Properties

Label 1.60.a.a.1.4
Level 1
Weight 60
Character 1.1
Self dual Yes
Analytic conductor 22.046
Analytic rank 0
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 60 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(22.045800551\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{39}\cdot 3^{13}\cdot 5^{3}\cdot 7^{2} \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-3.26158e7\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q+6.92842e8 q^{2} -1.03284e14 q^{3} -9.64308e16 q^{4} +3.87033e20 q^{5} -7.15597e22 q^{6} -7.47157e23 q^{7} -4.66207e26 q^{8} -3.46273e27 q^{9} +O(q^{10})\) \(q+6.92842e8 q^{2} -1.03284e14 q^{3} -9.64308e16 q^{4} +3.87033e20 q^{5} -7.15597e22 q^{6} -7.47157e23 q^{7} -4.66207e26 q^{8} -3.46273e27 q^{9} +2.68153e29 q^{10} +4.64881e30 q^{11} +9.95979e30 q^{12} +1.02949e33 q^{13} -5.17661e32 q^{14} -3.99744e34 q^{15} -2.67420e35 q^{16} +2.49454e36 q^{17} -2.39912e36 q^{18} +3.24421e37 q^{19} -3.73219e37 q^{20} +7.71696e37 q^{21} +3.22089e39 q^{22} +2.77809e40 q^{23} +4.81519e40 q^{24} -2.36780e40 q^{25} +7.13271e41 q^{26} +1.81709e42 q^{27} +7.20489e40 q^{28} -1.27852e43 q^{29} -2.76960e43 q^{30} -1.14110e44 q^{31} +8.34708e43 q^{32} -4.80150e44 q^{33} +1.72832e45 q^{34} -2.89174e44 q^{35} +3.33914e44 q^{36} +2.85266e46 q^{37} +2.24773e46 q^{38} -1.06330e47 q^{39} -1.80438e47 q^{40} -2.41356e47 q^{41} +5.34663e46 q^{42} +1.26598e48 q^{43} -4.48289e47 q^{44} -1.34019e48 q^{45} +1.92478e49 q^{46} -1.54116e49 q^{47} +2.76203e49 q^{48} -7.20163e49 q^{49} -1.64051e49 q^{50} -2.57647e50 q^{51} -9.92742e49 q^{52} +3.50384e50 q^{53} +1.25896e51 q^{54} +1.79924e51 q^{55} +3.48330e50 q^{56} -3.35077e51 q^{57} -8.85809e51 q^{58} +3.68928e51 q^{59} +3.85477e51 q^{60} -9.17858e51 q^{61} -7.90602e52 q^{62} +2.58720e51 q^{63} +2.11989e53 q^{64} +3.98445e53 q^{65} -3.32668e53 q^{66} +4.08228e53 q^{67} -2.40550e53 q^{68} -2.86934e54 q^{69} -2.00352e53 q^{70} -3.75256e52 q^{71} +1.61435e54 q^{72} -2.19258e54 q^{73} +1.97644e55 q^{74} +2.44557e54 q^{75} -3.12842e54 q^{76} -3.47339e54 q^{77} -7.36697e55 q^{78} +1.38224e56 q^{79} -1.03500e56 q^{80} -1.38748e56 q^{81} -1.67221e56 q^{82} +1.05696e56 q^{83} -7.44152e54 q^{84} +9.65467e56 q^{85} +8.77123e56 q^{86} +1.32051e57 q^{87} -2.16731e57 q^{88} -3.89442e57 q^{89} -9.28540e56 q^{90} -7.69187e56 q^{91} -2.67894e57 q^{92} +1.17858e58 q^{93} -1.06778e58 q^{94} +1.25562e58 q^{95} -8.62123e57 q^{96} +7.21075e58 q^{97} -4.98959e58 q^{98} -1.60976e58 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5q - 449691864q^{2} + 84016631749932q^{3} + 1738819379139544640q^{4} + \)\(17\!\cdots\!90\)\(q^{5} + \)\(31\!\cdots\!60\)\(q^{6} + \)\(14\!\cdots\!56\)\(q^{7} - \)\(34\!\cdots\!80\)\(q^{8} + \)\(32\!\cdots\!85\)\(q^{9} + O(q^{10}) \) \( 5q - 449691864q^{2} + 84016631749932q^{3} + 1738819379139544640q^{4} + \)\(17\!\cdots\!90\)\(q^{5} + \)\(31\!\cdots\!60\)\(q^{6} + \)\(14\!\cdots\!56\)\(q^{7} - \)\(34\!\cdots\!80\)\(q^{8} + \)\(32\!\cdots\!85\)\(q^{9} - \)\(81\!\cdots\!60\)\(q^{10} + \)\(42\!\cdots\!60\)\(q^{11} - \)\(44\!\cdots\!44\)\(q^{12} - \)\(84\!\cdots\!78\)\(q^{13} + \)\(62\!\cdots\!80\)\(q^{14} - \)\(40\!\cdots\!20\)\(q^{15} + \)\(69\!\cdots\!80\)\(q^{16} - \)\(34\!\cdots\!54\)\(q^{17} + \)\(96\!\cdots\!52\)\(q^{18} + \)\(64\!\cdots\!00\)\(q^{19} + \)\(16\!\cdots\!20\)\(q^{20} + \)\(34\!\cdots\!60\)\(q^{21} + \)\(16\!\cdots\!12\)\(q^{22} + \)\(26\!\cdots\!12\)\(q^{23} + \)\(43\!\cdots\!00\)\(q^{24} + \)\(62\!\cdots\!75\)\(q^{25} + \)\(27\!\cdots\!60\)\(q^{26} + \)\(42\!\cdots\!80\)\(q^{27} - \)\(56\!\cdots\!52\)\(q^{28} - \)\(17\!\cdots\!50\)\(q^{29} - \)\(15\!\cdots\!20\)\(q^{30} - \)\(35\!\cdots\!40\)\(q^{31} - \)\(10\!\cdots\!84\)\(q^{32} + \)\(75\!\cdots\!44\)\(q^{33} + \)\(13\!\cdots\!80\)\(q^{34} + \)\(87\!\cdots\!40\)\(q^{35} + \)\(50\!\cdots\!80\)\(q^{36} + \)\(12\!\cdots\!26\)\(q^{37} - \)\(45\!\cdots\!20\)\(q^{38} - \)\(92\!\cdots\!80\)\(q^{39} - \)\(62\!\cdots\!00\)\(q^{40} - \)\(12\!\cdots\!90\)\(q^{41} - \)\(18\!\cdots\!88\)\(q^{42} + \)\(13\!\cdots\!92\)\(q^{43} + \)\(10\!\cdots\!80\)\(q^{44} + \)\(10\!\cdots\!30\)\(q^{45} + \)\(35\!\cdots\!60\)\(q^{46} + \)\(58\!\cdots\!16\)\(q^{47} - \)\(14\!\cdots\!88\)\(q^{48} - \)\(17\!\cdots\!35\)\(q^{49} - \)\(23\!\cdots\!00\)\(q^{50} - \)\(46\!\cdots\!40\)\(q^{51} - \)\(99\!\cdots\!24\)\(q^{52} + \)\(22\!\cdots\!82\)\(q^{53} + \)\(42\!\cdots\!00\)\(q^{54} + \)\(90\!\cdots\!80\)\(q^{55} + \)\(13\!\cdots\!00\)\(q^{56} - \)\(14\!\cdots\!40\)\(q^{57} - \)\(19\!\cdots\!80\)\(q^{58} - \)\(21\!\cdots\!00\)\(q^{59} - \)\(15\!\cdots\!60\)\(q^{60} - \)\(55\!\cdots\!90\)\(q^{61} + \)\(18\!\cdots\!92\)\(q^{62} + \)\(18\!\cdots\!92\)\(q^{63} + \)\(44\!\cdots\!40\)\(q^{64} + \)\(10\!\cdots\!80\)\(q^{65} + \)\(18\!\cdots\!20\)\(q^{66} + \)\(25\!\cdots\!96\)\(q^{67} - \)\(58\!\cdots\!32\)\(q^{68} - \)\(11\!\cdots\!80\)\(q^{69} - \)\(57\!\cdots\!60\)\(q^{70} - \)\(63\!\cdots\!40\)\(q^{71} + \)\(50\!\cdots\!40\)\(q^{72} + \)\(12\!\cdots\!62\)\(q^{73} + \)\(30\!\cdots\!80\)\(q^{74} + \)\(71\!\cdots\!00\)\(q^{75} + \)\(44\!\cdots\!00\)\(q^{76} + \)\(17\!\cdots\!52\)\(q^{77} - \)\(20\!\cdots\!56\)\(q^{78} - \)\(19\!\cdots\!00\)\(q^{79} - \)\(20\!\cdots\!60\)\(q^{80} - \)\(27\!\cdots\!95\)\(q^{81} - \)\(90\!\cdots\!68\)\(q^{82} + \)\(13\!\cdots\!52\)\(q^{83} + \)\(17\!\cdots\!80\)\(q^{84} + \)\(24\!\cdots\!40\)\(q^{85} - \)\(14\!\cdots\!40\)\(q^{86} + \)\(27\!\cdots\!40\)\(q^{87} - \)\(76\!\cdots\!60\)\(q^{88} + \)\(41\!\cdots\!50\)\(q^{89} - \)\(27\!\cdots\!20\)\(q^{90} + \)\(20\!\cdots\!60\)\(q^{91} - \)\(40\!\cdots\!04\)\(q^{92} + \)\(35\!\cdots\!04\)\(q^{93} - \)\(11\!\cdots\!20\)\(q^{94} + \)\(87\!\cdots\!00\)\(q^{95} + \)\(35\!\cdots\!60\)\(q^{96} + \)\(11\!\cdots\!66\)\(q^{97} - \)\(10\!\cdots\!52\)\(q^{98} + \)\(23\!\cdots\!20\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.92842e8 0.912535 0.456267 0.889843i \(-0.349186\pi\)
0.456267 + 0.889843i \(0.349186\pi\)
\(3\) −1.03284e14 −0.868875 −0.434438 0.900702i \(-0.643053\pi\)
−0.434438 + 0.900702i \(0.643053\pi\)
\(4\) −9.64308e16 −0.167281
\(5\) 3.87033e20 0.929250 0.464625 0.885508i \(-0.346189\pi\)
0.464625 + 0.885508i \(0.346189\pi\)
\(6\) −7.15597e22 −0.792879
\(7\) −7.47157e23 −0.0877040 −0.0438520 0.999038i \(-0.513963\pi\)
−0.0438520 + 0.999038i \(0.513963\pi\)
\(8\) −4.66207e26 −1.06518
\(9\) −3.46273e27 −0.245056
\(10\) 2.68153e29 0.847973
\(11\) 4.64881e30 0.883604 0.441802 0.897113i \(-0.354339\pi\)
0.441802 + 0.897113i \(0.354339\pi\)
\(12\) 9.95979e30 0.145346
\(13\) 1.02949e33 1.41674 0.708372 0.705839i \(-0.249430\pi\)
0.708372 + 0.705839i \(0.249430\pi\)
\(14\) −5.17661e32 −0.0800329
\(15\) −3.99744e34 −0.807402
\(16\) −2.67420e35 −0.804736
\(17\) 2.49454e36 1.25530 0.627649 0.778497i \(-0.284017\pi\)
0.627649 + 0.778497i \(0.284017\pi\)
\(18\) −2.39912e36 −0.223622
\(19\) 3.24421e37 0.613590 0.306795 0.951776i \(-0.400743\pi\)
0.306795 + 0.951776i \(0.400743\pi\)
\(20\) −3.73219e37 −0.155446
\(21\) 7.71696e37 0.0762039
\(22\) 3.22089e39 0.806319
\(23\) 2.77809e40 1.87403 0.937013 0.349294i \(-0.113579\pi\)
0.937013 + 0.349294i \(0.113579\pi\)
\(24\) 4.81519e40 0.925512
\(25\) −2.36780e40 −0.136494
\(26\) 7.13271e41 1.29283
\(27\) 1.81709e42 1.08180
\(28\) 7.20489e40 0.0146712
\(29\) −1.27852e43 −0.924624 −0.462312 0.886717i \(-0.652980\pi\)
−0.462312 + 0.886717i \(0.652980\pi\)
\(30\) −2.76960e43 −0.736783
\(31\) −1.14110e44 −1.15386 −0.576931 0.816793i \(-0.695750\pi\)
−0.576931 + 0.816793i \(0.695750\pi\)
\(32\) 8.34708e43 0.330834
\(33\) −4.80150e44 −0.767742
\(34\) 1.72832e45 1.14550
\(35\) −2.89174e44 −0.0814990
\(36\) 3.33914e44 0.0409931
\(37\) 2.85266e46 1.56063 0.780313 0.625390i \(-0.215060\pi\)
0.780313 + 0.625390i \(0.215060\pi\)
\(38\) 2.24773e46 0.559922
\(39\) −1.06330e47 −1.23097
\(40\) −1.80438e47 −0.989822
\(41\) −2.41356e47 −0.639049 −0.319524 0.947578i \(-0.603523\pi\)
−0.319524 + 0.947578i \(0.603523\pi\)
\(42\) 5.34663e46 0.0695387
\(43\) 1.26598e48 0.822445 0.411223 0.911535i \(-0.365102\pi\)
0.411223 + 0.911535i \(0.365102\pi\)
\(44\) −4.48289e47 −0.147810
\(45\) −1.34019e48 −0.227718
\(46\) 1.92478e49 1.71011
\(47\) −1.54116e49 −0.726038 −0.363019 0.931782i \(-0.618254\pi\)
−0.363019 + 0.931782i \(0.618254\pi\)
\(48\) 2.76203e49 0.699216
\(49\) −7.20163e49 −0.992308
\(50\) −1.64051e49 −0.124556
\(51\) −2.57647e50 −1.09070
\(52\) −9.92742e49 −0.236994
\(53\) 3.50384e50 0.476876 0.238438 0.971158i \(-0.423365\pi\)
0.238438 + 0.971158i \(0.423365\pi\)
\(54\) 1.25896e51 0.987178
\(55\) 1.79924e51 0.821089
\(56\) 3.48330e50 0.0934209
\(57\) −3.35077e51 −0.533133
\(58\) −8.85809e51 −0.843751
\(59\) 3.68928e51 0.212230 0.106115 0.994354i \(-0.466159\pi\)
0.106115 + 0.994354i \(0.466159\pi\)
\(60\) 3.85477e51 0.135063
\(61\) −9.17858e51 −0.197490 −0.0987450 0.995113i \(-0.531483\pi\)
−0.0987450 + 0.995113i \(0.531483\pi\)
\(62\) −7.90602e52 −1.05294
\(63\) 2.58720e51 0.0214924
\(64\) 2.11989e53 1.10663
\(65\) 3.98445e53 1.31651
\(66\) −3.32668e53 −0.700591
\(67\) 4.08228e53 0.551691 0.275845 0.961202i \(-0.411042\pi\)
0.275845 + 0.961202i \(0.411042\pi\)
\(68\) −2.40550e53 −0.209987
\(69\) −2.86934e54 −1.62830
\(70\) −2.00352e53 −0.0743706
\(71\) −3.75256e52 −0.00916657 −0.00458329 0.999989i \(-0.501459\pi\)
−0.00458329 + 0.999989i \(0.501459\pi\)
\(72\) 1.61435e54 0.261029
\(73\) −2.19258e54 −0.236010 −0.118005 0.993013i \(-0.537650\pi\)
−0.118005 + 0.993013i \(0.537650\pi\)
\(74\) 1.97644e55 1.42412
\(75\) 2.44557e54 0.118597
\(76\) −3.12842e54 −0.102642
\(77\) −3.47339e54 −0.0774956
\(78\) −7.36697e55 −1.12331
\(79\) 1.38224e56 1.44739 0.723694 0.690121i \(-0.242443\pi\)
0.723694 + 0.690121i \(0.242443\pi\)
\(80\) −1.03500e56 −0.747801
\(81\) −1.38748e56 −0.694892
\(82\) −1.67221e56 −0.583154
\(83\) 1.05696e56 0.257783 0.128892 0.991659i \(-0.458858\pi\)
0.128892 + 0.991659i \(0.458858\pi\)
\(84\) −7.44152e54 −0.0127474
\(85\) 9.65467e56 1.16649
\(86\) 8.77123e56 0.750510
\(87\) 1.32051e57 0.803383
\(88\) −2.16731e57 −0.941201
\(89\) −3.89442e57 −1.21182 −0.605909 0.795534i \(-0.707190\pi\)
−0.605909 + 0.795534i \(0.707190\pi\)
\(90\) −9.28540e56 −0.207800
\(91\) −7.69187e56 −0.124254
\(92\) −2.67894e57 −0.313489
\(93\) 1.17858e58 1.00256
\(94\) −1.06778e58 −0.662535
\(95\) 1.25562e58 0.570179
\(96\) −8.62123e57 −0.287454
\(97\) 7.21075e58 1.77098 0.885492 0.464655i \(-0.153822\pi\)
0.885492 + 0.464655i \(0.153822\pi\)
\(98\) −4.98959e58 −0.905515
\(99\) −1.60976e58 −0.216532
\(100\) 2.28329e57 0.0228329
\(101\) 1.38211e58 0.103053 0.0515267 0.998672i \(-0.483591\pi\)
0.0515267 + 0.998672i \(0.483591\pi\)
\(102\) −1.78508e59 −0.995299
\(103\) 1.89666e59 0.793034 0.396517 0.918027i \(-0.370219\pi\)
0.396517 + 0.918027i \(0.370219\pi\)
\(104\) −4.79954e59 −1.50909
\(105\) 2.98672e58 0.0708124
\(106\) 2.42760e59 0.435166
\(107\) 8.57892e59 1.16577 0.582883 0.812556i \(-0.301925\pi\)
0.582883 + 0.812556i \(0.301925\pi\)
\(108\) −1.75224e59 −0.180964
\(109\) 1.17707e60 0.926233 0.463117 0.886297i \(-0.346731\pi\)
0.463117 + 0.886297i \(0.346731\pi\)
\(110\) 1.24659e60 0.749272
\(111\) −2.94635e60 −1.35599
\(112\) 1.99804e59 0.0705786
\(113\) −7.22546e60 −1.96359 −0.981796 0.189938i \(-0.939171\pi\)
−0.981796 + 0.189938i \(0.939171\pi\)
\(114\) −2.32155e60 −0.486503
\(115\) 1.07521e61 1.74144
\(116\) 1.23288e60 0.154672
\(117\) −3.56483e60 −0.347181
\(118\) 2.55609e60 0.193667
\(119\) −1.86381e60 −0.110095
\(120\) 1.86364e61 0.860032
\(121\) −6.06869e60 −0.219244
\(122\) −6.35930e60 −0.180217
\(123\) 2.49283e61 0.555254
\(124\) 1.10037e61 0.193019
\(125\) −7.63036e61 −1.05609
\(126\) 1.79252e60 0.0196125
\(127\) −1.53871e62 −1.33336 −0.666680 0.745344i \(-0.732285\pi\)
−0.666680 + 0.745344i \(0.732285\pi\)
\(128\) 9.87572e61 0.679008
\(129\) −1.30756e62 −0.714602
\(130\) 2.76059e62 1.20136
\(131\) 1.44734e62 0.502421 0.251210 0.967933i \(-0.419171\pi\)
0.251210 + 0.967933i \(0.419171\pi\)
\(132\) 4.63012e61 0.128428
\(133\) −2.42394e61 −0.0538143
\(134\) 2.82837e62 0.503437
\(135\) 7.03275e62 1.00526
\(136\) −1.16297e63 −1.33712
\(137\) −2.88977e62 −0.267674 −0.133837 0.991003i \(-0.542730\pi\)
−0.133837 + 0.991003i \(0.542730\pi\)
\(138\) −1.98800e63 −1.48588
\(139\) 5.60982e61 0.0338854 0.0169427 0.999856i \(-0.494607\pi\)
0.0169427 + 0.999856i \(0.494607\pi\)
\(140\) 2.78853e61 0.0136332
\(141\) 1.59177e63 0.630837
\(142\) −2.59993e61 −0.00836481
\(143\) 4.78589e63 1.25184
\(144\) 9.26002e62 0.197205
\(145\) −4.94827e63 −0.859207
\(146\) −1.51911e63 −0.215367
\(147\) 7.43816e63 0.862192
\(148\) −2.75084e63 −0.261063
\(149\) −4.37262e62 −0.0340210 −0.0170105 0.999855i \(-0.505415\pi\)
−0.0170105 + 0.999855i \(0.505415\pi\)
\(150\) 1.69439e63 0.108224
\(151\) −2.73644e63 −0.143670 −0.0718349 0.997417i \(-0.522885\pi\)
−0.0718349 + 0.997417i \(0.522885\pi\)
\(152\) −1.51248e64 −0.653586
\(153\) −8.63791e63 −0.307618
\(154\) −2.40651e63 −0.0707175
\(155\) −4.41643e64 −1.07223
\(156\) 1.02535e64 0.205918
\(157\) 9.42454e64 1.56755 0.783773 0.621047i \(-0.213292\pi\)
0.783773 + 0.621047i \(0.213292\pi\)
\(158\) 9.57675e64 1.32079
\(159\) −3.61891e64 −0.414346
\(160\) 3.23059e64 0.307428
\(161\) −2.07567e64 −0.164360
\(162\) −9.61302e64 −0.634113
\(163\) −9.60370e64 −0.528329 −0.264164 0.964478i \(-0.585096\pi\)
−0.264164 + 0.964478i \(0.585096\pi\)
\(164\) 2.32741e64 0.106901
\(165\) −1.85834e65 −0.713424
\(166\) 7.32307e64 0.235236
\(167\) −3.29003e65 −0.885245 −0.442623 0.896708i \(-0.645952\pi\)
−0.442623 + 0.896708i \(0.645952\pi\)
\(168\) −3.59770e64 −0.0811711
\(169\) 5.31813e65 1.00717
\(170\) 6.68916e65 1.06446
\(171\) −1.12338e65 −0.150364
\(172\) −1.22079e65 −0.137579
\(173\) −1.32471e65 −0.125823 −0.0629114 0.998019i \(-0.520039\pi\)
−0.0629114 + 0.998019i \(0.520039\pi\)
\(174\) 9.14902e65 0.733115
\(175\) 1.76912e64 0.0119711
\(176\) −1.24318e66 −0.711068
\(177\) −3.81045e65 −0.184402
\(178\) −2.69822e66 −1.10583
\(179\) 3.36648e66 1.16953 0.584766 0.811202i \(-0.301186\pi\)
0.584766 + 0.811202i \(0.301186\pi\)
\(180\) 1.29236e65 0.0380928
\(181\) −2.06923e66 −0.517952 −0.258976 0.965884i \(-0.583385\pi\)
−0.258976 + 0.965884i \(0.583385\pi\)
\(182\) −5.32925e65 −0.113386
\(183\) 9.48003e65 0.171594
\(184\) −1.29517e67 −1.99618
\(185\) 1.10407e67 1.45021
\(186\) 8.16568e66 0.914873
\(187\) 1.15966e67 1.10919
\(188\) 1.48615e66 0.121452
\(189\) −1.35765e66 −0.0948780
\(190\) 8.69944e66 0.520308
\(191\) −1.71430e67 −0.878217 −0.439108 0.898434i \(-0.644706\pi\)
−0.439108 + 0.898434i \(0.644706\pi\)
\(192\) −2.18951e67 −0.961527
\(193\) −4.57672e67 −1.72430 −0.862152 0.506650i \(-0.830884\pi\)
−0.862152 + 0.506650i \(0.830884\pi\)
\(194\) 4.99591e67 1.61608
\(195\) −4.11531e67 −1.14388
\(196\) 6.94459e66 0.165994
\(197\) 2.68332e67 0.551974 0.275987 0.961161i \(-0.410995\pi\)
0.275987 + 0.961161i \(0.410995\pi\)
\(198\) −1.11531e67 −0.197593
\(199\) 9.84849e67 1.50385 0.751924 0.659250i \(-0.229126\pi\)
0.751924 + 0.659250i \(0.229126\pi\)
\(200\) 1.10389e67 0.145392
\(201\) −4.21635e67 −0.479351
\(202\) 9.57584e66 0.0940397
\(203\) 9.55251e66 0.0810932
\(204\) 2.48451e67 0.182453
\(205\) −9.34126e67 −0.593836
\(206\) 1.31409e68 0.723671
\(207\) −9.61979e67 −0.459241
\(208\) −2.75305e68 −1.14011
\(209\) 1.50817e68 0.542171
\(210\) 2.06932e67 0.0646188
\(211\) −3.01598e68 −0.818646 −0.409323 0.912390i \(-0.634235\pi\)
−0.409323 + 0.912390i \(0.634235\pi\)
\(212\) −3.37878e67 −0.0797722
\(213\) 3.87581e66 0.00796461
\(214\) 5.94384e68 1.06380
\(215\) 4.89975e68 0.764257
\(216\) −8.47143e68 −1.15231
\(217\) 8.52581e67 0.101198
\(218\) 8.15523e68 0.845220
\(219\) 2.26459e68 0.205063
\(220\) −1.73502e68 −0.137352
\(221\) 2.56809e69 1.77844
\(222\) −2.04135e69 −1.23739
\(223\) −3.24546e69 −1.72299 −0.861494 0.507767i \(-0.830471\pi\)
−0.861494 + 0.507767i \(0.830471\pi\)
\(224\) −6.23658e67 −0.0290155
\(225\) 8.19906e67 0.0334487
\(226\) −5.00610e69 −1.79185
\(227\) 4.06034e69 1.27585 0.637926 0.770098i \(-0.279793\pi\)
0.637926 + 0.770098i \(0.279793\pi\)
\(228\) 3.23117e68 0.0891829
\(229\) −1.33796e69 −0.324560 −0.162280 0.986745i \(-0.551885\pi\)
−0.162280 + 0.986745i \(0.551885\pi\)
\(230\) 7.44953e69 1.58912
\(231\) 3.58747e68 0.0673341
\(232\) 5.96053e69 0.984894
\(233\) 1.30041e69 0.189270 0.0946348 0.995512i \(-0.469832\pi\)
0.0946348 + 0.995512i \(0.469832\pi\)
\(234\) −2.46987e69 −0.316815
\(235\) −5.96478e69 −0.674671
\(236\) −3.55760e68 −0.0355020
\(237\) −1.42764e70 −1.25760
\(238\) −1.29133e69 −0.100465
\(239\) 1.00216e70 0.688968 0.344484 0.938792i \(-0.388054\pi\)
0.344484 + 0.938792i \(0.388054\pi\)
\(240\) 1.06899e70 0.649746
\(241\) −8.59826e69 −0.462283 −0.231142 0.972920i \(-0.574246\pi\)
−0.231142 + 0.972920i \(0.574246\pi\)
\(242\) −4.20465e69 −0.200067
\(243\) −1.13458e70 −0.478023
\(244\) 8.85097e68 0.0330363
\(245\) −2.78727e70 −0.922102
\(246\) 1.72713e70 0.506688
\(247\) 3.33987e70 0.869300
\(248\) 5.31990e70 1.22908
\(249\) −1.09167e70 −0.223982
\(250\) −5.28664e70 −0.963716
\(251\) 4.07048e70 0.659586 0.329793 0.944053i \(-0.393021\pi\)
0.329793 + 0.944053i \(0.393021\pi\)
\(252\) −2.49486e68 −0.00359526
\(253\) 1.29148e71 1.65590
\(254\) −1.06608e71 −1.21674
\(255\) −9.97177e70 −1.01353
\(256\) −5.37802e70 −0.487016
\(257\) 2.69905e70 0.217863 0.108932 0.994049i \(-0.465257\pi\)
0.108932 + 0.994049i \(0.465257\pi\)
\(258\) −9.05931e70 −0.652099
\(259\) −2.13138e70 −0.136873
\(260\) −3.84223e70 −0.220227
\(261\) 4.42715e70 0.226584
\(262\) 1.00278e71 0.458476
\(263\) 6.00409e69 0.0245331 0.0122666 0.999925i \(-0.496095\pi\)
0.0122666 + 0.999925i \(0.496095\pi\)
\(264\) 2.23849e71 0.817786
\(265\) 1.35610e71 0.443137
\(266\) −1.67940e70 −0.0491074
\(267\) 4.02232e71 1.05292
\(268\) −3.93657e70 −0.0922873
\(269\) −4.29641e71 −0.902430 −0.451215 0.892415i \(-0.649009\pi\)
−0.451215 + 0.892415i \(0.649009\pi\)
\(270\) 4.87258e71 0.917335
\(271\) −9.26809e71 −1.56457 −0.782287 0.622918i \(-0.785947\pi\)
−0.782287 + 0.622918i \(0.785947\pi\)
\(272\) −6.67088e71 −1.01018
\(273\) 7.94450e70 0.107961
\(274\) −2.00215e71 −0.244262
\(275\) −1.10075e71 −0.120607
\(276\) 2.76692e71 0.272382
\(277\) 1.16877e72 1.03413 0.517067 0.855945i \(-0.327024\pi\)
0.517067 + 0.855945i \(0.327024\pi\)
\(278\) 3.88672e70 0.0309216
\(279\) 3.95132e71 0.282760
\(280\) 1.34815e71 0.0868114
\(281\) −2.43176e72 −1.40957 −0.704783 0.709423i \(-0.748955\pi\)
−0.704783 + 0.709423i \(0.748955\pi\)
\(282\) 1.10285e72 0.575660
\(283\) 1.52233e72 0.715831 0.357915 0.933754i \(-0.383488\pi\)
0.357915 + 0.933754i \(0.383488\pi\)
\(284\) 3.61863e69 0.00153339
\(285\) −1.29686e72 −0.495414
\(286\) 3.31586e72 1.14235
\(287\) 1.80331e71 0.0560471
\(288\) −2.89037e71 −0.0810728
\(289\) 2.27372e72 0.575772
\(290\) −3.42837e72 −0.784056
\(291\) −7.44758e72 −1.53876
\(292\) 2.11432e71 0.0394799
\(293\) −4.64053e72 −0.783380 −0.391690 0.920097i \(-0.628110\pi\)
−0.391690 + 0.920097i \(0.628110\pi\)
\(294\) 5.15347e72 0.786780
\(295\) 1.42787e72 0.197215
\(296\) −1.32993e73 −1.66235
\(297\) 8.44733e72 0.955881
\(298\) −3.02954e71 −0.0310453
\(299\) 2.86001e73 2.65502
\(300\) −2.35828e71 −0.0198389
\(301\) −9.45884e71 −0.0721317
\(302\) −1.89592e72 −0.131104
\(303\) −1.42750e72 −0.0895405
\(304\) −8.67566e72 −0.493778
\(305\) −3.55241e72 −0.183518
\(306\) −5.98470e72 −0.280712
\(307\) 9.50693e72 0.405003 0.202501 0.979282i \(-0.435093\pi\)
0.202501 + 0.979282i \(0.435093\pi\)
\(308\) 3.34942e71 0.0129635
\(309\) −1.95896e73 −0.689048
\(310\) −3.05989e73 −0.978444
\(311\) −3.66965e73 −1.06707 −0.533536 0.845778i \(-0.679137\pi\)
−0.533536 + 0.845778i \(0.679137\pi\)
\(312\) 4.95717e73 1.31121
\(313\) −2.59653e73 −0.624937 −0.312468 0.949928i \(-0.601156\pi\)
−0.312468 + 0.949928i \(0.601156\pi\)
\(314\) 6.52972e73 1.43044
\(315\) 1.00133e72 0.0199718
\(316\) −1.33291e73 −0.242120
\(317\) 9.43841e73 1.56189 0.780945 0.624599i \(-0.214738\pi\)
0.780945 + 0.624599i \(0.214738\pi\)
\(318\) −2.50734e73 −0.378105
\(319\) −5.94358e73 −0.817001
\(320\) 8.20467e73 1.02834
\(321\) −8.86069e73 −1.01291
\(322\) −1.43811e73 −0.149984
\(323\) 8.09281e73 0.770238
\(324\) 1.33795e73 0.116242
\(325\) −2.43762e73 −0.193378
\(326\) −6.65384e73 −0.482118
\(327\) −1.21573e74 −0.804781
\(328\) 1.12522e74 0.680704
\(329\) 1.15148e73 0.0636765
\(330\) −1.28753e74 −0.651024
\(331\) 2.42184e73 0.112000 0.0560002 0.998431i \(-0.482165\pi\)
0.0560002 + 0.998431i \(0.482165\pi\)
\(332\) −1.01924e73 −0.0431222
\(333\) −9.87798e73 −0.382440
\(334\) −2.27947e74 −0.807817
\(335\) 1.57997e74 0.512659
\(336\) −2.06367e73 −0.0613240
\(337\) 4.16269e74 1.13316 0.566581 0.824006i \(-0.308266\pi\)
0.566581 + 0.824006i \(0.308266\pi\)
\(338\) 3.68462e74 0.919073
\(339\) 7.46277e74 1.70612
\(340\) −9.31008e73 −0.195131
\(341\) −5.30476e74 −1.01956
\(342\) −7.78328e73 −0.137212
\(343\) 1.08032e74 0.174733
\(344\) −5.90209e74 −0.876055
\(345\) −1.11053e75 −1.51309
\(346\) −9.17812e73 −0.114818
\(347\) 3.03466e74 0.348651 0.174326 0.984688i \(-0.444225\pi\)
0.174326 + 0.984688i \(0.444225\pi\)
\(348\) −1.27337e74 −0.134390
\(349\) −7.65470e74 −0.742297 −0.371149 0.928573i \(-0.621036\pi\)
−0.371149 + 0.928573i \(0.621036\pi\)
\(350\) 1.22572e73 0.0109241
\(351\) 1.87067e75 1.53263
\(352\) 3.88040e74 0.292327
\(353\) 3.52861e73 0.0244484 0.0122242 0.999925i \(-0.496109\pi\)
0.0122242 + 0.999925i \(0.496109\pi\)
\(354\) −2.64004e74 −0.168273
\(355\) −1.45237e73 −0.00851804
\(356\) 3.75542e74 0.202714
\(357\) 1.92502e74 0.0956585
\(358\) 2.33244e75 1.06724
\(359\) −1.13038e75 −0.476363 −0.238182 0.971221i \(-0.576551\pi\)
−0.238182 + 0.971221i \(0.576551\pi\)
\(360\) 6.24807e74 0.242561
\(361\) −1.74303e75 −0.623507
\(362\) −1.43365e75 −0.472650
\(363\) 6.26801e74 0.190495
\(364\) 7.41733e73 0.0207853
\(365\) −8.48599e74 −0.219312
\(366\) 6.56816e74 0.156586
\(367\) −1.14489e75 −0.251834 −0.125917 0.992041i \(-0.540187\pi\)
−0.125917 + 0.992041i \(0.540187\pi\)
\(368\) −7.42916e75 −1.50810
\(369\) 8.35750e74 0.156602
\(370\) 7.64947e75 1.32337
\(371\) −2.61791e74 −0.0418240
\(372\) −1.13651e75 −0.167709
\(373\) −9.11728e75 −1.24295 −0.621476 0.783433i \(-0.713467\pi\)
−0.621476 + 0.783433i \(0.713467\pi\)
\(374\) 8.03463e75 1.01217
\(375\) 7.88097e75 0.917608
\(376\) 7.18498e75 0.773364
\(377\) −1.31621e76 −1.30996
\(378\) −9.40639e74 −0.0865795
\(379\) 1.17838e76 1.00330 0.501648 0.865072i \(-0.332727\pi\)
0.501648 + 0.865072i \(0.332727\pi\)
\(380\) −1.21080e75 −0.0953799
\(381\) 1.58925e76 1.15852
\(382\) −1.18774e76 −0.801403
\(383\) 8.81216e75 0.550451 0.275225 0.961380i \(-0.411247\pi\)
0.275225 + 0.961380i \(0.411247\pi\)
\(384\) −1.02001e76 −0.589973
\(385\) −1.34432e75 −0.0720128
\(386\) −3.17094e76 −1.57349
\(387\) −4.38374e75 −0.201545
\(388\) −6.95339e75 −0.296251
\(389\) −2.99716e76 −1.18358 −0.591789 0.806093i \(-0.701578\pi\)
−0.591789 + 0.806093i \(0.701578\pi\)
\(390\) −2.85126e76 −1.04383
\(391\) 6.93005e76 2.35246
\(392\) 3.35745e76 1.05699
\(393\) −1.49488e76 −0.436541
\(394\) 1.85912e76 0.503695
\(395\) 5.34973e76 1.34498
\(396\) 1.55230e75 0.0362217
\(397\) −7.53563e76 −1.63230 −0.816149 0.577841i \(-0.803895\pi\)
−0.816149 + 0.577841i \(0.803895\pi\)
\(398\) 6.82345e76 1.37231
\(399\) 2.50355e75 0.0467579
\(400\) 6.33196e75 0.109842
\(401\) 2.27678e74 0.00366913 0.00183456 0.999998i \(-0.499416\pi\)
0.00183456 + 0.999998i \(0.499416\pi\)
\(402\) −2.92127e76 −0.437424
\(403\) −1.17475e77 −1.63473
\(404\) −1.33278e75 −0.0172388
\(405\) −5.36999e76 −0.645729
\(406\) 6.61838e75 0.0740004
\(407\) 1.32615e77 1.37898
\(408\) 1.20117e77 1.16179
\(409\) −1.56193e77 −1.40548 −0.702740 0.711447i \(-0.748040\pi\)
−0.702740 + 0.711447i \(0.748040\pi\)
\(410\) −6.47201e76 −0.541896
\(411\) 2.98468e76 0.232575
\(412\) −1.82897e76 −0.132659
\(413\) −2.75647e75 −0.0186134
\(414\) −6.66499e76 −0.419073
\(415\) 4.09078e76 0.239545
\(416\) 8.59321e76 0.468708
\(417\) −5.79407e75 −0.0294422
\(418\) 1.04493e77 0.494750
\(419\) 3.54180e77 1.56282 0.781411 0.624016i \(-0.214500\pi\)
0.781411 + 0.624016i \(0.214500\pi\)
\(420\) −2.88011e75 −0.0118456
\(421\) −6.31905e76 −0.242287 −0.121144 0.992635i \(-0.538656\pi\)
−0.121144 + 0.992635i \(0.538656\pi\)
\(422\) −2.08960e77 −0.747042
\(423\) 5.33661e76 0.177920
\(424\) −1.63351e77 −0.507961
\(425\) −5.90657e76 −0.171341
\(426\) 2.68532e75 0.00726798
\(427\) 6.85784e75 0.0173207
\(428\) −8.27272e76 −0.195010
\(429\) −4.94307e77 −1.08769
\(430\) 3.39475e77 0.697411
\(431\) −3.24391e77 −0.622285 −0.311142 0.950363i \(-0.600712\pi\)
−0.311142 + 0.950363i \(0.600712\pi\)
\(432\) −4.85926e77 −0.870562
\(433\) 2.56630e77 0.429451 0.214726 0.976674i \(-0.431114\pi\)
0.214726 + 0.976674i \(0.431114\pi\)
\(434\) 5.90704e76 0.0923470
\(435\) 5.11079e77 0.746543
\(436\) −1.13506e77 −0.154941
\(437\) 9.01273e77 1.14988
\(438\) 1.56900e77 0.187127
\(439\) 6.93858e77 0.773690 0.386845 0.922145i \(-0.373565\pi\)
0.386845 + 0.922145i \(0.373565\pi\)
\(440\) −8.38820e77 −0.874611
\(441\) 2.49373e77 0.243171
\(442\) 1.77928e78 1.62288
\(443\) −6.61525e77 −0.564464 −0.282232 0.959346i \(-0.591075\pi\)
−0.282232 + 0.959346i \(0.591075\pi\)
\(444\) 2.84119e77 0.226831
\(445\) −1.50727e78 −1.12608
\(446\) −2.24859e78 −1.57229
\(447\) 4.51623e76 0.0295600
\(448\) −1.58389e77 −0.0970563
\(449\) −5.52670e77 −0.317102 −0.158551 0.987351i \(-0.550682\pi\)
−0.158551 + 0.987351i \(0.550682\pi\)
\(450\) 5.68065e76 0.0305231
\(451\) −1.12202e78 −0.564666
\(452\) 6.96757e77 0.328471
\(453\) 2.82631e77 0.124831
\(454\) 2.81318e78 1.16426
\(455\) −2.97701e77 −0.115463
\(456\) 1.56215e78 0.567885
\(457\) −1.03722e78 −0.353464 −0.176732 0.984259i \(-0.556553\pi\)
−0.176732 + 0.984259i \(0.556553\pi\)
\(458\) −9.26993e77 −0.296172
\(459\) 4.53281e78 1.35798
\(460\) −1.03684e78 −0.291309
\(461\) −3.77107e78 −0.993774 −0.496887 0.867815i \(-0.665524\pi\)
−0.496887 + 0.867815i \(0.665524\pi\)
\(462\) 2.48555e77 0.0614447
\(463\) −3.38674e78 −0.785495 −0.392747 0.919646i \(-0.628475\pi\)
−0.392747 + 0.919646i \(0.628475\pi\)
\(464\) 3.41900e78 0.744078
\(465\) 4.56148e78 0.931631
\(466\) 9.00979e77 0.172715
\(467\) 1.56624e78 0.281844 0.140922 0.990021i \(-0.454993\pi\)
0.140922 + 0.990021i \(0.454993\pi\)
\(468\) 3.43760e77 0.0580767
\(469\) −3.05010e77 −0.0483855
\(470\) −4.13265e78 −0.615661
\(471\) −9.73408e78 −1.36200
\(472\) −1.71997e78 −0.226064
\(473\) 5.88530e78 0.726716
\(474\) −9.89128e78 −1.14760
\(475\) −7.68165e77 −0.0837516
\(476\) 1.79729e77 0.0184167
\(477\) −1.21328e78 −0.116861
\(478\) 6.94339e78 0.628707
\(479\) −1.69803e78 −0.144560 −0.0722800 0.997384i \(-0.523028\pi\)
−0.0722800 + 0.997384i \(0.523028\pi\)
\(480\) −3.33670e78 −0.267116
\(481\) 2.93677e79 2.21101
\(482\) −5.95724e78 −0.421849
\(483\) 2.14384e78 0.142808
\(484\) 5.85209e77 0.0366752
\(485\) 2.79080e79 1.64569
\(486\) −7.86083e78 −0.436213
\(487\) −1.96778e79 −1.02772 −0.513858 0.857875i \(-0.671784\pi\)
−0.513858 + 0.857875i \(0.671784\pi\)
\(488\) 4.27912e78 0.210363
\(489\) 9.91911e78 0.459052
\(490\) −1.93114e79 −0.841450
\(491\) −2.71958e79 −1.11583 −0.557915 0.829898i \(-0.688399\pi\)
−0.557915 + 0.829898i \(0.688399\pi\)
\(492\) −2.40385e78 −0.0928832
\(493\) −3.18930e79 −1.16068
\(494\) 2.31400e79 0.793267
\(495\) −6.23029e78 −0.201213
\(496\) 3.05153e79 0.928555
\(497\) 2.80375e76 0.000803945 0
\(498\) −7.56358e78 −0.204391
\(499\) −6.54096e79 −1.66600 −0.833000 0.553273i \(-0.813379\pi\)
−0.833000 + 0.553273i \(0.813379\pi\)
\(500\) 7.35802e78 0.176663
\(501\) 3.39808e79 0.769168
\(502\) 2.82020e79 0.601895
\(503\) 5.77167e79 1.16157 0.580786 0.814056i \(-0.302745\pi\)
0.580786 + 0.814056i \(0.302745\pi\)
\(504\) −1.20617e78 −0.0228933
\(505\) 5.34922e78 0.0957623
\(506\) 8.94794e79 1.51106
\(507\) −5.49279e79 −0.875101
\(508\) 1.48379e79 0.223046
\(509\) −4.64283e79 −0.658580 −0.329290 0.944229i \(-0.606809\pi\)
−0.329290 + 0.944229i \(0.606809\pi\)
\(510\) −6.90886e79 −0.924881
\(511\) 1.63820e78 0.0206990
\(512\) −9.41908e79 −1.12343
\(513\) 5.89504e79 0.663781
\(514\) 1.87002e79 0.198808
\(515\) 7.34070e79 0.736927
\(516\) 1.26089e79 0.119539
\(517\) −7.16454e79 −0.641531
\(518\) −1.47671e79 −0.124901
\(519\) 1.36821e79 0.109324
\(520\) −1.85758e80 −1.40233
\(521\) 9.43942e79 0.673337 0.336669 0.941623i \(-0.390700\pi\)
0.336669 + 0.941623i \(0.390700\pi\)
\(522\) 3.06732e79 0.206766
\(523\) 1.03084e78 0.00656739 0.00328369 0.999995i \(-0.498955\pi\)
0.00328369 + 0.999995i \(0.498955\pi\)
\(524\) −1.39568e79 −0.0840453
\(525\) −1.82722e78 −0.0104014
\(526\) 4.15989e78 0.0223873
\(527\) −2.84652e80 −1.44844
\(528\) 1.28401e80 0.617830
\(529\) 5.52023e80 2.51197
\(530\) 9.39562e79 0.404378
\(531\) −1.27750e79 −0.0520082
\(532\) 2.33742e78 0.00900210
\(533\) −2.48472e80 −0.905369
\(534\) 2.78684e80 0.960825
\(535\) 3.32032e80 1.08329
\(536\) −1.90319e80 −0.587652
\(537\) −3.47705e80 −1.01618
\(538\) −2.97673e80 −0.823499
\(539\) −3.34790e80 −0.876808
\(540\) −6.78173e79 −0.168161
\(541\) −1.44420e80 −0.339085 −0.169542 0.985523i \(-0.554229\pi\)
−0.169542 + 0.985523i \(0.554229\pi\)
\(542\) −6.42132e80 −1.42773
\(543\) 2.13719e80 0.450036
\(544\) 2.08221e80 0.415295
\(545\) 4.55564e80 0.860702
\(546\) 5.50428e79 0.0985185
\(547\) 5.62958e80 0.954662 0.477331 0.878724i \(-0.341604\pi\)
0.477331 + 0.878724i \(0.341604\pi\)
\(548\) 2.78662e79 0.0447767
\(549\) 3.17829e79 0.0483960
\(550\) −7.62643e79 −0.110058
\(551\) −4.14778e80 −0.567340
\(552\) 1.33771e81 1.73443
\(553\) −1.03275e80 −0.126942
\(554\) 8.09775e80 0.943684
\(555\) −1.14033e81 −1.26005
\(556\) −5.40960e78 −0.00566838
\(557\) −1.07909e81 −1.07233 −0.536166 0.844113i \(-0.680128\pi\)
−0.536166 + 0.844113i \(0.680128\pi\)
\(558\) 2.73764e80 0.258029
\(559\) 1.30331e81 1.16519
\(560\) 7.73308e79 0.0655852
\(561\) −1.19775e81 −0.963745
\(562\) −1.68483e81 −1.28628
\(563\) 1.75793e81 1.27351 0.636756 0.771065i \(-0.280276\pi\)
0.636756 + 0.771065i \(0.280276\pi\)
\(564\) −1.53496e80 −0.105527
\(565\) −2.79649e81 −1.82467
\(566\) 1.05474e81 0.653220
\(567\) 1.03666e80 0.0609448
\(568\) 1.74947e79 0.00976408
\(569\) 1.15567e81 0.612380 0.306190 0.951970i \(-0.400946\pi\)
0.306190 + 0.951970i \(0.400946\pi\)
\(570\) −8.98516e80 −0.452082
\(571\) 8.43971e80 0.403239 0.201619 0.979464i \(-0.435380\pi\)
0.201619 + 0.979464i \(0.435380\pi\)
\(572\) −4.61507e80 −0.209409
\(573\) 1.77060e81 0.763061
\(574\) 1.24941e80 0.0511449
\(575\) −6.57797e80 −0.255794
\(576\) −7.34061e80 −0.271187
\(577\) −7.28689e80 −0.255773 −0.127887 0.991789i \(-0.540819\pi\)
−0.127887 + 0.991789i \(0.540819\pi\)
\(578\) 1.57533e81 0.525412
\(579\) 4.72704e81 1.49821
\(580\) 4.77166e80 0.143729
\(581\) −7.89715e79 −0.0226086
\(582\) −5.15999e81 −1.40417
\(583\) 1.62887e81 0.421370
\(584\) 1.02220e81 0.251394
\(585\) −1.37971e81 −0.322618
\(586\) −3.21515e81 −0.714862
\(587\) 5.13026e81 1.08471 0.542357 0.840148i \(-0.317532\pi\)
0.542357 + 0.840148i \(0.317532\pi\)
\(588\) −7.17267e80 −0.144228
\(589\) −3.70197e81 −0.707998
\(590\) 9.89289e80 0.179965
\(591\) −2.77145e81 −0.479597
\(592\) −7.62856e81 −1.25589
\(593\) −6.47695e81 −1.01451 −0.507256 0.861796i \(-0.669340\pi\)
−0.507256 + 0.861796i \(0.669340\pi\)
\(594\) 5.85266e81 0.872275
\(595\) −7.21355e80 −0.102305
\(596\) 4.21655e79 0.00569106
\(597\) −1.01719e82 −1.30666
\(598\) 1.98153e82 2.42279
\(599\) 9.11251e81 1.06059 0.530294 0.847814i \(-0.322081\pi\)
0.530294 + 0.847814i \(0.322081\pi\)
\(600\) −1.14014e81 −0.126327
\(601\) 1.84804e82 1.94946 0.974730 0.223386i \(-0.0717110\pi\)
0.974730 + 0.223386i \(0.0717110\pi\)
\(602\) −6.55348e80 −0.0658227
\(603\) −1.41358e81 −0.135195
\(604\) 2.63877e80 0.0240332
\(605\) −2.34878e81 −0.203732
\(606\) −9.89034e80 −0.0817088
\(607\) −2.33831e82 −1.84008 −0.920039 0.391827i \(-0.871843\pi\)
−0.920039 + 0.391827i \(0.871843\pi\)
\(608\) 2.70797e81 0.202997
\(609\) −9.86625e80 −0.0704599
\(610\) −2.46126e81 −0.167466
\(611\) −1.58660e82 −1.02861
\(612\) 8.32960e80 0.0514585
\(613\) 2.82036e81 0.166043 0.0830214 0.996548i \(-0.473543\pi\)
0.0830214 + 0.996548i \(0.473543\pi\)
\(614\) 6.58680e81 0.369579
\(615\) 9.64806e81 0.515969
\(616\) 1.61932e81 0.0825471
\(617\) −2.69137e82 −1.30786 −0.653929 0.756556i \(-0.726881\pi\)
−0.653929 + 0.756556i \(0.726881\pi\)
\(618\) −1.35725e82 −0.628780
\(619\) 1.45072e82 0.640779 0.320389 0.947286i \(-0.396186\pi\)
0.320389 + 0.947286i \(0.396186\pi\)
\(620\) 4.25880e81 0.179363
\(621\) 5.04806e82 2.02732
\(622\) −2.54249e82 −0.973739
\(623\) 2.90974e81 0.106281
\(624\) 2.84347e82 0.990610
\(625\) −2.54245e82 −0.844875
\(626\) −1.79899e82 −0.570276
\(627\) −1.55771e82 −0.471079
\(628\) −9.08816e81 −0.262220
\(629\) 7.11606e82 1.95905
\(630\) 6.93765e80 0.0182249
\(631\) 3.24958e82 0.814632 0.407316 0.913287i \(-0.366465\pi\)
0.407316 + 0.913287i \(0.366465\pi\)
\(632\) −6.44411e82 −1.54173
\(633\) 3.11503e82 0.711301
\(634\) 6.53933e82 1.42528
\(635\) −5.95532e82 −1.23903
\(636\) 3.48975e81 0.0693121
\(637\) −7.41398e82 −1.40585
\(638\) −4.11796e82 −0.745542
\(639\) 1.29941e80 0.00224632
\(640\) 3.82223e82 0.630968
\(641\) 3.40514e81 0.0536812 0.0268406 0.999640i \(-0.491455\pi\)
0.0268406 + 0.999640i \(0.491455\pi\)
\(642\) −6.13905e82 −0.924311
\(643\) 2.29625e82 0.330213 0.165107 0.986276i \(-0.447203\pi\)
0.165107 + 0.986276i \(0.447203\pi\)
\(644\) 2.00159e81 0.0274942
\(645\) −5.06068e82 −0.664044
\(646\) 5.60704e82 0.702869
\(647\) −3.49095e82 −0.418088 −0.209044 0.977906i \(-0.567035\pi\)
−0.209044 + 0.977906i \(0.567035\pi\)
\(648\) 6.46852e82 0.740188
\(649\) 1.71508e82 0.187527
\(650\) −1.68888e82 −0.176464
\(651\) −8.80583e81 −0.0879288
\(652\) 9.26092e81 0.0883792
\(653\) 2.13154e83 1.94426 0.972131 0.234437i \(-0.0753248\pi\)
0.972131 + 0.234437i \(0.0753248\pi\)
\(654\) −8.42307e82 −0.734391
\(655\) 5.60168e82 0.466874
\(656\) 6.45432e82 0.514266
\(657\) 7.59230e81 0.0578356
\(658\) 7.97797e81 0.0581070
\(659\) −8.26273e82 −0.575445 −0.287722 0.957714i \(-0.592898\pi\)
−0.287722 + 0.957714i \(0.592898\pi\)
\(660\) 1.79201e82 0.119342
\(661\) −5.66974e82 −0.361094 −0.180547 0.983566i \(-0.557787\pi\)
−0.180547 + 0.983566i \(0.557787\pi\)
\(662\) 1.67795e82 0.102204
\(663\) −2.65244e83 −1.54524
\(664\) −4.92763e82 −0.274587
\(665\) −9.38143e81 −0.0500070
\(666\) −6.84388e82 −0.348990
\(667\) −3.55184e83 −1.73277
\(668\) 3.17260e82 0.148085
\(669\) 3.35205e83 1.49706
\(670\) 1.09467e83 0.467819
\(671\) −4.26695e82 −0.174503
\(672\) 6.44141e81 0.0252108
\(673\) 8.50409e81 0.0318554 0.0159277 0.999873i \(-0.494930\pi\)
0.0159277 + 0.999873i \(0.494930\pi\)
\(674\) 2.88409e83 1.03405
\(675\) −4.30252e82 −0.147659
\(676\) −5.12831e82 −0.168479
\(677\) 3.74663e83 1.17835 0.589177 0.808004i \(-0.299452\pi\)
0.589177 + 0.808004i \(0.299452\pi\)
\(678\) 5.17052e83 1.55689
\(679\) −5.38756e82 −0.155322
\(680\) −4.50108e83 −1.24252
\(681\) −4.19370e83 −1.10856
\(682\) −3.67536e83 −0.930381
\(683\) 4.72123e83 1.14458 0.572288 0.820053i \(-0.306056\pi\)
0.572288 + 0.820053i \(0.306056\pi\)
\(684\) 1.08329e82 0.0251530
\(685\) −1.11843e83 −0.248736
\(686\) 7.48491e82 0.159450
\(687\) 1.38190e83 0.282002
\(688\) −3.38547e83 −0.661852
\(689\) 3.60715e83 0.675612
\(690\) −7.69419e83 −1.38075
\(691\) 5.74414e83 0.987694 0.493847 0.869549i \(-0.335590\pi\)
0.493847 + 0.869549i \(0.335590\pi\)
\(692\) 1.27743e82 0.0210477
\(693\) 1.20274e82 0.0189907
\(694\) 2.10254e83 0.318156
\(695\) 2.17119e82 0.0314880
\(696\) −6.15630e83 −0.855750
\(697\) −6.02071e83 −0.802196
\(698\) −5.30349e83 −0.677372
\(699\) −1.34312e83 −0.164452
\(700\) −1.70597e81 −0.00200254
\(701\) −5.67798e83 −0.639017 −0.319508 0.947583i \(-0.603518\pi\)
−0.319508 + 0.947583i \(0.603518\pi\)
\(702\) 1.29608e84 1.39858
\(703\) 9.25463e83 0.957584
\(704\) 9.85497e83 0.977827
\(705\) 6.16068e83 0.586205
\(706\) 2.44477e82 0.0223100
\(707\) −1.03265e82 −0.00903819
\(708\) 3.67444e82 0.0308468
\(709\) −1.74026e83 −0.140136 −0.0700681 0.997542i \(-0.522322\pi\)
−0.0700681 + 0.997542i \(0.522322\pi\)
\(710\) −1.00626e82 −0.00777300
\(711\) −4.78633e83 −0.354690
\(712\) 1.81561e84 1.29081
\(713\) −3.17008e84 −2.16237
\(714\) 1.33374e83 0.0872917
\(715\) 1.85230e84 1.16327
\(716\) −3.24633e83 −0.195640
\(717\) −1.03508e84 −0.598628
\(718\) −7.83174e83 −0.434698
\(719\) −2.89395e84 −1.54166 −0.770831 0.637040i \(-0.780158\pi\)
−0.770831 + 0.637040i \(0.780158\pi\)
\(720\) 3.58393e83 0.183253
\(721\) −1.41710e83 −0.0695523
\(722\) −1.20764e84 −0.568972
\(723\) 8.88066e83 0.401666
\(724\) 1.99537e83 0.0866435
\(725\) 3.02727e83 0.126206
\(726\) 4.34274e83 0.173834
\(727\) 1.08709e84 0.417830 0.208915 0.977934i \(-0.433007\pi\)
0.208915 + 0.977934i \(0.433007\pi\)
\(728\) 3.58601e83 0.132354
\(729\) 3.13240e84 1.11023
\(730\) −5.87945e83 −0.200130
\(731\) 3.15803e84 1.03241
\(732\) −9.14167e82 −0.0287044
\(733\) −3.02062e84 −0.911021 −0.455511 0.890230i \(-0.650543\pi\)
−0.455511 + 0.890230i \(0.650543\pi\)
\(734\) −7.93228e83 −0.229808
\(735\) 2.87881e84 0.801192
\(736\) 2.31890e84 0.619992
\(737\) 1.89777e84 0.487476
\(738\) 5.79042e83 0.142905
\(739\) −5.50898e84 −1.30635 −0.653176 0.757206i \(-0.726564\pi\)
−0.653176 + 0.757206i \(0.726564\pi\)
\(740\) −1.06466e84 −0.242592
\(741\) −3.44957e84 −0.755314
\(742\) −1.81380e83 −0.0381658
\(743\) 3.77858e84 0.764115 0.382057 0.924139i \(-0.375216\pi\)
0.382057 + 0.924139i \(0.375216\pi\)
\(744\) −5.49462e84 −1.06791
\(745\) −1.69235e83 −0.0316140
\(746\) −6.31683e84 −1.13424
\(747\) −3.65997e83 −0.0631713
\(748\) −1.11827e84 −0.185545
\(749\) −6.40980e83 −0.102242
\(750\) 5.46027e84 0.837349
\(751\) 1.32327e85 1.95106 0.975530 0.219865i \(-0.0705617\pi\)
0.975530 + 0.219865i \(0.0705617\pi\)
\(752\) 4.12135e84 0.584270
\(753\) −4.20417e84 −0.573098
\(754\) −9.11928e84 −1.19538
\(755\) −1.05909e84 −0.133505
\(756\) 1.30920e83 0.0158713
\(757\) −1.84701e82 −0.00215348 −0.00107674 0.999999i \(-0.500343\pi\)
−0.00107674 + 0.999999i \(0.500343\pi\)
\(758\) 8.16432e84 0.915543
\(759\) −1.33390e85 −1.43877
\(760\) −5.85378e84 −0.607345
\(761\) 1.43924e85 1.43643 0.718216 0.695820i \(-0.244959\pi\)
0.718216 + 0.695820i \(0.244959\pi\)
\(762\) 1.10110e85 1.05719
\(763\) −8.79455e83 −0.0812344
\(764\) 1.65311e84 0.146909
\(765\) −3.34315e84 −0.285854
\(766\) 6.10544e84 0.502306
\(767\) 3.79806e84 0.300676
\(768\) 5.55465e84 0.423156
\(769\) −1.22496e85 −0.898039 −0.449019 0.893522i \(-0.648227\pi\)
−0.449019 + 0.893522i \(0.648227\pi\)
\(770\) −9.31399e83 −0.0657142
\(771\) −2.78770e84 −0.189296
\(772\) 4.41337e84 0.288443
\(773\) −8.47270e84 −0.533000 −0.266500 0.963835i \(-0.585867\pi\)
−0.266500 + 0.963835i \(0.585867\pi\)
\(774\) −3.03724e84 −0.183917
\(775\) 2.70190e84 0.157496
\(776\) −3.36171e85 −1.88642
\(777\) 2.20138e84 0.118926
\(778\) −2.07656e85 −1.08006
\(779\) −7.83010e84 −0.392114
\(780\) 3.96843e84 0.191350
\(781\) −1.74450e83 −0.00809962
\(782\) 4.80143e85 2.14670
\(783\) −2.32318e85 −1.00026
\(784\) 1.92586e85 0.798546
\(785\) 3.64761e85 1.45664
\(786\) −1.03571e85 −0.398359
\(787\) 1.24322e85 0.460568 0.230284 0.973123i \(-0.426034\pi\)
0.230284 + 0.973123i \(0.426034\pi\)
\(788\) −2.58755e84 −0.0923346
\(789\) −6.20129e83 −0.0213162
\(790\) 3.70652e85 1.22734
\(791\) 5.39855e84 0.172215
\(792\) 7.50481e84 0.230647
\(793\) −9.44922e84 −0.279793
\(794\) −5.22100e85 −1.48953
\(795\) −1.40064e85 −0.385031
\(796\) −9.49698e84 −0.251565
\(797\) 1.49621e85 0.381919 0.190960 0.981598i \(-0.438840\pi\)
0.190960 + 0.981598i \(0.438840\pi\)
\(798\) 1.73456e84 0.0426682
\(799\) −3.84447e85 −0.911394
\(800\) −1.97642e84 −0.0451570
\(801\) 1.34853e85 0.296963
\(802\) 1.57745e83 0.00334820
\(803\) −1.01929e85 −0.208539
\(804\) 4.06586e84 0.0801861
\(805\) −8.03353e84 −0.152731
\(806\) −8.13914e85 −1.49175
\(807\) 4.43752e85 0.784099
\(808\) −6.44350e84 −0.109771
\(809\) 9.07918e85 1.49130 0.745651 0.666337i \(-0.232139\pi\)
0.745651 + 0.666337i \(0.232139\pi\)
\(810\) −3.72055e85 −0.589250
\(811\) −8.14581e85 −1.24400 −0.621998 0.783019i \(-0.713679\pi\)
−0.621998 + 0.783019i \(0.713679\pi\)
\(812\) −9.21156e83 −0.0135653
\(813\) 9.57248e85 1.35942
\(814\) 9.18810e85 1.25836
\(815\) −3.71694e85 −0.490949
\(816\) 6.88997e85 0.877724
\(817\) 4.10711e85 0.504644
\(818\) −1.08217e86 −1.28255
\(819\) 2.66349e84 0.0304492
\(820\) 9.00785e84 0.0993373
\(821\) 1.56347e85 0.166329 0.0831644 0.996536i \(-0.473497\pi\)
0.0831644 + 0.996536i \(0.473497\pi\)
\(822\) 2.06791e85 0.212233
\(823\) −2.10191e85 −0.208123 −0.104061 0.994571i \(-0.533184\pi\)
−0.104061 + 0.994571i \(0.533184\pi\)
\(824\) −8.84238e85 −0.844727
\(825\) 1.13690e85 0.104793
\(826\) −1.90980e84 −0.0169854
\(827\) 4.67868e85 0.401524 0.200762 0.979640i \(-0.435658\pi\)
0.200762 + 0.979640i \(0.435658\pi\)
\(828\) 9.27644e84 0.0768221
\(829\) −2.94227e85 −0.235139 −0.117569 0.993065i \(-0.537510\pi\)
−0.117569 + 0.993065i \(0.537510\pi\)
\(830\) 2.83427e85 0.218593
\(831\) −1.20716e86 −0.898534
\(832\) 2.18240e86 1.56782
\(833\) −1.79647e86 −1.24564
\(834\) −4.01438e84 −0.0268670
\(835\) −1.27335e86 −0.822614
\(836\) −1.45434e85 −0.0906947
\(837\) −2.07349e86 −1.24825
\(838\) 2.45390e86 1.42613
\(839\) −8.27969e85 −0.464554 −0.232277 0.972650i \(-0.574618\pi\)
−0.232277 + 0.972650i \(0.574618\pi\)
\(840\) −1.39243e85 −0.0754283
\(841\) −2.77372e85 −0.145071
\(842\) −4.37811e85 −0.221095
\(843\) 2.51163e86 1.22474
\(844\) 2.90833e85 0.136944
\(845\) 2.05829e86 0.935908
\(846\) 3.69742e85 0.162358
\(847\) 4.53427e84 0.0192285
\(848\) −9.36994e85 −0.383760
\(849\) −1.57233e86 −0.621968
\(850\) −4.09232e85 −0.156355
\(851\) 7.92495e86 2.92465
\(852\) −3.73748e83 −0.00133233
\(853\) 1.96043e86 0.675080 0.337540 0.941311i \(-0.390405\pi\)
0.337540 + 0.941311i \(0.390405\pi\)
\(854\) 4.75140e84 0.0158057
\(855\) −4.34786e85 −0.139725
\(856\) −3.99956e86 −1.24176
\(857\) −4.95329e86 −1.48580 −0.742898 0.669405i \(-0.766549\pi\)
−0.742898 + 0.669405i \(0.766549\pi\)
\(858\) −3.42477e86 −0.992559
\(859\) −4.22920e86 −1.18429 −0.592147 0.805830i \(-0.701720\pi\)
−0.592147 + 0.805830i \(0.701720\pi\)
\(860\) −4.72487e85 −0.127846
\(861\) −1.86253e85 −0.0486980
\(862\) −2.24752e86 −0.567856
\(863\) 4.05433e86 0.989921 0.494961 0.868915i \(-0.335182\pi\)
0.494961 + 0.868915i \(0.335182\pi\)
\(864\) 1.51674e86 0.357896
\(865\) −5.12705e85 −0.116921
\(866\) 1.77804e86 0.391889
\(867\) −2.34840e86 −0.500274
\(868\) −8.22150e84 −0.0169285
\(869\) 6.42578e86 1.27892
\(870\) 3.54097e86 0.681247
\(871\) 4.20265e86 0.781605
\(872\) −5.48758e86 −0.986609
\(873\) −2.49689e86 −0.433989
\(874\) 6.24440e86 1.04931
\(875\) 5.70108e85 0.0926231
\(876\) −2.18376e85 −0.0343031
\(877\) −9.27906e86 −1.40934 −0.704670 0.709535i \(-0.748905\pi\)
−0.704670 + 0.709535i \(0.748905\pi\)
\(878\) 4.80734e86 0.706019
\(879\) 4.79294e86 0.680660
\(880\) −4.81153e86 −0.660760
\(881\) 9.83973e86 1.30675 0.653377 0.757033i \(-0.273352\pi\)
0.653377 + 0.757033i \(0.273352\pi\)
\(882\) 1.72776e86 0.221902
\(883\) −9.21451e86 −1.14454 −0.572270 0.820065i \(-0.693937\pi\)
−0.572270 + 0.820065i \(0.693937\pi\)
\(884\) −2.47643e86 −0.297498
\(885\) −1.47477e86 −0.171355
\(886\) −4.58332e86 −0.515093
\(887\) −2.01047e86 −0.218550 −0.109275 0.994012i \(-0.534853\pi\)
−0.109275 + 0.994012i \(0.534853\pi\)
\(888\) 1.37361e87 1.44438
\(889\) 1.14966e86 0.116941
\(890\) −1.04430e87 −1.02759
\(891\) −6.45012e86 −0.614010
\(892\) 3.12962e86 0.288223
\(893\) −4.99984e86 −0.445490
\(894\) 3.12904e85 0.0269745
\(895\) 1.30294e87 1.08679
\(896\) −7.37871e85 −0.0595517
\(897\) −2.95394e87 −2.30688
\(898\) −3.82913e86 −0.289366
\(899\) 1.45891e87 1.06689
\(900\) −7.90641e84 −0.00559533
\(901\) 8.74044e86 0.598621
\(902\) −7.77381e86 −0.515277
\(903\) 9.76951e85 0.0626735
\(904\) 3.36856e87 2.09159
\(905\) −8.00858e86 −0.481307
\(906\) 1.95819e86 0.113913
\(907\) 1.04265e87 0.587118 0.293559 0.955941i \(-0.405160\pi\)
0.293559 + 0.955941i \(0.405160\pi\)
\(908\) −3.91542e86 −0.213425
\(909\) −4.78587e85 −0.0252538
\(910\) −2.06260e86 −0.105364
\(911\) −8.82970e86 −0.436671 −0.218335 0.975874i \(-0.570063\pi\)
−0.218335 + 0.975874i \(0.570063\pi\)
\(912\) 8.96060e86 0.429032
\(913\) 4.91361e86 0.227779
\(914\) −7.18633e86 −0.322548
\(915\) 3.66908e86 0.159454
\(916\) 1.29020e86 0.0542927
\(917\) −1.08139e86 −0.0440643
\(918\) 3.14052e87 1.23920
\(919\) −4.47608e86 −0.171037 −0.0855186 0.996337i \(-0.527255\pi\)
−0.0855186 + 0.996337i \(0.527255\pi\)
\(920\) −5.01272e87 −1.85495
\(921\) −9.81917e86 −0.351897
\(922\) −2.61276e87 −0.906853
\(923\) −3.86321e85 −0.0129867
\(924\) −3.45942e85 −0.0112637
\(925\) −6.75452e86 −0.213017
\(926\) −2.34648e87 −0.716791
\(927\) −6.56763e86 −0.194337
\(928\) −1.06719e87 −0.305897
\(929\) 3.23475e87 0.898208 0.449104 0.893480i \(-0.351743\pi\)
0.449104 + 0.893480i \(0.351743\pi\)
\(930\) 3.16039e87 0.850146
\(931\) −2.33636e87 −0.608870
\(932\) −1.25400e86 −0.0316612
\(933\) 3.79018e87 0.927152
\(934\) 1.08515e87 0.257193
\(935\) 4.48828e87 1.03071
\(936\) 1.66195e87 0.369812
\(937\) 4.49837e87 0.969923 0.484962 0.874535i \(-0.338834\pi\)
0.484962 + 0.874535i \(0.338834\pi\)
\(938\) −2.11324e86 −0.0441534
\(939\) 2.68181e87 0.542992
\(940\) 5.75188e86 0.112860
\(941\) −6.41416e86 −0.121968 −0.0609840 0.998139i \(-0.519424\pi\)
−0.0609840 + 0.998139i \(0.519424\pi\)
\(942\) −6.74418e87 −1.24287
\(943\) −6.70509e87 −1.19759
\(944\) −9.86585e86 −0.170789
\(945\) −5.25456e86 −0.0881654
\(946\) 4.07758e87 0.663153
\(947\) −4.17909e87 −0.658806 −0.329403 0.944189i \(-0.606847\pi\)
−0.329403 + 0.944189i \(0.606847\pi\)
\(948\) 1.37668e87 0.210372
\(949\) −2.25723e87 −0.334366
\(950\) −5.32217e86 −0.0764263
\(951\) −9.74840e87 −1.35709
\(952\) 8.68922e86 0.117271
\(953\) 1.20950e88 1.58258 0.791290 0.611441i \(-0.209410\pi\)
0.791290 + 0.611441i \(0.209410\pi\)
\(954\) −8.40614e86 −0.106640
\(955\) −6.63489e87 −0.816083
\(956\) −9.66392e86 −0.115251
\(957\) 6.13879e87 0.709872
\(958\) −1.17647e87 −0.131916
\(959\) 2.15911e86 0.0234761
\(960\) −8.47414e87 −0.893499
\(961\) 3.24108e87 0.331398
\(962\) 2.03472e88 2.01762
\(963\) −2.97065e87 −0.285678
\(964\) 8.29137e86 0.0773311
\(965\) −1.77134e88 −1.60231
\(966\) 1.48534e87 0.130317
\(967\) −4.94615e87 −0.420907 −0.210454 0.977604i \(-0.567494\pi\)
−0.210454 + 0.977604i \(0.567494\pi\)
\(968\) 2.82927e87 0.233535
\(969\) −8.35861e87 −0.669241
\(970\) 1.93358e88 1.50175
\(971\) 1.84748e88 1.39191 0.695955 0.718085i \(-0.254981\pi\)
0.695955 + 0.718085i \(0.254981\pi\)
\(972\) 1.09408e87 0.0799641
\(973\) −4.19142e85 −0.00297189
\(974\) −1.36336e88 −0.937826
\(975\) 2.51768e87 0.168021
\(976\) 2.45453e87 0.158927
\(977\) 2.10891e88 1.32486 0.662429 0.749125i \(-0.269526\pi\)
0.662429 + 0.749125i \(0.269526\pi\)
\(978\) 6.87238e87 0.418900
\(979\) −1.81044e88 −1.07077
\(980\) 2.68778e87 0.154250
\(981\) −4.07587e87 −0.226979
\(982\) −1.88424e88 −1.01823
\(983\) −2.64046e88 −1.38468 −0.692342 0.721569i \(-0.743421\pi\)
−0.692342 + 0.721569i \(0.743421\pi\)
\(984\) −1.16217e88 −0.591447
\(985\) 1.03853e88 0.512922
\(986\) −2.20968e88 −1.05916
\(987\) −1.18930e87 −0.0553269
\(988\) −3.22067e87 −0.145417
\(989\) 3.51701e88 1.54128
\(990\) −4.31661e87 −0.183613
\(991\) 5.37825e87 0.222059 0.111030 0.993817i \(-0.464585\pi\)
0.111030 + 0.993817i \(0.464585\pi\)
\(992\) −9.52486e87 −0.381737
\(993\) −2.50138e87 −0.0973144
\(994\) 1.94256e85 0.000733628 0
\(995\) 3.81169e88 1.39745
\(996\) 1.05271e87 0.0374678
\(997\) −1.80703e88 −0.624392 −0.312196 0.950018i \(-0.601065\pi\)
−0.312196 + 0.950018i \(0.601065\pi\)
\(998\) −4.53185e88 −1.52028
\(999\) 5.18354e88 1.68828
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))