.444689\pi\)
0.172890 + 0.984941i \(0.444689\pi\)
\(674\) −2.84330e89 −2.24407
\(675\) −1.02619e89 −0.772967
\(676\) 3.65323e89 2.62637
\(677\) −1.54143e89 −1.05774 −0.528872 0.848702i \(-0.677385\pi\)
−0.528872 + 0.848702i \(0.677385\pi\)
\(678\) 3.25306e89 2.13087
\(679\) −2.32065e88 −0.145115
\(680\) −1.33427e89 −0.796552
\(681\) 6.65041e88 0.379066
\(682\) −4.41889e89 −2.40495
\(683\) 1.37735e89 0.715800 0.357900 0.933760i \(-0.383493\pi\)
0.357900 + 0.933760i \(0.383493\pi\)
\(684\) 2.78508e88 0.138220
\(685\) 2.12715e89 1.00820
\(686\) −3.56023e89 −1.61164
\(687\) −1.56220e89 −0.675461
\(688\) 7.34641e88 0.303416
\(689\) −3.50944e87 −0.0138463
\(690\) 3.73469e89 1.40769
\(691\) −1.04508e89 −0.376349 −0.188175 0.982136i \(-0.560257\pi\)
−0.188175 + 0.982136i \(0.560257\pi\)
\(692\) −5.40988e89 −1.86143
\(693\) 1.71709e89 0.564542
\(694\) 6.26836e89 1.96938
\(695\) −2.82205e89 −0.847313
\(696\) 9.27507e88 0.266150
\(697\) −1.43754e89 −0.394264
\(698\) −2.74599e89 −0.719867
\(699\) 1.48461e89 0.372032
\(700\) 4.06756e89 0.974419
\(701\) 1.99798e89 0.457588 0.228794 0.973475i \(-0.426522\pi\)
0.228794 + 0.973475i \(0.426522\pi\)
\(702\) −1.29299e90 −2.83124
\(703\) 1.00660e89 0.210747
\(704\) 1.06784e90 2.13780
\(705\) −3.29885e89 −0.631548
\(706\) 1.40829e90 2.57837
\(707\) −7.81294e89 −1.36805
\(708\) −7.76619e88 −0.130065
\(709\) −5.01550e89 −0.803449 −0.401724 0.915761i \(-0.631589\pi\)
−0.401724 + 0.915761i \(0.631589\pi\)
\(710\) 1.40884e90 2.15886
\(711\) 7.20119e88 0.105563
\(712\) −6.05419e88 −0.0849056
\(713\) 7.88897e89 1.05852
\(714\) −8.14270e89 −1.04538
\(715\) −2.42473e90 −2.97867
\(716\) −1.40890e90 −1.65623
\(717\) 9.39007e89 1.05637
\(718\) −1.62756e90 −1.75233
\(719\) 8.38497e89 0.864055 0.432028 0.901860i \(-0.357798\pi\)
0.432028 + 0.901860i \(0.357798\pi\)
\(720\) 2.36779e89 0.233544
\(721\) 6.47028e89 0.610889
\(722\) −1.63510e90 −1.47783
\(723\) 8.62424e89 0.746216
\(724\) 1.07883e90 0.893690
\(725\) 4.93583e89 0.391483
\(726\) 1.24651e90 0.946653
\(727\) 1.03681e90 0.753988 0.376994 0.926216i \(-0.376958\pi\)
0.376994 + 0.926216i \(0.376958\pi\)
\(728\) 1.51074e90 1.05208
\(729\) 1.45566e90 0.970827
\(730\) −1.23706e90 −0.790168
\(731\) 1.13884e90 0.696732
\(732\) −3.01387e90 −1.76614
\(733\) −3.18443e90 −1.78754 −0.893771 0.448523i \(-0.851950\pi\)
−0.893771 + 0.448523i \(0.851950\pi\)
\(734\) 4.27738e90 2.30013
\(735\) −1.55172e89 −0.0799394
\(736\) −2.39529e90 −1.18224
\(737\) 1.76259e90 0.833536
\(738\) −6.33011e89 −0.286837
\(739\) −3.22969e89 −0.140236 −0.0701181 0.997539i \(-0.522338\pi\)
−0.0701181 + 0.997539i \(0.522338\pi\)
\(740\) −4.22457e90 −1.75786
\(741\) −7.07490e89 −0.282128
\(742\) −3.19719e88 −0.0122193
\(743\) −2.59061e90 −0.948974 −0.474487 0.880262i \(-0.657366\pi\)
−0.474487 + 0.880262i \(0.657366\pi\)
\(744\) 1.59509e90 0.560065
\(745\) 2.90304e90 0.977081
\(746\) 7.18218e89 0.231731
\(747\) −1.48523e90 −0.459404
\(748\) 6.01964e90 1.78513
\(749\) 8.09105e89 0.230053
\(750\) −1.58635e90 −0.432484
\(751\) −5.64788e90 −1.47648 −0.738240 0.674538i \(-0.764343\pi\)
−0.738240 + 0.674538i \(0.764343\pi\)
\(752\) 1.04419e90 0.261770
\(753\) 2.65422e90 0.638110
\(754\) 6.21909e90 1.43394
\(755\) −3.03142e90 −0.670374
\(756\) −6.90788e90 −1.46524
\(757\) −2.35445e90 −0.479037 −0.239519 0.970892i \(-0.576990\pi\)
−0.239519 + 0.970892i \(0.576990\pi\)
\(758\) 7.92139e90 1.54604
\(759\) −4.96671e90 −0.929936
\(760\) −1.05615e90 −0.189714
\(761\) 5.15918e89 0.0889128 0.0444564 0.999011i \(-0.485844\pi\)
0.0444564 + 0.999011i \(0.485844\pi\)
\(762\) 4.28152e90 0.707972
\(763\) 1.19708e91 1.89933
\(764\) 3.65595e89 0.0556621
\(765\) 3.67055e90 0.536285
\(766\) −5.81531e90 −0.815392
\(767\) −1.53499e90 −0.206563
\(768\) −1.48962e90 −0.192397
\(769\) 3.98793e90 0.494388 0.247194 0.968966i \(-0.420492\pi\)
0.247194 + 0.968966i \(0.420492\pi\)
\(770\) −2.20899e91 −2.62867
\(771\) −3.07697e90 −0.351488
\(772\) −2.88829e90 −0.316735
\(773\) −5.31617e90 −0.559687 −0.279843 0.960046i \(-0.590282\pi\)
−0.279843 + 0.960046i \(0.590282\pi\)
\(774\) 5.01481e90 0.506890
\(775\) 8.48846e90 0.823807
\(776\) −1.05601e90 −0.0984065
\(777\) −7.59966e90 −0.680037
\(778\) 7.02043e90 0.603263
\(779\) −1.13789e90 −0.0939014
\(780\) 2.96926e91 2.35325
\(781\) −1.87360e91 −1.42616
\(782\) −1.83257e91 −1.33982
\(783\) −8.38245e90 −0.588675
\(784\) 4.91168e89 0.0331340
\(785\) 5.23348e90 0.339153
\(786\) 1.58048e91 0.983966
\(787\) 2.94356e91 1.76063 0.880315 0.474389i \(-0.157331\pi\)
0.880315 + 0.474389i \(0.157331\pi\)
\(788\) 2.67041e91 1.53463
\(789\) 1.14826e91 0.634035
\(790\) −9.26414e90 −0.491532
\(791\) 3.43509e91 1.75137
\(792\) 7.81359e90 0.382831
\(793\) −5.95693e91 −2.80490
\(794\) −6.32352e91 −2.86163
\(795\) −1.85232e89 −0.00805658
\(796\) −7.83995e90 −0.327757
\(797\) −4.20154e90 −0.168838 −0.0844192 0.996430i \(-0.526903\pi\)
−0.0844192 + 0.996430i \(0.526903\pi\)
\(798\) −6.44541e90 −0.248977
\(799\) 1.61871e91 0.601098
\(800\) −2.57731e91 −0.920094
\(801\) 1.66549e90 0.0571634
\(802\) −2.79722e91 −0.923069
\(803\) 1.64514e91 0.521992
\(804\) −2.15841e91 −0.658520
\(805\) 3.94367e91 1.15699
\(806\) 1.06954e92 3.01746
\(807\) 3.28769e90 0.0892020
\(808\) −3.55527e91 −0.927714
\(809\) 1.39812e91 0.350886 0.175443 0.984490i \(-0.443864\pi\)
0.175443 + 0.984490i \(0.443864\pi\)
\(810\) −3.13091e91 −0.755774
\(811\) −3.59866e90 −0.0835571 −0.0417786 0.999127i \(-0.513302\pi\)
−0.0417786 + 0.999127i \(0.513302\pi\)
\(812\) 3.32258e91 0.742096
\(813\) −1.03351e91 −0.222055
\(814\) 9.58030e91 1.98021
\(815\) −1.03248e92 −2.05313
\(816\) 1.49325e91 0.285689
\(817\) 9.01457e90 0.165940
\(818\) −9.34613e91 −1.65540
\(819\) −4.15600e91 −0.708325
\(820\) 4.77562e91 0.783237
\(821\) −2.87760e91 −0.454173 −0.227087 0.973875i \(-0.572920\pi\)
−0.227087 + 0.973875i \(0.572920\pi\)
\(822\) 5.90717e91 0.897258
\(823\) 1.30669e92 1.91020 0.955098 0.296290i \(-0.0957496\pi\)
0.955098 + 0.296290i \(0.0957496\pi\)
\(824\) 2.94429e91 0.414260
\(825\) −5.34414e91 −0.723733
\(826\) −1.39841e91 −0.182291
\(827\) −6.67625e91 −0.837740 −0.418870 0.908046i \(-0.637574\pi\)
−0.418870 + 0.908046i \(0.637574\pi\)
\(828\) −4.73227e91 −0.571628
\(829\) −1.02129e92 −1.18763 −0.593814 0.804603i \(-0.702378\pi\)
−0.593814 + 0.804603i \(0.702378\pi\)
\(830\) 1.91071e92 2.13912
\(831\) 3.54661e91 0.382280
\(832\) −2.58457e92 −2.68227
\(833\) 7.61409e90 0.0760853
\(834\) −7.83693e91 −0.754077
\(835\) 1.79919e92 1.66707
\(836\) 4.76489e91 0.425163
\(837\) −1.44158e92 −1.23876
\(838\) 2.68428e91 0.222147
\(839\) −5.22788e91 −0.416700 −0.208350 0.978054i \(-0.566809\pi\)
−0.208350 + 0.978054i \(0.566809\pi\)
\(840\) 7.97382e91 0.612165
\(841\) −9.49120e91 −0.701855
\(842\) 3.06480e92 2.18309
\(843\) −2.50718e91 −0.172035
\(844\) −2.93965e92 −1.94316
\(845\) 3.81112e92 2.42698
\(846\) 7.12788e91 0.437314
\(847\) 1.31626e92 0.778060
\(848\) 5.86318e89 0.00333936
\(849\) 1.88548e92 1.03474
\(850\) −1.97183e92 −1.04273
\(851\) −1.71035e92 −0.871575
\(852\) 2.29436e92 1.12671
\(853\) 2.86871e91 0.135766 0.0678832 0.997693i \(-0.478375\pi\)
0.0678832 + 0.997693i \(0.478375\pi\)
\(854\) −5.42691e92 −2.47531
\(855\) 2.90545e91 0.127726
\(856\) 3.68182e91 0.156005
\(857\) 1.42668e92 0.582679 0.291340 0.956620i \(-0.405899\pi\)
0.291340 + 0.956620i \(0.405899\pi\)
\(858\) −6.73355e92 −2.65091
\(859\) −2.36785e92 −0.898608 −0.449304 0.893379i \(-0.648328\pi\)
−0.449304 + 0.893379i \(0.648328\pi\)
\(860\) −3.78331e92 −1.38411
\(861\) 8.59095e91 0.303000
\(862\) 6.23152e92 2.11892
\(863\) 3.48284e92 1.14181 0.570905 0.821016i \(-0.306592\pi\)
0.570905 + 0.821016i \(0.306592\pi\)
\(864\) 4.37701e92 1.38355
\(865\) −5.64369e92 −1.72011
\(866\) −2.04100e92 −0.599833
\(867\) −3.31391e91 −0.0939159
\(868\) 5.71405e92 1.56161
\(869\) 1.23202e92 0.324711
\(870\) 3.28250e92 0.834349
\(871\) −4.26612e92 −1.04583
\(872\) 5.44729e92 1.28799
\(873\) 2.90506e91 0.0662530
\(874\) −1.45058e92 −0.319104
\(875\) −1.67512e92 −0.355462
\(876\) −2.01460e92 −0.412391
\(877\) 7.38143e92 1.45765 0.728825 0.684700i \(-0.240067\pi\)
0.728825 + 0.684700i \(0.240067\pi\)
\(878\) −1.43814e91 −0.0273983
\(879\) −3.69798e92 −0.679696
\(880\) 4.05096e92 0.718380
\(881\) −4.66751e92 −0.798627 −0.399313 0.916814i \(-0.630751\pi\)
−0.399313 + 0.916814i \(0.630751\pi\)
\(882\) 3.35281e91 0.0553540
\(883\) −5.66714e92 −0.902821 −0.451410 0.892316i \(-0.649079\pi\)
−0.451410 + 0.892316i \(0.649079\pi\)
\(884\) −1.45698e93 −2.23979
\(885\) −8.10183e91 −0.120190
\(886\) 6.08851e92 0.871664
\(887\) 4.96787e91 0.0686398 0.0343199 0.999411i \(-0.489073\pi\)
0.0343199 + 0.999411i \(0.489073\pi\)
\(888\) −3.45821e92 −0.461151
\(889\) 4.52110e92 0.581887
\(890\) −2.14261e92 −0.266169
\(891\) 4.16375e92 0.499271
\(892\) 1.75545e93 2.03187
\(893\) 1.28130e92 0.143163
\(894\) 8.06184e92 0.869566
\(895\) −1.46979e93 −1.53049
\(896\) −1.13109e93 −1.13709
\(897\) 1.20213e93 1.16678
\(898\) −1.94810e93 −1.82561
\(899\) 6.93378e92 0.627393
\(900\) −5.09188e92 −0.444876
\(901\) 9.08910e90 0.00766814
\(902\) −1.08299e93 −0.882308
\(903\) −6.80588e92 −0.535452
\(904\) 1.56313e93 1.18765
\(905\) 1.12545e93 0.825842
\(906\) −8.41835e92 −0.596608
\(907\) 1.79893e93 1.23136 0.615680 0.787997i \(-0.288882\pi\)
0.615680 + 0.787997i \(0.288882\pi\)
\(908\) 1.08409e93 0.716737
\(909\) 9.78044e92 0.624592
\(910\) 5.34658e93 3.29816
\(911\) −8.99801e92 −0.536188 −0.268094 0.963393i \(-0.586394\pi\)
−0.268094 + 0.963393i \(0.586394\pi\)
\(912\) 1.18199e92 0.0680421
\(913\) −2.54102e93 −1.41312
\(914\) −4.64208e93 −2.49406
\(915\) −3.14412e93 −1.63206
\(916\) −2.54655e93 −1.27716
\(917\) 1.66892e93 0.808728
\(918\) 3.34872e93 1.56796
\(919\) −1.85074e93 −0.837348 −0.418674 0.908137i \(-0.637505\pi\)
−0.418674 + 0.908137i \(0.637505\pi\)
\(920\) 1.79456e93 0.784587
\(921\) 2.78977e92 0.117867
\(922\) −6.54056e93 −2.67049
\(923\) 4.53481e93 1.78939
\(924\) −3.59743e93 −1.37191
\(925\) −1.84033e93 −0.678313
\(926\) 3.51244e93 1.25131
\(927\) −8.09966e92 −0.278904
\(928\) −2.10527e93 −0.700724
\(929\) 3.53579e93 1.13760 0.568802 0.822475i \(-0.307407\pi\)
0.568802 + 0.822475i \(0.307407\pi\)
\(930\) 5.64511e93 1.75574
\(931\) 6.02699e91 0.0181211
\(932\) 2.42006e93 0.703438
\(933\) −1.02645e93 −0.288446
\(934\) 2.09543e93 0.569308
\(935\) 6.27980e93 1.64961
\(936\) −1.89118e93 −0.480334
\(937\) 1.39400e93 0.342346 0.171173 0.985241i \(-0.445244\pi\)
0.171173 + 0.985241i \(0.445244\pi\)
\(938\) −3.88654e93 −0.922940
\(939\) 2.04600e92 0.0469829
\(940\) −5.37748e93 −1.19413
\(941\) −4.43425e93 −0.952241 −0.476120 0.879380i \(-0.657957\pi\)
−0.476120 + 0.879380i \(0.657957\pi\)
\(942\) 1.45335e93 0.301834
\(943\) 1.93345e93 0.388342
\(944\) 2.56449e92 0.0498176
\(945\) −7.20642e93 −1.35400
\(946\) 8.57964e93 1.55919
\(947\) −7.29795e93 −1.28285 −0.641426 0.767185i \(-0.721657\pi\)
−0.641426 + 0.767185i \(0.721657\pi\)
\(948\) −1.50870e93 −0.256532
\(949\) −3.98186e93 −0.654939
\(950\) −1.56081e93 −0.248346
\(951\) 6.87731e93 1.05860
\(952\) −3.91266e93 −0.582650
\(953\) −5.59234e93 −0.805689 −0.402844 0.915268i \(-0.631978\pi\)
−0.402844 + 0.915268i \(0.631978\pi\)
\(954\) 4.00232e91 0.00557877
\(955\) 3.81396e92 0.0514363
\(956\) 1.53068e94 1.99738
\(957\) −4.36535e93 −0.551179
\(958\) 1.83481e94 2.24170
\(959\) 6.23772e93 0.737462
\(960\) −1.36416e94 −1.56071
\(961\) 2.89240e93 0.320237
\(962\) −2.31879e94 −2.48454
\(963\) −1.01286e93 −0.105032
\(964\) 1.40584e94 1.41094
\(965\) −3.01311e93 −0.292688
\(966\) 1.09517e94 1.02968
\(967\) −1.35469e94 −1.23284 −0.616419 0.787418i \(-0.711417\pi\)
−0.616419 + 0.787418i \(0.711417\pi\)
\(968\) 5.98960e93 0.527623
\(969\) 1.83233e93 0.156244
\(970\) −3.73727e93 −0.308493
\(971\) 1.40182e94 1.12018 0.560088 0.828433i \(-0.310767\pi\)
0.560088 + 0.828433i \(0.310767\pi\)
\(972\) 1.46627e94 1.13430
\(973\) −8.27547e93 −0.619781
\(974\) −3.24882e94 −2.35569
\(975\) 1.29348e94 0.908060
\(976\) 9.95217e93 0.676470
\(977\) 2.67935e94 1.76340 0.881700 0.471810i \(-0.156399\pi\)
0.881700 + 0.471810i \(0.156399\pi\)
\(978\) −2.86723e94 −1.82721
\(979\) 2.84943e93 0.175834
\(980\) −2.52946e93 −0.151149
\(981\) −1.49854e94 −0.867149
\(982\) −3.41280e94 −1.91249
\(983\) 1.93233e94 1.04868 0.524342 0.851508i \(-0.324311\pi\)
0.524342 + 0.851508i \(0.324311\pi\)
\(984\) 3.90930e93 0.205472
\(985\) 2.78582e94 1.41812
\(986\) −1.61068e94 −0.794122
\(987\) −9.67365e93 −0.461956
\(988\) −1.15328e94 −0.533448
\(989\) −1.53171e94 −0.686267
\(990\) 2.76527e94 1.20013
\(991\) −2.43225e94 −1.02256 −0.511279 0.859415i \(-0.670828\pi\)
−0.511279 + 0.859415i \(0.670828\pi\)
\(992\) −3.62057e94 −1.47455
\(993\) −9.59833e92 −0.0378699
\(994\) 4.13132e94 1.57913
\(995\) −8.17878e93 −0.302874
\(996\) 3.11167e94 1.11641
\(997\) 3.29728e94 1.14619 0.573097 0.819487i \(-0.305742\pi\)
0.573097 + 0.819487i \(0.305742\pi\)
\(998\) 6.12246e94 2.06212
\(999\) 3.12540e94 1.01998
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1.64.a.a.1.5 5
3.2 odd 2 9.64.a.c.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1.64.a.a.1.5 5 1.1 even 1 trivial
9.64.a.c.1.1 5 3.2 odd 2