Properties

Label 1.60.a.a.1.5
Level 1
Weight 60
Character 1.1
Self dual Yes
Analytic conductor 22.046
Analytic rank 0
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 60 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(22.045800551\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{39}\cdot 3^{13}\cdot 5^{3}\cdot 7^{2} \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-5.61966e7\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.25878e9 q^{2} +2.00976e14 q^{3} +1.00806e18 q^{4} -4.05126e20 q^{5} +2.52984e23 q^{6} +2.66317e24 q^{7} +5.43293e26 q^{8} +2.62609e28 q^{9} +O(q^{10})\) \(q+1.25878e9 q^{2} +2.00976e14 q^{3} +1.00806e18 q^{4} -4.05126e20 q^{5} +2.52984e23 q^{6} +2.66317e24 q^{7} +5.43293e26 q^{8} +2.62609e28 q^{9} -5.09964e29 q^{10} +7.79706e30 q^{11} +2.02597e32 q^{12} +1.35975e32 q^{13} +3.35235e33 q^{14} -8.14206e34 q^{15} +1.02776e35 q^{16} -2.91767e36 q^{17} +3.30567e37 q^{18} -6.13079e36 q^{19} -4.08393e38 q^{20} +5.35234e38 q^{21} +9.81478e39 q^{22} -2.47627e39 q^{23} +1.09189e41 q^{24} -9.34524e39 q^{25} +1.71162e41 q^{26} +2.43795e42 q^{27} +2.68465e42 q^{28} -4.74630e42 q^{29} -1.02491e44 q^{30} +1.04997e43 q^{31} -1.83814e44 q^{32} +1.56702e45 q^{33} -3.67270e45 q^{34} -1.07892e45 q^{35} +2.64727e46 q^{36} -7.35159e45 q^{37} -7.71730e45 q^{38} +2.73277e46 q^{39} -2.20102e47 q^{40} -6.31455e47 q^{41} +6.73741e47 q^{42} -5.26596e47 q^{43} +7.85993e48 q^{44} -1.06390e49 q^{45} -3.11707e48 q^{46} +3.33197e49 q^{47} +2.06556e49 q^{48} -6.54821e49 q^{49} -1.17636e49 q^{50} -5.86381e50 q^{51} +1.37071e50 q^{52} +7.06726e50 q^{53} +3.06884e51 q^{54} -3.15879e51 q^{55} +1.44688e51 q^{56} -1.23214e51 q^{57} -5.97454e51 q^{58} +2.46009e52 q^{59} -8.20771e52 q^{60} +5.32529e52 q^{61} +1.32169e52 q^{62} +6.99375e52 q^{63} -2.90628e53 q^{64} -5.50869e52 q^{65} +1.97253e54 q^{66} -2.99074e53 q^{67} -2.94120e54 q^{68} -4.97670e53 q^{69} -1.35812e54 q^{70} -4.94138e54 q^{71} +1.42674e55 q^{72} +7.41825e54 q^{73} -9.25403e54 q^{74} -1.87817e54 q^{75} -6.18022e54 q^{76} +2.07649e55 q^{77} +3.43995e55 q^{78} -6.76516e55 q^{79} -4.16374e55 q^{80} +1.18892e56 q^{81} -7.94862e56 q^{82} +4.29546e56 q^{83} +5.39550e56 q^{84} +1.18202e57 q^{85} -6.62869e56 q^{86} -9.53891e56 q^{87} +4.23609e57 q^{88} -4.87740e56 q^{89} -1.33921e58 q^{90} +3.62124e56 q^{91} -2.49623e57 q^{92} +2.11019e57 q^{93} +4.19421e58 q^{94} +2.48374e57 q^{95} -3.69423e58 q^{96} -9.59338e57 q^{97} -8.24274e58 q^{98} +2.04758e59 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5q - 449691864q^{2} + 84016631749932q^{3} + 1738819379139544640q^{4} + \)\(17\!\cdots\!90\)\(q^{5} + \)\(31\!\cdots\!60\)\(q^{6} + \)\(14\!\cdots\!56\)\(q^{7} - \)\(34\!\cdots\!80\)\(q^{8} + \)\(32\!\cdots\!85\)\(q^{9} + O(q^{10}) \) \( 5q - 449691864q^{2} + 84016631749932q^{3} + 1738819379139544640q^{4} + \)\(17\!\cdots\!90\)\(q^{5} + \)\(31\!\cdots\!60\)\(q^{6} + \)\(14\!\cdots\!56\)\(q^{7} - \)\(34\!\cdots\!80\)\(q^{8} + \)\(32\!\cdots\!85\)\(q^{9} - \)\(81\!\cdots\!60\)\(q^{10} + \)\(42\!\cdots\!60\)\(q^{11} - \)\(44\!\cdots\!44\)\(q^{12} - \)\(84\!\cdots\!78\)\(q^{13} + \)\(62\!\cdots\!80\)\(q^{14} - \)\(40\!\cdots\!20\)\(q^{15} + \)\(69\!\cdots\!80\)\(q^{16} - \)\(34\!\cdots\!54\)\(q^{17} + \)\(96\!\cdots\!52\)\(q^{18} + \)\(64\!\cdots\!00\)\(q^{19} + \)\(16\!\cdots\!20\)\(q^{20} + \)\(34\!\cdots\!60\)\(q^{21} + \)\(16\!\cdots\!12\)\(q^{22} + \)\(26\!\cdots\!12\)\(q^{23} + \)\(43\!\cdots\!00\)\(q^{24} + \)\(62\!\cdots\!75\)\(q^{25} + \)\(27\!\cdots\!60\)\(q^{26} + \)\(42\!\cdots\!80\)\(q^{27} - \)\(56\!\cdots\!52\)\(q^{28} - \)\(17\!\cdots\!50\)\(q^{29} - \)\(15\!\cdots\!20\)\(q^{30} - \)\(35\!\cdots\!40\)\(q^{31} - \)\(10\!\cdots\!84\)\(q^{32} + \)\(75\!\cdots\!44\)\(q^{33} + \)\(13\!\cdots\!80\)\(q^{34} + \)\(87\!\cdots\!40\)\(q^{35} + \)\(50\!\cdots\!80\)\(q^{36} + \)\(12\!\cdots\!26\)\(q^{37} - \)\(45\!\cdots\!20\)\(q^{38} - \)\(92\!\cdots\!80\)\(q^{39} - \)\(62\!\cdots\!00\)\(q^{40} - \)\(12\!\cdots\!90\)\(q^{41} - \)\(18\!\cdots\!88\)\(q^{42} + \)\(13\!\cdots\!92\)\(q^{43} + \)\(10\!\cdots\!80\)\(q^{44} + \)\(10\!\cdots\!30\)\(q^{45} + \)\(35\!\cdots\!60\)\(q^{46} + \)\(58\!\cdots\!16\)\(q^{47} - \)\(14\!\cdots\!88\)\(q^{48} - \)\(17\!\cdots\!35\)\(q^{49} - \)\(23\!\cdots\!00\)\(q^{50} - \)\(46\!\cdots\!40\)\(q^{51} - \)\(99\!\cdots\!24\)\(q^{52} + \)\(22\!\cdots\!82\)\(q^{53} + \)\(42\!\cdots\!00\)\(q^{54} + \)\(90\!\cdots\!80\)\(q^{55} + \)\(13\!\cdots\!00\)\(q^{56} - \)\(14\!\cdots\!40\)\(q^{57} - \)\(19\!\cdots\!80\)\(q^{58} - \)\(21\!\cdots\!00\)\(q^{59} - \)\(15\!\cdots\!60\)\(q^{60} - \)\(55\!\cdots\!90\)\(q^{61} + \)\(18\!\cdots\!92\)\(q^{62} + \)\(18\!\cdots\!92\)\(q^{63} + \)\(44\!\cdots\!40\)\(q^{64} + \)\(10\!\cdots\!80\)\(q^{65} + \)\(18\!\cdots\!20\)\(q^{66} + \)\(25\!\cdots\!96\)\(q^{67} - \)\(58\!\cdots\!32\)\(q^{68} - \)\(11\!\cdots\!80\)\(q^{69} - \)\(57\!\cdots\!60\)\(q^{70} - \)\(63\!\cdots\!40\)\(q^{71} + \)\(50\!\cdots\!40\)\(q^{72} + \)\(12\!\cdots\!62\)\(q^{73} + \)\(30\!\cdots\!80\)\(q^{74} + \)\(71\!\cdots\!00\)\(q^{75} + \)\(44\!\cdots\!00\)\(q^{76} + \)\(17\!\cdots\!52\)\(q^{77} - \)\(20\!\cdots\!56\)\(q^{78} - \)\(19\!\cdots\!00\)\(q^{79} - \)\(20\!\cdots\!60\)\(q^{80} - \)\(27\!\cdots\!95\)\(q^{81} - \)\(90\!\cdots\!68\)\(q^{82} + \)\(13\!\cdots\!52\)\(q^{83} + \)\(17\!\cdots\!80\)\(q^{84} + \)\(24\!\cdots\!40\)\(q^{85} - \)\(14\!\cdots\!40\)\(q^{86} + \)\(27\!\cdots\!40\)\(q^{87} - \)\(76\!\cdots\!60\)\(q^{88} + \)\(41\!\cdots\!50\)\(q^{89} - \)\(27\!\cdots\!20\)\(q^{90} + \)\(20\!\cdots\!60\)\(q^{91} - \)\(40\!\cdots\!04\)\(q^{92} + \)\(35\!\cdots\!04\)\(q^{93} - \)\(11\!\cdots\!20\)\(q^{94} + \)\(87\!\cdots\!00\)\(q^{95} + \)\(35\!\cdots\!60\)\(q^{96} + \)\(11\!\cdots\!66\)\(q^{97} - \)\(10\!\cdots\!52\)\(q^{98} + \)\(23\!\cdots\!20\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.25878e9 1.65792 0.828962 0.559305i \(-0.188932\pi\)
0.828962 + 0.559305i \(0.188932\pi\)
\(3\) 2.00976e14 1.69070 0.845351 0.534211i \(-0.179391\pi\)
0.845351 + 0.534211i \(0.179391\pi\)
\(4\) 1.00806e18 1.74871
\(5\) −4.05126e20 −0.972691 −0.486346 0.873767i \(-0.661670\pi\)
−0.486346 + 0.873767i \(0.661670\pi\)
\(6\) 2.52984e23 2.80306
\(7\) 2.66317e24 0.312613 0.156307 0.987709i \(-0.450041\pi\)
0.156307 + 0.987709i \(0.450041\pi\)
\(8\) 5.43293e26 1.24131
\(9\) 2.62609e28 1.85847
\(10\) −5.09964e29 −1.61265
\(11\) 7.79706e30 1.48199 0.740997 0.671508i \(-0.234353\pi\)
0.740997 + 0.671508i \(0.234353\pi\)
\(12\) 2.02597e32 2.95655
\(13\) 1.35975e32 0.187124 0.0935620 0.995613i \(-0.470175\pi\)
0.0935620 + 0.995613i \(0.470175\pi\)
\(14\) 3.35235e33 0.518289
\(15\) −8.14206e34 −1.64453
\(16\) 1.02776e35 0.309281
\(17\) −2.91767e36 −1.46823 −0.734113 0.679027i \(-0.762402\pi\)
−0.734113 + 0.679027i \(0.762402\pi\)
\(18\) 3.30567e37 3.08121
\(19\) −6.13079e36 −0.115954 −0.0579769 0.998318i \(-0.518465\pi\)
−0.0579769 + 0.998318i \(0.518465\pi\)
\(20\) −4.08393e38 −1.70096
\(21\) 5.35234e38 0.528536
\(22\) 9.81478e39 2.45703
\(23\) −2.47627e39 −0.167042 −0.0835211 0.996506i \(-0.526617\pi\)
−0.0835211 + 0.996506i \(0.526617\pi\)
\(24\) 1.09189e41 2.09868
\(25\) −9.34524e39 −0.0538716
\(26\) 1.71162e41 0.310237
\(27\) 2.43795e42 1.45142
\(28\) 2.68465e42 0.546670
\(29\) −4.74630e42 −0.343253 −0.171626 0.985162i \(-0.554902\pi\)
−0.171626 + 0.985162i \(0.554902\pi\)
\(30\) −1.02491e44 −2.72651
\(31\) 1.04997e43 0.106172 0.0530858 0.998590i \(-0.483094\pi\)
0.0530858 + 0.998590i \(0.483094\pi\)
\(32\) −1.83814e44 −0.728543
\(33\) 1.56702e45 2.50561
\(34\) −3.67270e45 −2.43421
\(35\) −1.07892e45 −0.304076
\(36\) 2.64727e46 3.24993
\(37\) −7.35159e45 −0.402189 −0.201095 0.979572i \(-0.564450\pi\)
−0.201095 + 0.979572i \(0.564450\pi\)
\(38\) −7.71730e45 −0.192243
\(39\) 2.73277e46 0.316371
\(40\) −2.20102e47 −1.20741
\(41\) −6.31455e47 −1.67193 −0.835965 0.548782i \(-0.815092\pi\)
−0.835965 + 0.548782i \(0.815092\pi\)
\(42\) 6.73741e47 0.876272
\(43\) −5.26596e47 −0.342104 −0.171052 0.985262i \(-0.554717\pi\)
−0.171052 + 0.985262i \(0.554717\pi\)
\(44\) 7.85993e48 2.59158
\(45\) −1.06390e49 −1.80772
\(46\) −3.11707e48 −0.276943
\(47\) 3.33197e49 1.56969 0.784845 0.619692i \(-0.212742\pi\)
0.784845 + 0.619692i \(0.212742\pi\)
\(48\) 2.06556e49 0.522902
\(49\) −6.54821e49 −0.902273
\(50\) −1.17636e49 −0.0893151
\(51\) −5.86381e50 −2.48233
\(52\) 1.37071e50 0.327226
\(53\) 7.06726e50 0.961863 0.480931 0.876758i \(-0.340299\pi\)
0.480931 + 0.876758i \(0.340299\pi\)
\(54\) 3.06884e51 2.40635
\(55\) −3.15879e51 −1.44152
\(56\) 1.44688e51 0.388049
\(57\) −1.23214e51 −0.196043
\(58\) −5.97454e51 −0.569087
\(59\) 2.46009e52 1.41519 0.707597 0.706616i \(-0.249779\pi\)
0.707597 + 0.706616i \(0.249779\pi\)
\(60\) −8.20771e52 −2.87581
\(61\) 5.32529e52 1.14581 0.572906 0.819621i \(-0.305816\pi\)
0.572906 + 0.819621i \(0.305816\pi\)
\(62\) 1.32169e52 0.176025
\(63\) 6.99375e52 0.580983
\(64\) −2.90628e53 −1.51715
\(65\) −5.50869e52 −0.182014
\(66\) 1.97253e54 4.15411
\(67\) −2.99074e53 −0.404178 −0.202089 0.979367i \(-0.564773\pi\)
−0.202089 + 0.979367i \(0.564773\pi\)
\(68\) −2.94120e54 −2.56750
\(69\) −4.97670e53 −0.282418
\(70\) −1.35812e54 −0.504135
\(71\) −4.94138e54 −1.20705 −0.603527 0.797342i \(-0.706239\pi\)
−0.603527 + 0.797342i \(0.706239\pi\)
\(72\) 1.42674e55 2.30694
\(73\) 7.41825e54 0.798504 0.399252 0.916841i \(-0.369270\pi\)
0.399252 + 0.916841i \(0.369270\pi\)
\(74\) −9.25403e54 −0.666799
\(75\) −1.87817e54 −0.0910809
\(76\) −6.18022e54 −0.202770
\(77\) 2.07649e55 0.463291
\(78\) 3.43995e55 0.524519
\(79\) −6.76516e55 −0.708400 −0.354200 0.935170i \(-0.615247\pi\)
−0.354200 + 0.935170i \(0.615247\pi\)
\(80\) −4.16374e55 −0.300835
\(81\) 1.18892e56 0.595449
\(82\) −7.94862e56 −2.77193
\(83\) 4.29546e56 1.04763 0.523813 0.851833i \(-0.324509\pi\)
0.523813 + 0.851833i \(0.324509\pi\)
\(84\) 5.39550e56 0.924257
\(85\) 1.18202e57 1.42813
\(86\) −6.62869e56 −0.567183
\(87\) −9.53891e56 −0.580338
\(88\) 4.23609e57 1.83961
\(89\) −4.87740e56 −0.151769 −0.0758845 0.997117i \(-0.524178\pi\)
−0.0758845 + 0.997117i \(0.524178\pi\)
\(90\) −1.33921e58 −2.99706
\(91\) 3.62124e56 0.0584974
\(92\) −2.49623e57 −0.292109
\(93\) 2.11019e57 0.179505
\(94\) 4.19421e58 2.60243
\(95\) 2.48374e57 0.112787
\(96\) −3.69423e58 −1.23175
\(97\) −9.59338e57 −0.235616 −0.117808 0.993036i \(-0.537587\pi\)
−0.117808 + 0.993036i \(0.537587\pi\)
\(98\) −8.24274e58 −1.49590
\(99\) 2.04758e59 2.75425
\(100\) −9.42060e57 −0.0942060
\(101\) 2.04672e59 1.52608 0.763040 0.646351i \(-0.223706\pi\)
0.763040 + 0.646351i \(0.223706\pi\)
\(102\) −7.38125e59 −4.11552
\(103\) 1.04146e59 0.435456 0.217728 0.976009i \(-0.430135\pi\)
0.217728 + 0.976009i \(0.430135\pi\)
\(104\) 7.38741e58 0.232278
\(105\) −2.16837e59 −0.514102
\(106\) 8.89612e59 1.59470
\(107\) −1.19773e60 −1.62756 −0.813779 0.581175i \(-0.802593\pi\)
−0.813779 + 0.581175i \(0.802593\pi\)
\(108\) 2.45761e60 2.53812
\(109\) 2.38792e60 1.87905 0.939526 0.342478i \(-0.111266\pi\)
0.939526 + 0.342478i \(0.111266\pi\)
\(110\) −3.97622e60 −2.38994
\(111\) −1.47749e60 −0.679982
\(112\) 2.73711e59 0.0966854
\(113\) −1.74667e60 −0.474674 −0.237337 0.971427i \(-0.576275\pi\)
−0.237337 + 0.971427i \(0.576275\pi\)
\(114\) −1.55099e60 −0.325025
\(115\) 1.00320e60 0.162480
\(116\) −4.78457e60 −0.600250
\(117\) 3.57083e60 0.347765
\(118\) 3.09670e61 2.34628
\(119\) −7.77026e60 −0.458987
\(120\) −4.42352e61 −2.04137
\(121\) 3.31140e61 1.19631
\(122\) 6.70336e61 1.89967
\(123\) −1.26907e62 −2.82674
\(124\) 1.05844e61 0.185664
\(125\) 7.40642e61 1.02509
\(126\) 8.80358e61 0.963226
\(127\) −1.13188e62 −0.980826 −0.490413 0.871490i \(-0.663154\pi\)
−0.490413 + 0.871490i \(0.663154\pi\)
\(128\) −2.59875e62 −1.78678
\(129\) −1.05833e62 −0.578396
\(130\) −6.93423e61 −0.301765
\(131\) 1.46816e62 0.509646 0.254823 0.966988i \(-0.417983\pi\)
0.254823 + 0.966988i \(0.417983\pi\)
\(132\) 1.57966e63 4.38159
\(133\) −1.63273e61 −0.0362487
\(134\) −3.76469e62 −0.670096
\(135\) −9.87677e62 −1.41179
\(136\) −1.58515e63 −1.82252
\(137\) 1.25262e63 1.16028 0.580139 0.814517i \(-0.302998\pi\)
0.580139 + 0.814517i \(0.302998\pi\)
\(138\) −6.26456e62 −0.468228
\(139\) −5.27386e62 −0.318560 −0.159280 0.987233i \(-0.550917\pi\)
−0.159280 + 0.987233i \(0.550917\pi\)
\(140\) −1.08762e63 −0.531742
\(141\) 6.69646e63 2.65388
\(142\) −6.22011e63 −2.00121
\(143\) 1.06020e63 0.277317
\(144\) 2.69900e63 0.574791
\(145\) 1.92285e63 0.333879
\(146\) 9.33794e63 1.32386
\(147\) −1.31603e64 −1.52547
\(148\) −7.41087e63 −0.703313
\(149\) 9.39911e63 0.731293 0.365647 0.930754i \(-0.380848\pi\)
0.365647 + 0.930754i \(0.380848\pi\)
\(150\) −2.36420e63 −0.151005
\(151\) 1.88603e64 0.990211 0.495105 0.868833i \(-0.335129\pi\)
0.495105 + 0.868833i \(0.335129\pi\)
\(152\) −3.33081e63 −0.143934
\(153\) −7.66207e64 −2.72866
\(154\) 2.61385e64 0.768102
\(155\) −4.25372e63 −0.103272
\(156\) 2.75480e64 0.553242
\(157\) 4.92576e64 0.819282 0.409641 0.912247i \(-0.365654\pi\)
0.409641 + 0.912247i \(0.365654\pi\)
\(158\) −8.51584e64 −1.17447
\(159\) 1.42035e65 1.62622
\(160\) 7.44680e64 0.708647
\(161\) −6.59472e63 −0.0522196
\(162\) 1.49659e65 0.987209
\(163\) −8.13744e64 −0.447665 −0.223833 0.974628i \(-0.571857\pi\)
−0.223833 + 0.974628i \(0.571857\pi\)
\(164\) −6.36546e65 −2.92373
\(165\) −6.34841e65 −2.43719
\(166\) 5.40704e65 1.73688
\(167\) 4.38132e65 1.17888 0.589439 0.807813i \(-0.299349\pi\)
0.589439 + 0.807813i \(0.299349\pi\)
\(168\) 2.90789e65 0.656075
\(169\) −5.09540e65 −0.964985
\(170\) 1.48791e66 2.36773
\(171\) −1.61000e65 −0.215497
\(172\) −5.30843e65 −0.598242
\(173\) −5.55515e65 −0.527637 −0.263819 0.964572i \(-0.584982\pi\)
−0.263819 + 0.964572i \(0.584982\pi\)
\(174\) −1.20074e66 −0.962156
\(175\) −2.48880e64 −0.0168410
\(176\) 8.01353e65 0.458353
\(177\) 4.94418e66 2.39267
\(178\) −6.13957e65 −0.251621
\(179\) −1.41303e66 −0.490893 −0.245446 0.969410i \(-0.578935\pi\)
−0.245446 + 0.969410i \(0.578935\pi\)
\(180\) −1.07248e67 −3.16118
\(181\) −2.80750e65 −0.0702752 −0.0351376 0.999382i \(-0.511187\pi\)
−0.0351376 + 0.999382i \(0.511187\pi\)
\(182\) 4.55835e65 0.0969843
\(183\) 1.07026e67 1.93723
\(184\) −1.34534e66 −0.207351
\(185\) 2.97832e66 0.391206
\(186\) 2.65627e66 0.297605
\(187\) −2.27492e67 −2.17590
\(188\) 3.35884e67 2.74494
\(189\) 6.49268e66 0.453734
\(190\) 3.12648e66 0.186993
\(191\) 3.97971e66 0.203876 0.101938 0.994791i \(-0.467496\pi\)
0.101938 + 0.994791i \(0.467496\pi\)
\(192\) −5.84093e67 −2.56505
\(193\) 5.02510e66 0.189323 0.0946616 0.995510i \(-0.469823\pi\)
0.0946616 + 0.995510i \(0.469823\pi\)
\(194\) −1.20759e67 −0.390634
\(195\) −1.10711e67 −0.307731
\(196\) −6.60101e67 −1.57782
\(197\) −1.09574e66 −0.0225400 −0.0112700 0.999936i \(-0.503587\pi\)
−0.0112700 + 0.999936i \(0.503587\pi\)
\(198\) 2.57745e68 4.56633
\(199\) −8.25782e67 −1.26096 −0.630478 0.776208i \(-0.717141\pi\)
−0.630478 + 0.776208i \(0.717141\pi\)
\(200\) −5.07720e66 −0.0668712
\(201\) −6.01068e67 −0.683344
\(202\) 2.57636e68 2.53012
\(203\) −1.26402e67 −0.107305
\(204\) −5.91110e68 −4.34088
\(205\) 2.55819e68 1.62627
\(206\) 1.31097e68 0.721953
\(207\) −6.50291e67 −0.310443
\(208\) 1.39750e67 0.0578739
\(209\) −4.78021e67 −0.171843
\(210\) −2.72950e68 −0.852342
\(211\) 4.55772e68 1.23713 0.618565 0.785734i \(-0.287714\pi\)
0.618565 + 0.785734i \(0.287714\pi\)
\(212\) 7.12425e68 1.68202
\(213\) −9.93099e68 −2.04077
\(214\) −1.50767e69 −2.69837
\(215\) 2.13338e68 0.332762
\(216\) 1.32452e69 1.80166
\(217\) 2.79626e67 0.0331907
\(218\) 3.00587e69 3.11532
\(219\) 1.49089e69 1.35003
\(220\) −3.18426e69 −2.52081
\(221\) −3.96729e68 −0.274740
\(222\) −1.85984e69 −1.12736
\(223\) −1.12231e69 −0.595824 −0.297912 0.954593i \(-0.596290\pi\)
−0.297912 + 0.954593i \(0.596290\pi\)
\(224\) −4.89529e68 −0.227752
\(225\) −2.45415e68 −0.100119
\(226\) −2.19867e69 −0.786974
\(227\) 3.72597e69 1.17078 0.585392 0.810750i \(-0.300941\pi\)
0.585392 + 0.810750i \(0.300941\pi\)
\(228\) −1.24208e69 −0.342823
\(229\) 2.90625e69 0.704996 0.352498 0.935813i \(-0.385332\pi\)
0.352498 + 0.935813i \(0.385332\pi\)
\(230\) 1.26281e69 0.269380
\(231\) 4.17325e69 0.783287
\(232\) −2.57863e69 −0.426082
\(233\) 2.52938e69 0.368141 0.184070 0.982913i \(-0.441073\pi\)
0.184070 + 0.982913i \(0.441073\pi\)
\(234\) 4.49488e69 0.576568
\(235\) −1.34987e70 −1.52682
\(236\) 2.47992e70 2.47477
\(237\) −1.35963e70 −1.19769
\(238\) −9.78104e69 −0.760965
\(239\) −2.82462e70 −1.94188 −0.970940 0.239322i \(-0.923075\pi\)
−0.970940 + 0.239322i \(0.923075\pi\)
\(240\) −8.36811e69 −0.508622
\(241\) 7.56182e69 0.406559 0.203279 0.979121i \(-0.434840\pi\)
0.203279 + 0.979121i \(0.434840\pi\)
\(242\) 4.16832e70 1.98339
\(243\) −1.05547e70 −0.444695
\(244\) 5.36823e70 2.00369
\(245\) 2.65285e70 0.877633
\(246\) −1.59748e71 −4.68651
\(247\) −8.33632e68 −0.0216977
\(248\) 5.70443e69 0.131792
\(249\) 8.63285e70 1.77122
\(250\) 9.32304e70 1.69952
\(251\) −5.62006e70 −0.910680 −0.455340 0.890318i \(-0.650482\pi\)
−0.455340 + 0.890318i \(0.650482\pi\)
\(252\) 7.05014e70 1.01597
\(253\) −1.93076e70 −0.247556
\(254\) −1.42479e71 −1.62614
\(255\) 2.37558e71 2.41454
\(256\) −1.59589e71 −1.44519
\(257\) −1.57080e71 −1.26792 −0.633962 0.773364i \(-0.718572\pi\)
−0.633962 + 0.773364i \(0.718572\pi\)
\(258\) −1.33221e71 −0.958937
\(259\) −1.95786e70 −0.125730
\(260\) −5.55311e70 −0.318290
\(261\) −1.24642e71 −0.637926
\(262\) 1.84808e71 0.844955
\(263\) 2.94951e71 1.20519 0.602595 0.798047i \(-0.294133\pi\)
0.602595 + 0.798047i \(0.294133\pi\)
\(264\) 8.51351e71 3.11023
\(265\) −2.86313e71 −0.935596
\(266\) −2.05525e70 −0.0600976
\(267\) −9.80240e70 −0.256596
\(268\) −3.01486e71 −0.706791
\(269\) 5.24635e71 1.10196 0.550979 0.834519i \(-0.314255\pi\)
0.550979 + 0.834519i \(0.314255\pi\)
\(270\) −1.24327e72 −2.34063
\(271\) −2.35272e71 −0.397170 −0.198585 0.980084i \(-0.563635\pi\)
−0.198585 + 0.980084i \(0.563635\pi\)
\(272\) −2.99867e71 −0.454095
\(273\) 7.27783e70 0.0989017
\(274\) 1.57677e72 1.92365
\(275\) −7.28654e70 −0.0798375
\(276\) −5.01683e71 −0.493868
\(277\) −2.69582e71 −0.238527 −0.119264 0.992863i \(-0.538053\pi\)
−0.119264 + 0.992863i \(0.538053\pi\)
\(278\) −6.63862e71 −0.528149
\(279\) 2.75733e71 0.197317
\(280\) −5.86170e71 −0.377452
\(281\) −2.72521e72 −1.57966 −0.789831 0.613325i \(-0.789832\pi\)
−0.789831 + 0.613325i \(0.789832\pi\)
\(282\) 8.42936e72 4.39993
\(283\) 9.41566e71 0.442742 0.221371 0.975190i \(-0.428947\pi\)
0.221371 + 0.975190i \(0.428947\pi\)
\(284\) −4.98123e72 −2.11079
\(285\) 4.99172e71 0.190690
\(286\) 1.33456e72 0.459770
\(287\) −1.68167e72 −0.522668
\(288\) −4.82714e72 −1.35398
\(289\) 4.56380e72 1.15569
\(290\) 2.42044e72 0.553546
\(291\) −1.92804e72 −0.398357
\(292\) 7.47807e72 1.39635
\(293\) −3.41955e72 −0.577264 −0.288632 0.957440i \(-0.593200\pi\)
−0.288632 + 0.957440i \(0.593200\pi\)
\(294\) −1.65659e73 −2.52912
\(295\) −9.96645e72 −1.37655
\(296\) −3.99407e72 −0.499240
\(297\) 1.90088e73 2.15100
\(298\) 1.18314e73 1.21243
\(299\) −3.36710e71 −0.0312576
\(300\) −1.89331e72 −0.159274
\(301\) −1.40242e72 −0.106946
\(302\) 2.37409e73 1.64169
\(303\) 4.11341e73 2.58015
\(304\) −6.30099e71 −0.0358623
\(305\) −2.15741e73 −1.11452
\(306\) −9.64486e73 −4.52391
\(307\) −2.53220e73 −1.07874 −0.539368 0.842070i \(-0.681337\pi\)
−0.539368 + 0.842070i \(0.681337\pi\)
\(308\) 2.09324e73 0.810163
\(309\) 2.09308e73 0.736227
\(310\) −5.35449e72 −0.171218
\(311\) 2.94213e73 0.855520 0.427760 0.903892i \(-0.359303\pi\)
0.427760 + 0.903892i \(0.359303\pi\)
\(312\) 1.48469e73 0.392713
\(313\) −6.09875e72 −0.146785 −0.0733927 0.997303i \(-0.523383\pi\)
−0.0733927 + 0.997303i \(0.523383\pi\)
\(314\) 6.20044e73 1.35831
\(315\) −2.83335e73 −0.565117
\(316\) −6.81971e73 −1.23879
\(317\) −4.68192e73 −0.774776 −0.387388 0.921917i \(-0.626623\pi\)
−0.387388 + 0.921917i \(0.626623\pi\)
\(318\) 1.78791e74 2.69615
\(319\) −3.70072e73 −0.508699
\(320\) 1.17741e74 1.47572
\(321\) −2.40714e74 −2.75171
\(322\) −8.30130e72 −0.0865761
\(323\) 1.78876e73 0.170246
\(324\) 1.19851e74 1.04127
\(325\) −1.27072e72 −0.0100807
\(326\) −1.02432e74 −0.742195
\(327\) 4.79915e74 3.17692
\(328\) −3.43065e74 −2.07538
\(329\) 8.87361e73 0.490706
\(330\) −7.99125e74 −4.04067
\(331\) −1.18420e74 −0.547645 −0.273823 0.961780i \(-0.588288\pi\)
−0.273823 + 0.961780i \(0.588288\pi\)
\(332\) 4.33010e74 1.83200
\(333\) −1.93060e74 −0.747458
\(334\) 5.51511e74 1.95449
\(335\) 1.21163e74 0.393140
\(336\) 5.50094e73 0.163466
\(337\) 4.43546e74 1.20742 0.603708 0.797206i \(-0.293689\pi\)
0.603708 + 0.797206i \(0.293689\pi\)
\(338\) −6.41398e74 −1.59987
\(339\) −3.51038e74 −0.802532
\(340\) 1.19156e75 2.49739
\(341\) 8.18671e73 0.157346
\(342\) −2.02664e74 −0.357278
\(343\) −3.67669e74 −0.594676
\(344\) −2.86096e74 −0.424657
\(345\) 2.01619e74 0.274706
\(346\) −6.99270e74 −0.874783
\(347\) −3.30123e74 −0.379277 −0.189639 0.981854i \(-0.560732\pi\)
−0.189639 + 0.981854i \(0.560732\pi\)
\(348\) −9.61583e74 −1.01484
\(349\) −2.57241e74 −0.249453 −0.124727 0.992191i \(-0.539805\pi\)
−0.124727 + 0.992191i \(0.539805\pi\)
\(350\) −3.13285e73 −0.0279211
\(351\) 3.31500e74 0.271596
\(352\) −1.43321e75 −1.07970
\(353\) 5.86179e74 0.406141 0.203070 0.979164i \(-0.434908\pi\)
0.203070 + 0.979164i \(0.434908\pi\)
\(354\) 6.22363e75 3.96687
\(355\) 2.00188e75 1.17409
\(356\) −4.91673e74 −0.265400
\(357\) −1.56164e75 −0.776010
\(358\) −1.77869e75 −0.813863
\(359\) 6.82502e74 0.287619 0.143809 0.989605i \(-0.454065\pi\)
0.143809 + 0.989605i \(0.454065\pi\)
\(360\) −5.78009e75 −2.24394
\(361\) −2.75793e75 −0.986555
\(362\) −3.53403e74 −0.116511
\(363\) 6.65512e75 2.02260
\(364\) 3.65045e74 0.102295
\(365\) −3.00533e75 −0.776698
\(366\) 1.34722e76 3.21177
\(367\) −5.95804e75 −1.31055 −0.655277 0.755389i \(-0.727448\pi\)
−0.655277 + 0.755389i \(0.727448\pi\)
\(368\) −2.54501e74 −0.0516630
\(369\) −1.65826e76 −3.10724
\(370\) 3.74905e75 0.648590
\(371\) 1.88214e75 0.300691
\(372\) 2.12721e75 0.313902
\(373\) 6.82715e75 0.930741 0.465370 0.885116i \(-0.345921\pi\)
0.465370 + 0.885116i \(0.345921\pi\)
\(374\) −2.86363e76 −3.60748
\(375\) 1.48851e76 1.73312
\(376\) 1.81023e76 1.94847
\(377\) −6.45377e74 −0.0642308
\(378\) 8.17285e75 0.752256
\(379\) 1.45662e76 1.24019 0.620097 0.784525i \(-0.287093\pi\)
0.620097 + 0.784525i \(0.287093\pi\)
\(380\) 2.50377e75 0.197232
\(381\) −2.27481e76 −1.65829
\(382\) 5.00957e75 0.338011
\(383\) 2.09671e76 1.30971 0.654854 0.755756i \(-0.272730\pi\)
0.654854 + 0.755756i \(0.272730\pi\)
\(384\) −5.22286e76 −3.02091
\(385\) −8.41241e75 −0.450639
\(386\) 6.32549e75 0.313884
\(387\) −1.38289e76 −0.635792
\(388\) −9.67074e75 −0.412025
\(389\) 2.84944e76 1.12524 0.562621 0.826715i \(-0.309793\pi\)
0.562621 + 0.826715i \(0.309793\pi\)
\(390\) −1.39361e76 −0.510195
\(391\) 7.22492e75 0.245256
\(392\) −3.55759e76 −1.12000
\(393\) 2.95064e76 0.861660
\(394\) −1.37930e75 −0.0373697
\(395\) 2.74074e76 0.689055
\(396\) 2.06409e77 4.81639
\(397\) −7.03399e76 −1.52364 −0.761819 0.647790i \(-0.775693\pi\)
−0.761819 + 0.647790i \(0.775693\pi\)
\(398\) −1.03948e77 −2.09057
\(399\) −3.28140e75 −0.0612857
\(400\) −9.60469e74 −0.0166615
\(401\) −3.74569e76 −0.603633 −0.301816 0.953366i \(-0.597593\pi\)
−0.301816 + 0.953366i \(0.597593\pi\)
\(402\) −7.56611e76 −1.13293
\(403\) 1.42770e75 0.0198673
\(404\) 2.06322e77 2.66867
\(405\) −4.81662e76 −0.579188
\(406\) −1.59112e76 −0.177904
\(407\) −5.73208e76 −0.596042
\(408\) −3.18577e77 −3.08134
\(409\) −1.57475e77 −1.41701 −0.708507 0.705703i \(-0.750631\pi\)
−0.708507 + 0.705703i \(0.750631\pi\)
\(410\) 3.22019e77 2.69624
\(411\) 2.51746e77 1.96168
\(412\) 1.04986e77 0.761488
\(413\) 6.55163e76 0.442408
\(414\) −8.18572e76 −0.514691
\(415\) −1.74020e77 −1.01902
\(416\) −2.49941e76 −0.136328
\(417\) −1.05992e77 −0.538591
\(418\) −6.01723e76 −0.284902
\(419\) 1.83449e77 0.809474 0.404737 0.914433i \(-0.367363\pi\)
0.404737 + 0.914433i \(0.367363\pi\)
\(420\) −2.18586e77 −0.899017
\(421\) −3.33082e77 −1.27711 −0.638557 0.769574i \(-0.720468\pi\)
−0.638557 + 0.769574i \(0.720468\pi\)
\(422\) 5.73716e77 2.05107
\(423\) 8.75006e77 2.91723
\(424\) 3.83959e77 1.19397
\(425\) 2.72663e76 0.0790957
\(426\) −1.25009e78 −3.38344
\(427\) 1.41822e77 0.358196
\(428\) −1.20738e78 −2.84613
\(429\) 2.13075e77 0.468860
\(430\) 2.68545e77 0.551694
\(431\) −7.84833e77 −1.50556 −0.752780 0.658272i \(-0.771288\pi\)
−0.752780 + 0.658272i \(0.771288\pi\)
\(432\) 2.50563e77 0.448897
\(433\) −6.03006e77 −1.00909 −0.504543 0.863386i \(-0.668339\pi\)
−0.504543 + 0.863386i \(0.668339\pi\)
\(434\) 3.51988e76 0.0550276
\(435\) 3.86446e77 0.564490
\(436\) 2.40718e78 3.28592
\(437\) 1.51815e76 0.0193692
\(438\) 1.87670e78 2.23825
\(439\) 4.29376e77 0.478779 0.239389 0.970924i \(-0.423053\pi\)
0.239389 + 0.970924i \(0.423053\pi\)
\(440\) −1.71615e78 −1.78937
\(441\) −1.71962e78 −1.67685
\(442\) −4.99395e77 −0.455499
\(443\) 1.51168e78 1.28988 0.644942 0.764231i \(-0.276881\pi\)
0.644942 + 0.764231i \(0.276881\pi\)
\(444\) −1.48941e78 −1.18909
\(445\) 1.97596e77 0.147624
\(446\) −1.41274e78 −0.987832
\(447\) 1.88899e78 1.23640
\(448\) −7.73993e77 −0.474281
\(449\) 9.96470e77 0.571738 0.285869 0.958269i \(-0.407718\pi\)
0.285869 + 0.958269i \(0.407718\pi\)
\(450\) −3.08923e77 −0.165990
\(451\) −4.92349e78 −2.47779
\(452\) −1.76075e78 −0.830068
\(453\) 3.79046e78 1.67415
\(454\) 4.69017e78 1.94107
\(455\) −1.46706e77 −0.0568999
\(456\) −6.69413e77 −0.243350
\(457\) −4.29393e77 −0.146328 −0.0731640 0.997320i \(-0.523310\pi\)
−0.0731640 + 0.997320i \(0.523310\pi\)
\(458\) 3.65833e78 1.16883
\(459\) −7.11313e78 −2.13102
\(460\) 1.01129e78 0.284131
\(461\) 3.37402e78 0.889141 0.444570 0.895744i \(-0.353356\pi\)
0.444570 + 0.895744i \(0.353356\pi\)
\(462\) 5.25320e78 1.29863
\(463\) −5.49470e78 −1.27440 −0.637199 0.770700i \(-0.719907\pi\)
−0.637199 + 0.770700i \(0.719907\pi\)
\(464\) −4.87807e77 −0.106162
\(465\) −8.54895e77 −0.174603
\(466\) 3.18393e78 0.610349
\(467\) −1.25571e78 −0.225965 −0.112982 0.993597i \(-0.536040\pi\)
−0.112982 + 0.993597i \(0.536040\pi\)
\(468\) 3.59962e78 0.608141
\(469\) −7.96487e77 −0.126351
\(470\) −1.69918e79 −2.53136
\(471\) 9.89959e78 1.38516
\(472\) 1.33655e79 1.75669
\(473\) −4.10590e78 −0.506997
\(474\) −1.71148e79 −1.98568
\(475\) 5.72937e76 0.00624662
\(476\) −7.83292e78 −0.802636
\(477\) 1.85593e79 1.78760
\(478\) −3.55558e79 −3.21949
\(479\) 1.64131e79 1.39731 0.698654 0.715460i \(-0.253783\pi\)
0.698654 + 0.715460i \(0.253783\pi\)
\(480\) 1.49663e79 1.19811
\(481\) −9.99631e77 −0.0752592
\(482\) 9.51866e78 0.674044
\(483\) −1.32538e78 −0.0882877
\(484\) 3.33810e79 2.09200
\(485\) 3.88653e78 0.229182
\(486\) −1.32861e79 −0.737271
\(487\) −1.57188e79 −0.820947 −0.410473 0.911873i \(-0.634637\pi\)
−0.410473 + 0.911873i \(0.634637\pi\)
\(488\) 2.89319e79 1.42230
\(489\) −1.63543e79 −0.756869
\(490\) 3.33935e79 1.45505
\(491\) 9.03820e78 0.370833 0.185416 0.982660i \(-0.440637\pi\)
0.185416 + 0.982660i \(0.440637\pi\)
\(492\) −1.27931e80 −4.94315
\(493\) 1.38481e79 0.503972
\(494\) −1.04936e78 −0.0359732
\(495\) −8.29529e79 −2.67903
\(496\) 1.07912e78 0.0328369
\(497\) −1.31598e79 −0.377341
\(498\) 1.08669e80 2.93655
\(499\) 4.86147e79 1.23823 0.619115 0.785300i \(-0.287491\pi\)
0.619115 + 0.785300i \(0.287491\pi\)
\(500\) 7.46614e79 1.79259
\(501\) 8.80539e79 1.99313
\(502\) −7.07441e79 −1.50984
\(503\) −5.22741e79 −1.05204 −0.526018 0.850473i \(-0.676316\pi\)
−0.526018 + 0.850473i \(0.676316\pi\)
\(504\) 3.79965e79 0.721179
\(505\) −8.29178e79 −1.48440
\(506\) −2.43040e79 −0.410428
\(507\) −1.02405e80 −1.63150
\(508\) −1.14101e80 −1.71518
\(509\) 1.28179e80 1.81821 0.909104 0.416569i \(-0.136767\pi\)
0.909104 + 0.416569i \(0.136767\pi\)
\(510\) 2.99033e80 4.00313
\(511\) 1.97561e79 0.249623
\(512\) −5.10799e79 −0.609237
\(513\) −1.49465e79 −0.168298
\(514\) −1.97729e80 −2.10212
\(515\) −4.21923e79 −0.423565
\(516\) −1.06687e80 −1.01145
\(517\) 2.59796e80 2.32627
\(518\) −2.46451e79 −0.208450
\(519\) −1.11645e80 −0.892078
\(520\) −2.99283e79 −0.225935
\(521\) 7.71085e79 0.550034 0.275017 0.961439i \(-0.411317\pi\)
0.275017 + 0.961439i \(0.411317\pi\)
\(522\) −1.56897e80 −1.05763
\(523\) −1.72723e80 −1.10040 −0.550201 0.835032i \(-0.685449\pi\)
−0.550201 + 0.835032i \(0.685449\pi\)
\(524\) 1.47999e80 0.891224
\(525\) −5.00189e78 −0.0284731
\(526\) 3.71279e80 1.99811
\(527\) −3.06348e79 −0.155884
\(528\) 1.61053e80 0.774938
\(529\) −2.13625e80 −0.972097
\(530\) −3.60405e80 −1.55115
\(531\) 6.46042e80 2.63010
\(532\) −1.64590e79 −0.0633885
\(533\) −8.58619e79 −0.312858
\(534\) −1.23391e80 −0.425417
\(535\) 4.85230e80 1.58311
\(536\) −1.62485e80 −0.501709
\(537\) −2.83985e80 −0.829954
\(538\) 6.60399e80 1.82696
\(539\) −5.10568e80 −1.33716
\(540\) −9.95641e80 −2.46881
\(541\) −7.96457e79 −0.187001 −0.0935003 0.995619i \(-0.529806\pi\)
−0.0935003 + 0.995619i \(0.529806\pi\)
\(542\) −2.96155e80 −0.658477
\(543\) −5.64241e79 −0.118814
\(544\) 5.36309e80 1.06967
\(545\) −9.67410e80 −1.82774
\(546\) 9.16118e79 0.163972
\(547\) 2.46062e80 0.417271 0.208635 0.977993i \(-0.433098\pi\)
0.208635 + 0.977993i \(0.433098\pi\)
\(548\) 1.26272e81 2.02899
\(549\) 1.39847e81 2.12946
\(550\) −9.17214e79 −0.132364
\(551\) 2.90985e79 0.0398014
\(552\) −2.70380e80 −0.350568
\(553\) −1.80168e80 −0.221455
\(554\) −3.39344e80 −0.395460
\(555\) 5.98571e80 0.661413
\(556\) −5.31638e80 −0.557070
\(557\) 5.11029e80 0.507828 0.253914 0.967227i \(-0.418282\pi\)
0.253914 + 0.967227i \(0.418282\pi\)
\(558\) 3.47087e80 0.327137
\(559\) −7.16038e79 −0.0640159
\(560\) −1.10888e80 −0.0940450
\(561\) −4.57205e81 −3.67880
\(562\) −3.43044e81 −2.61896
\(563\) 5.95243e80 0.431218 0.215609 0.976480i \(-0.430826\pi\)
0.215609 + 0.976480i \(0.430826\pi\)
\(564\) 6.75045e81 4.64087
\(565\) 7.07619e80 0.461711
\(566\) 1.18522e81 0.734033
\(567\) 3.16630e80 0.186145
\(568\) −2.68462e81 −1.49833
\(569\) −1.31747e81 −0.698120 −0.349060 0.937100i \(-0.613499\pi\)
−0.349060 + 0.937100i \(0.613499\pi\)
\(570\) 6.28347e80 0.316149
\(571\) −4.52346e80 −0.216125 −0.108063 0.994144i \(-0.534465\pi\)
−0.108063 + 0.994144i \(0.534465\pi\)
\(572\) 1.06875e81 0.484947
\(573\) 7.99825e80 0.344694
\(574\) −2.11685e81 −0.866543
\(575\) 2.31413e79 0.00899883
\(576\) −7.63217e81 −2.81958
\(577\) 4.44759e81 1.56113 0.780563 0.625077i \(-0.214932\pi\)
0.780563 + 0.625077i \(0.214932\pi\)
\(578\) 5.74482e81 1.91604
\(579\) 1.00992e81 0.320089
\(580\) 1.93835e81 0.583858
\(581\) 1.14396e81 0.327502
\(582\) −2.42698e81 −0.660446
\(583\) 5.51039e81 1.42548
\(584\) 4.03028e81 0.991189
\(585\) −1.44663e81 −0.338268
\(586\) −4.30446e81 −0.957060
\(587\) −8.24445e80 −0.174316 −0.0871581 0.996194i \(-0.527779\pi\)
−0.0871581 + 0.996194i \(0.527779\pi\)
\(588\) −1.32664e82 −2.66762
\(589\) −6.43716e79 −0.0123110
\(590\) −1.25456e82 −2.28221
\(591\) −2.20218e80 −0.0381085
\(592\) −7.55569e80 −0.124390
\(593\) −1.00937e81 −0.158103 −0.0790513 0.996871i \(-0.525189\pi\)
−0.0790513 + 0.996871i \(0.525189\pi\)
\(594\) 2.39279e82 3.56619
\(595\) 3.14794e81 0.446453
\(596\) 9.47490e81 1.27882
\(597\) −1.65962e82 −2.13190
\(598\) −4.23843e80 −0.0518227
\(599\) 9.57967e81 1.11496 0.557480 0.830190i \(-0.311768\pi\)
0.557480 + 0.830190i \(0.311768\pi\)
\(600\) −1.02040e81 −0.113059
\(601\) −3.89987e81 −0.411390 −0.205695 0.978616i \(-0.565945\pi\)
−0.205695 + 0.978616i \(0.565945\pi\)
\(602\) −1.76533e81 −0.177309
\(603\) −7.85398e81 −0.751154
\(604\) 1.90123e82 1.73159
\(605\) −1.34153e82 −1.16364
\(606\) 5.17787e82 4.27769
\(607\) −1.83298e82 −1.44242 −0.721208 0.692718i \(-0.756413\pi\)
−0.721208 + 0.692718i \(0.756413\pi\)
\(608\) 1.12693e81 0.0844773
\(609\) −2.54038e81 −0.181421
\(610\) −2.71571e82 −1.84779
\(611\) 4.53064e81 0.293727
\(612\) −7.72386e82 −4.77164
\(613\) 2.18098e82 1.28401 0.642003 0.766702i \(-0.278104\pi\)
0.642003 + 0.766702i \(0.278104\pi\)
\(614\) −3.18747e82 −1.78846
\(615\) 5.14134e82 2.74954
\(616\) 1.12814e82 0.575087
\(617\) 7.94496e81 0.386082 0.193041 0.981191i \(-0.438165\pi\)
0.193041 + 0.981191i \(0.438165\pi\)
\(618\) 2.63473e82 1.22061
\(619\) −1.42782e82 −0.630666 −0.315333 0.948981i \(-0.602116\pi\)
−0.315333 + 0.948981i \(0.602116\pi\)
\(620\) −4.28802e81 −0.180593
\(621\) −6.03701e81 −0.242449
\(622\) 3.70349e82 1.41839
\(623\) −1.29894e81 −0.0474450
\(624\) 2.80864e81 0.0978476
\(625\) −2.83842e82 −0.943226
\(626\) −7.67698e81 −0.243359
\(627\) −9.60707e81 −0.290535
\(628\) 4.96548e82 1.43269
\(629\) 2.14495e82 0.590505
\(630\) −3.56656e82 −0.936922
\(631\) −6.26495e82 −1.57055 −0.785274 0.619148i \(-0.787478\pi\)
−0.785274 + 0.619148i \(0.787478\pi\)
\(632\) −3.67546e82 −0.879342
\(633\) 9.15992e82 2.09162
\(634\) −5.89351e82 −1.28452
\(635\) 4.58556e82 0.954041
\(636\) 1.43180e83 2.84380
\(637\) −8.90391e81 −0.168837
\(638\) −4.65838e82 −0.843384
\(639\) −1.29765e83 −2.24328
\(640\) 1.05282e83 1.73798
\(641\) 7.02735e82 1.10785 0.553923 0.832568i \(-0.313130\pi\)
0.553923 + 0.832568i \(0.313130\pi\)
\(642\) −3.03006e83 −4.56213
\(643\) −9.72512e81 −0.139853 −0.0699264 0.997552i \(-0.522276\pi\)
−0.0699264 + 0.997552i \(0.522276\pi\)
\(644\) −6.64790e81 −0.0913170
\(645\) 4.28758e82 0.562601
\(646\) 2.25165e82 0.282255
\(647\) −9.49018e82 −1.13658 −0.568288 0.822830i \(-0.692394\pi\)
−0.568288 + 0.822830i \(0.692394\pi\)
\(648\) 6.45932e82 0.739135
\(649\) 1.91814e83 2.09731
\(650\) −1.59955e81 −0.0167130
\(651\) 5.61982e81 0.0561155
\(652\) −8.20306e82 −0.782838
\(653\) −1.74041e83 −1.58749 −0.793746 0.608249i \(-0.791872\pi\)
−0.793746 + 0.608249i \(0.791872\pi\)
\(654\) 6.04107e83 5.26708
\(655\) −5.94788e82 −0.495728
\(656\) −6.48986e82 −0.517097
\(657\) 1.94810e83 1.48400
\(658\) 1.11699e83 0.813553
\(659\) 2.27995e82 0.158784 0.0793918 0.996843i \(-0.474702\pi\)
0.0793918 + 0.996843i \(0.474702\pi\)
\(660\) −6.39960e83 −4.26194
\(661\) −2.21921e83 −1.41337 −0.706685 0.707528i \(-0.749810\pi\)
−0.706685 + 0.707528i \(0.749810\pi\)
\(662\) −1.49065e83 −0.907954
\(663\) −7.97331e82 −0.464504
\(664\) 2.33369e83 1.30043
\(665\) 6.61463e81 0.0352588
\(666\) −2.43019e83 −1.23923
\(667\) 1.17531e82 0.0573377
\(668\) 4.41665e83 2.06152
\(669\) −2.25557e83 −1.00736
\(670\) 1.52517e83 0.651797
\(671\) 4.15216e83 1.69809
\(672\) −9.83836e82 −0.385061
\(673\) −3.98624e83 −1.49320 −0.746602 0.665271i \(-0.768316\pi\)
−0.746602 + 0.665271i \(0.768316\pi\)
\(674\) 5.58326e83 2.00180
\(675\) −2.27832e82 −0.0781905
\(676\) −5.13649e83 −1.68748
\(677\) 2.34092e83 0.736242 0.368121 0.929778i \(-0.380001\pi\)
0.368121 + 0.929778i \(0.380001\pi\)
\(678\) −4.41879e83 −1.33054
\(679\) −2.55488e82 −0.0736568
\(680\) 6.42185e83 1.77275
\(681\) 7.48831e83 1.97945
\(682\) 1.03053e83 0.260867
\(683\) −4.81642e83 −1.16765 −0.583827 0.811878i \(-0.698445\pi\)
−0.583827 + 0.811878i \(0.698445\pi\)
\(684\) −1.62298e83 −0.376842
\(685\) −5.07469e83 −1.12859
\(686\) −4.62814e83 −0.985927
\(687\) 5.84087e83 1.19194
\(688\) −5.41216e82 −0.105806
\(689\) 9.60970e82 0.179988
\(690\) 2.53794e83 0.455442
\(691\) −8.07164e83 −1.38790 −0.693952 0.720021i \(-0.744132\pi\)
−0.693952 + 0.720021i \(0.744132\pi\)
\(692\) −5.59994e83 −0.922686
\(693\) 5.45307e83 0.861014
\(694\) −4.15552e83 −0.628813
\(695\) 2.13658e83 0.309861
\(696\) −5.18242e83 −0.720378
\(697\) 1.84238e84 2.45477
\(698\) −3.23809e83 −0.413575
\(699\) 5.08344e83 0.622416
\(700\) −2.50887e82 −0.0294500
\(701\) −8.56706e83 −0.964163 −0.482082 0.876126i \(-0.660119\pi\)
−0.482082 + 0.876126i \(0.660119\pi\)
\(702\) 4.17285e83 0.450285
\(703\) 4.50710e82 0.0466354
\(704\) −2.26604e84 −2.24841
\(705\) −2.71291e84 −2.58141
\(706\) 7.37870e83 0.673351
\(707\) 5.45076e83 0.477073
\(708\) 4.98405e84 4.18409
\(709\) 2.41227e84 1.94250 0.971252 0.238055i \(-0.0765100\pi\)
0.971252 + 0.238055i \(0.0765100\pi\)
\(710\) 2.51993e84 1.94655
\(711\) −1.77659e84 −1.31654
\(712\) −2.64986e83 −0.188392
\(713\) −2.60001e82 −0.0177351
\(714\) −1.96575e84 −1.28657
\(715\) −4.29516e83 −0.269744
\(716\) −1.42442e84 −0.858430
\(717\) −5.67681e84 −3.28314
\(718\) 8.59119e83 0.476850
\(719\) 1.36154e84 0.725315 0.362658 0.931922i \(-0.381869\pi\)
0.362658 + 0.931922i \(0.381869\pi\)
\(720\) −1.09344e84 −0.559094
\(721\) 2.77359e83 0.136129
\(722\) −3.47163e84 −1.63563
\(723\) 1.51974e84 0.687370
\(724\) −2.83014e83 −0.122891
\(725\) 4.43553e82 0.0184916
\(726\) 8.37732e84 3.35332
\(727\) 6.66201e83 0.256059 0.128030 0.991770i \(-0.459135\pi\)
0.128030 + 0.991770i \(0.459135\pi\)
\(728\) 1.96740e83 0.0726133
\(729\) −3.80124e84 −1.34730
\(730\) −3.78304e84 −1.28771
\(731\) 1.53643e84 0.502286
\(732\) 1.07889e85 3.38765
\(733\) 5.58371e84 1.68405 0.842026 0.539437i \(-0.181363\pi\)
0.842026 + 0.539437i \(0.181363\pi\)
\(734\) −7.49986e84 −2.17280
\(735\) 5.33159e84 1.48382
\(736\) 4.55173e83 0.121697
\(737\) −2.33190e84 −0.598990
\(738\) −2.08738e85 −5.15156
\(739\) 1.57406e84 0.373258 0.186629 0.982430i \(-0.440244\pi\)
0.186629 + 0.982430i \(0.440244\pi\)
\(740\) 3.00234e84 0.684106
\(741\) −1.67540e83 −0.0366844
\(742\) 2.36919e84 0.498523
\(743\) 1.90142e84 0.384510 0.192255 0.981345i \(-0.438420\pi\)
0.192255 + 0.981345i \(0.438420\pi\)
\(744\) 1.14645e84 0.222820
\(745\) −3.80782e84 −0.711323
\(746\) 8.59387e84 1.54310
\(747\) 1.12803e85 1.94699
\(748\) −2.29327e85 −3.80503
\(749\) −3.18975e84 −0.508796
\(750\) 1.87371e85 2.87339
\(751\) −7.50454e84 −1.10649 −0.553243 0.833020i \(-0.686610\pi\)
−0.553243 + 0.833020i \(0.686610\pi\)
\(752\) 3.42447e84 0.485476
\(753\) −1.12950e85 −1.53969
\(754\) −8.12387e83 −0.106490
\(755\) −7.64078e84 −0.963169
\(756\) 6.54504e84 0.793450
\(757\) 2.08215e84 0.242764 0.121382 0.992606i \(-0.461267\pi\)
0.121382 + 0.992606i \(0.461267\pi\)
\(758\) 1.83356e85 2.05615
\(759\) −3.88036e84 −0.418543
\(760\) 1.34940e84 0.140004
\(761\) 1.47227e84 0.146940 0.0734702 0.997297i \(-0.476593\pi\)
0.0734702 + 0.997297i \(0.476593\pi\)
\(762\) −2.86349e85 −2.74931
\(763\) 6.35945e84 0.587416
\(764\) 4.01180e84 0.356521
\(765\) 3.10411e85 2.65414
\(766\) 2.63929e85 2.17139
\(767\) 3.34510e84 0.264817
\(768\) −3.20736e85 −2.44338
\(769\) −1.22435e84 −0.0897589 −0.0448794 0.998992i \(-0.514290\pi\)
−0.0448794 + 0.998992i \(0.514290\pi\)
\(770\) −1.05894e85 −0.747126
\(771\) −3.15693e85 −2.14368
\(772\) 5.06562e84 0.331072
\(773\) 1.68623e85 1.06077 0.530385 0.847757i \(-0.322047\pi\)
0.530385 + 0.847757i \(0.322047\pi\)
\(774\) −1.74076e85 −1.05409
\(775\) −9.81226e82 −0.00571964
\(776\) −5.21202e84 −0.292472
\(777\) −3.93482e84 −0.212571
\(778\) 3.58681e85 1.86556
\(779\) 3.87131e84 0.193867
\(780\) −1.11604e85 −0.538133
\(781\) −3.85282e85 −1.78885
\(782\) 9.09458e84 0.406615
\(783\) −1.15712e85 −0.498204
\(784\) −6.73000e84 −0.279056
\(785\) −1.99555e85 −0.796908
\(786\) 3.71420e85 1.42857
\(787\) 1.38493e85 0.513066 0.256533 0.966535i \(-0.417420\pi\)
0.256533 + 0.966535i \(0.417420\pi\)
\(788\) −1.10458e84 −0.0394160
\(789\) 5.92781e85 2.03762
\(790\) 3.44999e85 1.14240
\(791\) −4.65167e84 −0.148389
\(792\) 1.11244e86 3.41887
\(793\) 7.24105e84 0.214409
\(794\) −8.85423e85 −2.52607
\(795\) −5.75421e85 −1.58181
\(796\) −8.32441e85 −2.20505
\(797\) 5.79219e85 1.47850 0.739251 0.673430i \(-0.235180\pi\)
0.739251 + 0.673430i \(0.235180\pi\)
\(798\) −4.13056e84 −0.101607
\(799\) −9.72158e85 −2.30466
\(800\) 1.71779e84 0.0392478
\(801\) −1.28085e85 −0.282059
\(802\) −4.71500e85 −1.00078
\(803\) 5.78406e85 1.18338
\(804\) −6.05914e85 −1.19497
\(805\) 2.67169e84 0.0507935
\(806\) 1.79716e84 0.0329384
\(807\) 1.05439e86 1.86308
\(808\) 1.11197e86 1.89433
\(809\) 6.11552e85 1.00451 0.502253 0.864721i \(-0.332505\pi\)
0.502253 + 0.864721i \(0.332505\pi\)
\(810\) −6.06307e85 −0.960250
\(811\) 5.35716e85 0.818125 0.409062 0.912506i \(-0.365856\pi\)
0.409062 + 0.912506i \(0.365856\pi\)
\(812\) −1.27421e85 −0.187646
\(813\) −4.72840e85 −0.671496
\(814\) −7.21542e85 −0.988193
\(815\) 3.29669e85 0.435440
\(816\) −6.02661e85 −0.767739
\(817\) 3.22845e84 0.0396683
\(818\) −1.98226e86 −2.34930
\(819\) 9.50973e84 0.108716
\(820\) 2.57882e86 2.84388
\(821\) −1.37690e86 −1.46480 −0.732399 0.680876i \(-0.761599\pi\)
−0.732399 + 0.680876i \(0.761599\pi\)
\(822\) 3.16893e86 3.25232
\(823\) −1.30297e86 −1.29015 −0.645076 0.764119i \(-0.723174\pi\)
−0.645076 + 0.764119i \(0.723174\pi\)
\(824\) 5.65818e85 0.540535
\(825\) −1.46442e85 −0.134981
\(826\) 8.24706e85 0.733479
\(827\) −4.49004e85 −0.385335 −0.192667 0.981264i \(-0.561714\pi\)
−0.192667 + 0.981264i \(0.561714\pi\)
\(828\) −6.55534e85 −0.542876
\(829\) 5.72698e85 0.457686 0.228843 0.973463i \(-0.426506\pi\)
0.228843 + 0.973463i \(0.426506\pi\)
\(830\) −2.19053e86 −1.68945
\(831\) −5.41795e85 −0.403278
\(832\) −3.95181e85 −0.283895
\(833\) 1.91055e86 1.32474
\(834\) −1.33420e86 −0.892942
\(835\) −1.77499e86 −1.14668
\(836\) −4.81876e85 −0.300504
\(837\) 2.55978e85 0.154100
\(838\) 2.30922e86 1.34205
\(839\) 2.09389e86 1.17483 0.587415 0.809286i \(-0.300146\pi\)
0.587415 + 0.809286i \(0.300146\pi\)
\(840\) −1.17806e86 −0.638159
\(841\) −1.68670e86 −0.882178
\(842\) −4.19277e86 −2.11736
\(843\) −5.47702e86 −2.67074
\(844\) 4.59447e86 2.16338
\(845\) 2.06428e86 0.938632
\(846\) 1.10144e87 4.83654
\(847\) 8.81884e85 0.373982
\(848\) 7.26347e85 0.297486
\(849\) 1.89232e86 0.748545
\(850\) 3.43223e85 0.131135
\(851\) 1.82045e85 0.0671825
\(852\) −1.00111e87 −3.56872
\(853\) −1.65015e86 −0.568232 −0.284116 0.958790i \(-0.591700\pi\)
−0.284116 + 0.958790i \(0.591700\pi\)
\(854\) 1.78522e86 0.593862
\(855\) 6.52254e85 0.209612
\(856\) −6.50716e86 −2.02030
\(857\) 1.41058e86 0.423121 0.211560 0.977365i \(-0.432145\pi\)
0.211560 + 0.977365i \(0.432145\pi\)
\(858\) 2.68215e86 0.777334
\(859\) 2.96519e86 0.830337 0.415169 0.909744i \(-0.363723\pi\)
0.415169 + 0.909744i \(0.363723\pi\)
\(860\) 2.15058e86 0.581905
\(861\) −3.37976e86 −0.883675
\(862\) −9.87932e86 −2.49610
\(863\) 4.87041e86 1.18918 0.594590 0.804029i \(-0.297315\pi\)
0.594590 + 0.804029i \(0.297315\pi\)
\(864\) −4.48130e86 −1.05742
\(865\) 2.25054e86 0.513228
\(866\) −7.59051e86 −1.67299
\(867\) 9.17214e86 1.95392
\(868\) 2.81881e85 0.0580409
\(869\) −5.27483e86 −1.04985
\(870\) 4.86450e86 0.935881
\(871\) −4.06666e85 −0.0756314
\(872\) 1.29734e87 2.33248
\(873\) −2.51931e86 −0.437887
\(874\) 1.91101e85 0.0321126
\(875\) 1.97246e86 0.320457
\(876\) 1.50291e87 2.36082
\(877\) −1.13902e87 −1.72998 −0.864992 0.501786i \(-0.832677\pi\)
−0.864992 + 0.501786i \(0.832677\pi\)
\(878\) 5.40490e86 0.793779
\(879\) −6.87248e86 −0.975981
\(880\) −3.24649e86 −0.445836
\(881\) 1.02118e87 1.35617 0.678084 0.734985i \(-0.262811\pi\)
0.678084 + 0.734985i \(0.262811\pi\)
\(882\) −2.16462e87 −2.78009
\(883\) 6.55825e86 0.814605 0.407302 0.913293i \(-0.366470\pi\)
0.407302 + 0.913293i \(0.366470\pi\)
\(884\) −3.99929e86 −0.480442
\(885\) −2.00302e87 −2.32733
\(886\) 1.90287e87 2.13853
\(887\) 3.31163e86 0.359994 0.179997 0.983667i \(-0.442391\pi\)
0.179997 + 0.983667i \(0.442391\pi\)
\(888\) −8.02711e86 −0.844067
\(889\) −3.01440e86 −0.306619
\(890\) 2.48730e86 0.244750
\(891\) 9.27008e86 0.882452
\(892\) −1.13136e87 −1.04193
\(893\) −2.04276e86 −0.182012
\(894\) 2.37783e87 2.04986
\(895\) 5.72455e86 0.477487
\(896\) −6.92092e86 −0.558570
\(897\) −6.76705e85 −0.0528473
\(898\) 1.25434e87 0.947898
\(899\) −4.98349e85 −0.0364437
\(900\) −2.47394e86 −0.175079
\(901\) −2.06199e87 −1.41223
\(902\) −6.19758e87 −4.10799
\(903\) −2.81852e86 −0.180814
\(904\) −9.48950e86 −0.589216
\(905\) 1.13739e86 0.0683561
\(906\) 4.77135e87 2.77562
\(907\) 2.14918e87 1.21020 0.605101 0.796149i \(-0.293133\pi\)
0.605101 + 0.796149i \(0.293133\pi\)
\(908\) 3.75602e87 2.04736
\(909\) 5.37487e87 2.83618
\(910\) −1.84670e86 −0.0943358
\(911\) −3.84694e87 −1.90249 −0.951247 0.308432i \(-0.900196\pi\)
−0.951247 + 0.308432i \(0.900196\pi\)
\(912\) −1.26635e86 −0.0606325
\(913\) 3.34920e87 1.55258
\(914\) −5.40511e86 −0.242601
\(915\) −4.33588e87 −1.88432
\(916\) 2.92969e87 1.23284
\(917\) 3.90995e86 0.159322
\(918\) −8.95386e87 −3.53306
\(919\) −2.17929e87 −0.832738 −0.416369 0.909196i \(-0.636698\pi\)
−0.416369 + 0.909196i \(0.636698\pi\)
\(920\) 5.45031e86 0.201688
\(921\) −5.08910e87 −1.82382
\(922\) 4.24715e87 1.47413
\(923\) −6.71903e86 −0.225869
\(924\) 4.20690e87 1.36974
\(925\) 6.87024e85 0.0216666
\(926\) −6.91661e87 −2.11285
\(927\) 2.73497e87 0.809284
\(928\) 8.72437e86 0.250074
\(929\) 7.27755e86 0.202079 0.101040 0.994882i \(-0.467783\pi\)
0.101040 + 0.994882i \(0.467783\pi\)
\(930\) −1.07612e87 −0.289478
\(931\) 4.01456e86 0.104622
\(932\) 2.54977e87 0.643772
\(933\) 5.91297e87 1.44643
\(934\) −1.58066e87 −0.374633
\(935\) 9.21631e87 2.11648
\(936\) 1.94000e87 0.431683
\(937\) −5.04758e87 −1.08834 −0.544171 0.838974i \(-0.683156\pi\)
−0.544171 + 0.838974i \(0.683156\pi\)
\(938\) −1.00260e87 −0.209481
\(939\) −1.22570e87 −0.248170
\(940\) −1.36075e88 −2.66998
\(941\) 5.36600e87 1.02037 0.510184 0.860065i \(-0.329577\pi\)
0.510184 + 0.860065i \(0.329577\pi\)
\(942\) 1.24614e88 2.29649
\(943\) 1.56365e87 0.279283
\(944\) 2.52838e87 0.437693
\(945\) −2.63036e87 −0.441343
\(946\) −5.16843e87 −0.840562
\(947\) −3.04783e87 −0.480471 −0.240235 0.970715i \(-0.577225\pi\)
−0.240235 + 0.970715i \(0.577225\pi\)
\(948\) −1.37060e88 −2.09442
\(949\) 1.00870e87 0.149419
\(950\) 7.21200e85 0.0103564
\(951\) −9.40954e87 −1.30991
\(952\) −4.22153e87 −0.569744
\(953\) 1.26501e88 1.65522 0.827608 0.561306i \(-0.189701\pi\)
0.827608 + 0.561306i \(0.189701\pi\)
\(954\) 2.33621e88 2.96370
\(955\) −1.61228e87 −0.198309
\(956\) −2.84740e88 −3.39579
\(957\) −7.43755e87 −0.860058
\(958\) 2.06604e88 2.31663
\(959\) 3.33594e87 0.362718
\(960\) 2.36631e88 2.49500
\(961\) −9.66978e87 −0.988728
\(962\) −1.25831e87 −0.124774
\(963\) −3.14534e88 −3.02477
\(964\) 7.62279e87 0.710954
\(965\) −2.03580e87 −0.184153
\(966\) −1.66836e87 −0.146374
\(967\) 1.77625e87 0.151155 0.0755776 0.997140i \(-0.475920\pi\)
0.0755776 + 0.997140i \(0.475920\pi\)
\(968\) 1.79906e88 1.48499
\(969\) 3.59498e87 0.287836
\(970\) 4.89228e87 0.379966
\(971\) 2.22991e88 1.68004 0.840021 0.542554i \(-0.182543\pi\)
0.840021 + 0.542554i \(0.182543\pi\)
\(972\) −1.06399e88 −0.777644
\(973\) −1.40452e87 −0.0995862
\(974\) −1.97865e88 −1.36107
\(975\) −2.55383e86 −0.0170434
\(976\) 5.47314e87 0.354378
\(977\) −1.69730e88 −1.06627 −0.533137 0.846029i \(-0.678987\pi\)
−0.533137 + 0.846029i \(0.678987\pi\)
\(978\) −2.05864e88 −1.25483
\(979\) −3.80294e87 −0.224921
\(980\) 2.67424e88 1.53473
\(981\) 6.27091e88 3.49217
\(982\) 1.13771e88 0.614812
\(983\) −1.49460e88 −0.783785 −0.391893 0.920011i \(-0.628179\pi\)
−0.391893 + 0.920011i \(0.628179\pi\)
\(984\) −6.89477e88 −3.50885
\(985\) 4.43914e86 0.0219245
\(986\) 1.74317e88 0.835548
\(987\) 1.78338e88 0.829638
\(988\) −8.40354e86 −0.0379431
\(989\) 1.30399e87 0.0571458
\(990\) −1.04419e89 −4.44163
\(991\) −1.20694e88 −0.498326 −0.249163 0.968462i \(-0.580156\pi\)
−0.249163 + 0.968462i \(0.580156\pi\)
\(992\) −1.93000e87 −0.0773506
\(993\) −2.37996e88 −0.925905
\(994\) −1.65652e88 −0.625603
\(995\) 3.34546e88 1.22652
\(996\) 8.70246e88 3.09736
\(997\) 2.24931e88 0.777216 0.388608 0.921403i \(-0.372956\pi\)
0.388608 + 0.921403i \(0.372956\pi\)
\(998\) 6.11952e88 2.05289
\(999\) −1.79228e88 −0.583746
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))