Properties

Label 1.60.a.a.1.3
Level 1
Weight 60
Character 1.1
Self dual Yes
Analytic conductor 22.046
Analytic rank 0
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 60 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(22.045800551\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{39}\cdot 3^{13}\cdot 5^{3}\cdot 7^{2} \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(9.74166e6\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q-3.23738e8 q^{2} -8.24972e12 q^{3} -4.71654e17 q^{4} -7.71676e20 q^{5} +2.67075e21 q^{6} -4.97804e24 q^{7} +3.39315e26 q^{8} -1.40623e28 q^{9} +O(q^{10})\) \(q-3.23738e8 q^{2} -8.24972e12 q^{3} -4.71654e17 q^{4} -7.71676e20 q^{5} +2.67075e21 q^{6} -4.97804e24 q^{7} +3.39315e26 q^{8} -1.40623e28 q^{9} +2.49821e29 q^{10} -5.41469e30 q^{11} +3.89102e30 q^{12} -5.16559e32 q^{13} +1.61158e33 q^{14} +6.36611e33 q^{15} +1.62041e35 q^{16} -9.94078e35 q^{17} +4.55251e36 q^{18} -3.90272e37 q^{19} +3.63964e38 q^{20} +4.10675e37 q^{21} +1.75294e39 q^{22} +2.19671e40 q^{23} -2.79925e39 q^{24} +4.22011e41 q^{25} +1.67230e41 q^{26} +2.32582e41 q^{27} +2.34792e42 q^{28} -1.47397e43 q^{29} -2.06095e42 q^{30} -9.00895e43 q^{31} -2.48061e44 q^{32} +4.46697e43 q^{33} +3.21821e44 q^{34} +3.84144e45 q^{35} +6.63256e45 q^{36} -4.57851e45 q^{37} +1.26346e46 q^{38} +4.26147e45 q^{39} -2.61841e47 q^{40} +1.81556e46 q^{41} -1.32951e46 q^{42} -1.81438e48 q^{43} +2.55386e48 q^{44} +1.08516e49 q^{45} -7.11158e48 q^{46} +9.84593e48 q^{47} -1.33679e48 q^{48} -4.77936e49 q^{49} -1.36621e50 q^{50} +8.20087e48 q^{51} +2.43637e50 q^{52} -4.04855e50 q^{53} -7.52957e49 q^{54} +4.17839e51 q^{55} -1.68912e51 q^{56} +3.21964e50 q^{57} +4.77181e51 q^{58} -2.73608e52 q^{59} -3.00260e51 q^{60} -2.82665e52 q^{61} +2.91654e52 q^{62} +7.00029e52 q^{63} -1.31036e52 q^{64} +3.98616e53 q^{65} -1.44613e52 q^{66} -7.96736e53 q^{67} +4.68861e53 q^{68} -1.81222e53 q^{69} -1.24362e54 q^{70} -2.85479e54 q^{71} -4.77156e54 q^{72} +1.64698e55 q^{73} +1.48224e54 q^{74} -3.48148e54 q^{75} +1.84074e55 q^{76} +2.69546e55 q^{77} -1.37960e54 q^{78} -1.63561e56 q^{79} -1.25043e56 q^{80} +1.96787e56 q^{81} -5.87766e54 q^{82} -4.71355e55 q^{83} -1.93697e55 q^{84} +7.67106e56 q^{85} +5.87385e56 q^{86} +1.21599e56 q^{87} -1.83729e57 q^{88} +1.35054e57 q^{89} -3.51306e57 q^{90} +2.57145e57 q^{91} -1.03609e58 q^{92} +7.43213e56 q^{93} -3.18751e57 q^{94} +3.01164e58 q^{95} +2.04643e57 q^{96} +1.09114e58 q^{97} +1.54726e58 q^{98} +7.61432e58 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5q - 449691864q^{2} + 84016631749932q^{3} + 1738819379139544640q^{4} + \)\(17\!\cdots\!90\)\(q^{5} + \)\(31\!\cdots\!60\)\(q^{6} + \)\(14\!\cdots\!56\)\(q^{7} - \)\(34\!\cdots\!80\)\(q^{8} + \)\(32\!\cdots\!85\)\(q^{9} + O(q^{10}) \) \( 5q - 449691864q^{2} + 84016631749932q^{3} + 1738819379139544640q^{4} + \)\(17\!\cdots\!90\)\(q^{5} + \)\(31\!\cdots\!60\)\(q^{6} + \)\(14\!\cdots\!56\)\(q^{7} - \)\(34\!\cdots\!80\)\(q^{8} + \)\(32\!\cdots\!85\)\(q^{9} - \)\(81\!\cdots\!60\)\(q^{10} + \)\(42\!\cdots\!60\)\(q^{11} - \)\(44\!\cdots\!44\)\(q^{12} - \)\(84\!\cdots\!78\)\(q^{13} + \)\(62\!\cdots\!80\)\(q^{14} - \)\(40\!\cdots\!20\)\(q^{15} + \)\(69\!\cdots\!80\)\(q^{16} - \)\(34\!\cdots\!54\)\(q^{17} + \)\(96\!\cdots\!52\)\(q^{18} + \)\(64\!\cdots\!00\)\(q^{19} + \)\(16\!\cdots\!20\)\(q^{20} + \)\(34\!\cdots\!60\)\(q^{21} + \)\(16\!\cdots\!12\)\(q^{22} + \)\(26\!\cdots\!12\)\(q^{23} + \)\(43\!\cdots\!00\)\(q^{24} + \)\(62\!\cdots\!75\)\(q^{25} + \)\(27\!\cdots\!60\)\(q^{26} + \)\(42\!\cdots\!80\)\(q^{27} - \)\(56\!\cdots\!52\)\(q^{28} - \)\(17\!\cdots\!50\)\(q^{29} - \)\(15\!\cdots\!20\)\(q^{30} - \)\(35\!\cdots\!40\)\(q^{31} - \)\(10\!\cdots\!84\)\(q^{32} + \)\(75\!\cdots\!44\)\(q^{33} + \)\(13\!\cdots\!80\)\(q^{34} + \)\(87\!\cdots\!40\)\(q^{35} + \)\(50\!\cdots\!80\)\(q^{36} + \)\(12\!\cdots\!26\)\(q^{37} - \)\(45\!\cdots\!20\)\(q^{38} - \)\(92\!\cdots\!80\)\(q^{39} - \)\(62\!\cdots\!00\)\(q^{40} - \)\(12\!\cdots\!90\)\(q^{41} - \)\(18\!\cdots\!88\)\(q^{42} + \)\(13\!\cdots\!92\)\(q^{43} + \)\(10\!\cdots\!80\)\(q^{44} + \)\(10\!\cdots\!30\)\(q^{45} + \)\(35\!\cdots\!60\)\(q^{46} + \)\(58\!\cdots\!16\)\(q^{47} - \)\(14\!\cdots\!88\)\(q^{48} - \)\(17\!\cdots\!35\)\(q^{49} - \)\(23\!\cdots\!00\)\(q^{50} - \)\(46\!\cdots\!40\)\(q^{51} - \)\(99\!\cdots\!24\)\(q^{52} + \)\(22\!\cdots\!82\)\(q^{53} + \)\(42\!\cdots\!00\)\(q^{54} + \)\(90\!\cdots\!80\)\(q^{55} + \)\(13\!\cdots\!00\)\(q^{56} - \)\(14\!\cdots\!40\)\(q^{57} - \)\(19\!\cdots\!80\)\(q^{58} - \)\(21\!\cdots\!00\)\(q^{59} - \)\(15\!\cdots\!60\)\(q^{60} - \)\(55\!\cdots\!90\)\(q^{61} + \)\(18\!\cdots\!92\)\(q^{62} + \)\(18\!\cdots\!92\)\(q^{63} + \)\(44\!\cdots\!40\)\(q^{64} + \)\(10\!\cdots\!80\)\(q^{65} + \)\(18\!\cdots\!20\)\(q^{66} + \)\(25\!\cdots\!96\)\(q^{67} - \)\(58\!\cdots\!32\)\(q^{68} - \)\(11\!\cdots\!80\)\(q^{69} - \)\(57\!\cdots\!60\)\(q^{70} - \)\(63\!\cdots\!40\)\(q^{71} + \)\(50\!\cdots\!40\)\(q^{72} + \)\(12\!\cdots\!62\)\(q^{73} + \)\(30\!\cdots\!80\)\(q^{74} + \)\(71\!\cdots\!00\)\(q^{75} + \)\(44\!\cdots\!00\)\(q^{76} + \)\(17\!\cdots\!52\)\(q^{77} - \)\(20\!\cdots\!56\)\(q^{78} - \)\(19\!\cdots\!00\)\(q^{79} - \)\(20\!\cdots\!60\)\(q^{80} - \)\(27\!\cdots\!95\)\(q^{81} - \)\(90\!\cdots\!68\)\(q^{82} + \)\(13\!\cdots\!52\)\(q^{83} + \)\(17\!\cdots\!80\)\(q^{84} + \)\(24\!\cdots\!40\)\(q^{85} - \)\(14\!\cdots\!40\)\(q^{86} + \)\(27\!\cdots\!40\)\(q^{87} - \)\(76\!\cdots\!60\)\(q^{88} + \)\(41\!\cdots\!50\)\(q^{89} - \)\(27\!\cdots\!20\)\(q^{90} + \)\(20\!\cdots\!60\)\(q^{91} - \)\(40\!\cdots\!04\)\(q^{92} + \)\(35\!\cdots\!04\)\(q^{93} - \)\(11\!\cdots\!20\)\(q^{94} + \)\(87\!\cdots\!00\)\(q^{95} + \)\(35\!\cdots\!60\)\(q^{96} + \)\(11\!\cdots\!66\)\(q^{97} - \)\(10\!\cdots\!52\)\(q^{98} + \)\(23\!\cdots\!20\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.23738e8 −0.426392 −0.213196 0.977009i \(-0.568387\pi\)
−0.213196 + 0.977009i \(0.568387\pi\)
\(3\) −8.24972e12 −0.0694005 −0.0347002 0.999398i \(-0.511048\pi\)
−0.0347002 + 0.999398i \(0.511048\pi\)
\(4\) −4.71654e17 −0.818190
\(5\) −7.71676e20 −1.85276 −0.926381 0.376587i \(-0.877098\pi\)
−0.926381 + 0.376587i \(0.877098\pi\)
\(6\) 2.67075e21 0.0295918
\(7\) −4.97804e24 −0.584341 −0.292171 0.956366i \(-0.594378\pi\)
−0.292171 + 0.956366i \(0.594378\pi\)
\(8\) 3.39315e26 0.775262
\(9\) −1.40623e28 −0.995184
\(10\) 2.49821e29 0.790003
\(11\) −5.41469e30 −1.02918 −0.514588 0.857438i \(-0.672055\pi\)
−0.514588 + 0.857438i \(0.672055\pi\)
\(12\) 3.89102e30 0.0567828
\(13\) −5.16559e32 −0.710872 −0.355436 0.934701i \(-0.615668\pi\)
−0.355436 + 0.934701i \(0.615668\pi\)
\(14\) 1.61158e33 0.249159
\(15\) 6.36611e33 0.128583
\(16\) 1.62041e35 0.487624
\(17\) −9.94078e35 −0.500239 −0.250119 0.968215i \(-0.580470\pi\)
−0.250119 + 0.968215i \(0.580470\pi\)
\(18\) 4.55251e36 0.424338
\(19\) −3.90272e37 −0.738136 −0.369068 0.929402i \(-0.620323\pi\)
−0.369068 + 0.929402i \(0.620323\pi\)
\(20\) 3.63964e38 1.51591
\(21\) 4.10675e37 0.0405536
\(22\) 1.75294e39 0.438833
\(23\) 2.19671e40 1.48184 0.740920 0.671594i \(-0.234390\pi\)
0.740920 + 0.671594i \(0.234390\pi\)
\(24\) −2.79925e39 −0.0538035
\(25\) 4.22011e41 2.43273
\(26\) 1.67230e41 0.303110
\(27\) 2.32582e41 0.138467
\(28\) 2.34792e42 0.478102
\(29\) −1.47397e43 −1.06598 −0.532989 0.846122i \(-0.678931\pi\)
−0.532989 + 0.846122i \(0.678931\pi\)
\(30\) −2.06095e42 −0.0548266
\(31\) −9.00895e43 −0.910970 −0.455485 0.890243i \(-0.650534\pi\)
−0.455485 + 0.890243i \(0.650534\pi\)
\(32\) −2.48061e44 −0.983181
\(33\) 4.46697e43 0.0714253
\(34\) 3.21821e44 0.213298
\(35\) 3.84144e45 1.08265
\(36\) 6.63256e45 0.814249
\(37\) −4.57851e45 −0.250480 −0.125240 0.992126i \(-0.539970\pi\)
−0.125240 + 0.992126i \(0.539970\pi\)
\(38\) 1.26346e46 0.314736
\(39\) 4.26147e45 0.0493348
\(40\) −2.61841e47 −1.43638
\(41\) 1.81556e46 0.0480714 0.0240357 0.999711i \(-0.492348\pi\)
0.0240357 + 0.999711i \(0.492348\pi\)
\(42\) −1.32951e46 −0.0172917
\(43\) −1.81438e48 −1.17872 −0.589359 0.807871i \(-0.700620\pi\)
−0.589359 + 0.807871i \(0.700620\pi\)
\(44\) 2.55386e48 0.842061
\(45\) 1.08516e49 1.84384
\(46\) −7.11158e48 −0.631845
\(47\) 9.84593e48 0.463842 0.231921 0.972735i \(-0.425499\pi\)
0.231921 + 0.972735i \(0.425499\pi\)
\(48\) −1.33679e48 −0.0338414
\(49\) −4.77936e49 −0.658545
\(50\) −1.36621e50 −1.03730
\(51\) 8.20087e48 0.0347168
\(52\) 2.43637e50 0.581628
\(53\) −4.04855e50 −0.551013 −0.275506 0.961299i \(-0.588846\pi\)
−0.275506 + 0.961299i \(0.588846\pi\)
\(54\) −7.52957e49 −0.0590411
\(55\) 4.17839e51 1.90682
\(56\) −1.68912e51 −0.453017
\(57\) 3.21964e50 0.0512270
\(58\) 4.77181e51 0.454524
\(59\) −2.73608e52 −1.57396 −0.786980 0.616978i \(-0.788357\pi\)
−0.786980 + 0.616978i \(0.788357\pi\)
\(60\) −3.00260e51 −0.105205
\(61\) −2.82665e52 −0.608194 −0.304097 0.952641i \(-0.598355\pi\)
−0.304097 + 0.952641i \(0.598355\pi\)
\(62\) 2.91654e52 0.388430
\(63\) 7.00029e52 0.581527
\(64\) −1.31036e52 −0.0684039
\(65\) 3.98616e53 1.31708
\(66\) −1.44613e52 −0.0304552
\(67\) −7.96736e53 −1.07673 −0.538366 0.842711i \(-0.680958\pi\)
−0.538366 + 0.842711i \(0.680958\pi\)
\(68\) 4.68861e53 0.409290
\(69\) −1.81222e53 −0.102840
\(70\) −1.24362e54 −0.461632
\(71\) −2.85479e54 −0.697354 −0.348677 0.937243i \(-0.613369\pi\)
−0.348677 + 0.937243i \(0.613369\pi\)
\(72\) −4.77156e54 −0.771528
\(73\) 1.64698e55 1.77282 0.886410 0.462902i \(-0.153192\pi\)
0.886410 + 0.462902i \(0.153192\pi\)
\(74\) 1.48224e54 0.106803
\(75\) −3.48148e54 −0.168833
\(76\) 1.84074e55 0.603936
\(77\) 2.69546e55 0.601390
\(78\) −1.37960e54 −0.0210360
\(79\) −1.63561e56 −1.71270 −0.856349 0.516397i \(-0.827273\pi\)
−0.856349 + 0.516397i \(0.827273\pi\)
\(80\) −1.25043e56 −0.903452
\(81\) 1.96787e56 0.985574
\(82\) −5.87766e54 −0.0204973
\(83\) −4.71355e55 −0.114959 −0.0574797 0.998347i \(-0.518306\pi\)
−0.0574797 + 0.998347i \(0.518306\pi\)
\(84\) −1.93697e55 −0.0331805
\(85\) 7.67106e56 0.926823
\(86\) 5.87385e56 0.502596
\(87\) 1.21599e56 0.0739793
\(88\) −1.83729e57 −0.797881
\(89\) 1.35054e57 0.420244 0.210122 0.977675i \(-0.432614\pi\)
0.210122 + 0.977675i \(0.432614\pi\)
\(90\) −3.51306e57 −0.786198
\(91\) 2.57145e57 0.415392
\(92\) −1.03609e58 −1.21243
\(93\) 7.43213e56 0.0632218
\(94\) −3.18751e57 −0.197779
\(95\) 3.01164e58 1.36759
\(96\) 2.04643e57 0.0682332
\(97\) 1.09114e58 0.267987 0.133994 0.990982i \(-0.457220\pi\)
0.133994 + 0.990982i \(0.457220\pi\)
\(98\) 1.54726e58 0.280798
\(99\) 7.61432e58 1.02422
\(100\) −1.99043e59 −1.99043
\(101\) −7.05413e58 −0.525972 −0.262986 0.964800i \(-0.584707\pi\)
−0.262986 + 0.964800i \(0.584707\pi\)
\(102\) −2.65493e57 −0.0148030
\(103\) 1.13759e59 0.475648 0.237824 0.971308i \(-0.423566\pi\)
0.237824 + 0.971308i \(0.423566\pi\)
\(104\) −1.75276e59 −0.551112
\(105\) −3.16908e58 −0.0751361
\(106\) 1.31067e59 0.234948
\(107\) 8.55072e59 1.16193 0.580967 0.813927i \(-0.302675\pi\)
0.580967 + 0.813927i \(0.302675\pi\)
\(108\) −1.09698e59 −0.113292
\(109\) 8.25998e59 0.649976 0.324988 0.945718i \(-0.394640\pi\)
0.324988 + 0.945718i \(0.394640\pi\)
\(110\) −1.35270e60 −0.813052
\(111\) 3.77715e58 0.0173834
\(112\) −8.06647e59 −0.284939
\(113\) 2.15843e60 0.586577 0.293288 0.956024i \(-0.405250\pi\)
0.293288 + 0.956024i \(0.405250\pi\)
\(114\) −1.04232e59 −0.0218428
\(115\) −1.69515e61 −2.74550
\(116\) 6.95205e60 0.872172
\(117\) 7.26402e60 0.707448
\(118\) 8.85772e60 0.671124
\(119\) 4.94856e60 0.292310
\(120\) 2.16012e60 0.0996852
\(121\) 1.63876e60 0.0592034
\(122\) 9.15095e60 0.259329
\(123\) −1.49779e59 −0.00333618
\(124\) 4.24911e61 0.745347
\(125\) −1.91791e62 −2.65451
\(126\) −2.26626e61 −0.247958
\(127\) 2.24486e61 0.194527 0.0972633 0.995259i \(-0.468991\pi\)
0.0972633 + 0.995259i \(0.468991\pi\)
\(128\) 1.47239e62 1.01235
\(129\) 1.49682e61 0.0818035
\(130\) −1.29047e62 −0.561591
\(131\) 2.32590e62 0.807399 0.403699 0.914892i \(-0.367724\pi\)
0.403699 + 0.914892i \(0.367724\pi\)
\(132\) −2.10687e61 −0.0584395
\(133\) 1.94279e62 0.431324
\(134\) 2.57934e62 0.459110
\(135\) −1.79478e62 −0.256546
\(136\) −3.37305e62 −0.387816
\(137\) −4.33788e62 −0.401810 −0.200905 0.979611i \(-0.564388\pi\)
−0.200905 + 0.979611i \(0.564388\pi\)
\(138\) 5.86686e61 0.0438503
\(139\) −3.58922e62 −0.216802 −0.108401 0.994107i \(-0.534573\pi\)
−0.108401 + 0.994107i \(0.534573\pi\)
\(140\) −1.81183e63 −0.885810
\(141\) −8.12262e61 −0.0321909
\(142\) 9.24205e62 0.297346
\(143\) 2.79701e63 0.731612
\(144\) −2.27867e63 −0.485276
\(145\) 1.13743e64 1.97500
\(146\) −5.33191e63 −0.755916
\(147\) 3.94284e62 0.0457033
\(148\) 2.15947e63 0.204940
\(149\) −2.37342e63 −0.184663 −0.0923313 0.995728i \(-0.529432\pi\)
−0.0923313 + 0.995728i \(0.529432\pi\)
\(150\) 1.12709e63 0.0719888
\(151\) −3.15470e64 −1.65630 −0.828150 0.560507i \(-0.810606\pi\)
−0.828150 + 0.560507i \(0.810606\pi\)
\(152\) −1.32425e64 −0.572249
\(153\) 1.39790e64 0.497829
\(154\) −8.72623e63 −0.256428
\(155\) 6.95199e64 1.68781
\(156\) −2.00994e63 −0.0403652
\(157\) −7.08856e64 −1.17901 −0.589506 0.807764i \(-0.700678\pi\)
−0.589506 + 0.807764i \(0.700678\pi\)
\(158\) 5.29510e64 0.730281
\(159\) 3.33995e63 0.0382406
\(160\) 1.91422e65 1.82160
\(161\) −1.09353e65 −0.865900
\(162\) −6.37076e64 −0.420241
\(163\) −1.42919e65 −0.786243 −0.393122 0.919486i \(-0.628605\pi\)
−0.393122 + 0.919486i \(0.628605\pi\)
\(164\) −8.56317e63 −0.0393316
\(165\) −3.44705e64 −0.132334
\(166\) 1.52596e64 0.0490178
\(167\) −3.84006e64 −0.103324 −0.0516621 0.998665i \(-0.516452\pi\)
−0.0516621 + 0.998665i \(0.516452\pi\)
\(168\) 1.39348e64 0.0314396
\(169\) −2.61196e65 −0.494662
\(170\) −2.48341e65 −0.395190
\(171\) 5.48814e65 0.734581
\(172\) 8.55762e65 0.964415
\(173\) 1.60962e66 1.52885 0.764423 0.644715i \(-0.223024\pi\)
0.764423 + 0.644715i \(0.223024\pi\)
\(174\) −3.93661e64 −0.0315442
\(175\) −2.10079e66 −1.42154
\(176\) −8.77402e65 −0.501851
\(177\) 2.25719e65 0.109234
\(178\) −4.37221e65 −0.179189
\(179\) 1.29253e66 0.449030 0.224515 0.974471i \(-0.427920\pi\)
0.224515 + 0.974471i \(0.427920\pi\)
\(180\) −5.11818e66 −1.50861
\(181\) 7.40860e65 0.185446 0.0927231 0.995692i \(-0.470443\pi\)
0.0927231 + 0.995692i \(0.470443\pi\)
\(182\) −8.32478e65 −0.177120
\(183\) 2.33191e65 0.0422089
\(184\) 7.45376e66 1.14881
\(185\) 3.53313e66 0.464080
\(186\) −2.40607e65 −0.0269573
\(187\) 5.38263e66 0.514834
\(188\) −4.64388e66 −0.379511
\(189\) −1.15780e66 −0.0809118
\(190\) −9.74982e66 −0.583130
\(191\) 1.84854e67 0.946989 0.473494 0.880797i \(-0.342992\pi\)
0.473494 + 0.880797i \(0.342992\pi\)
\(192\) 1.08101e65 0.00474726
\(193\) −4.21306e67 −1.58729 −0.793647 0.608379i \(-0.791820\pi\)
−0.793647 + 0.608379i \(0.791820\pi\)
\(194\) −3.53244e66 −0.114268
\(195\) −3.28847e66 −0.0914057
\(196\) 2.25421e67 0.538815
\(197\) 5.58072e66 0.114799 0.0573993 0.998351i \(-0.481719\pi\)
0.0573993 + 0.998351i \(0.481719\pi\)
\(198\) −2.46505e67 −0.436719
\(199\) −5.98440e67 −0.913808 −0.456904 0.889516i \(-0.651042\pi\)
−0.456904 + 0.889516i \(0.651042\pi\)
\(200\) 1.43195e68 1.88600
\(201\) 6.57285e66 0.0747257
\(202\) 2.28369e67 0.224270
\(203\) 7.33749e67 0.622895
\(204\) −3.86797e66 −0.0284049
\(205\) −1.40102e67 −0.0890649
\(206\) −3.68280e67 −0.202813
\(207\) −3.08908e68 −1.47470
\(208\) −8.37038e67 −0.346638
\(209\) 2.11321e68 0.759672
\(210\) 1.02595e67 0.0320374
\(211\) −4.69123e68 −1.27337 −0.636685 0.771124i \(-0.719695\pi\)
−0.636685 + 0.771124i \(0.719695\pi\)
\(212\) 1.90952e68 0.450833
\(213\) 2.35512e67 0.0483967
\(214\) −2.76820e68 −0.495439
\(215\) 1.40012e69 2.18388
\(216\) 7.89186e67 0.107348
\(217\) 4.48469e68 0.532318
\(218\) −2.67407e68 −0.277145
\(219\) −1.35871e68 −0.123034
\(220\) −1.97075e69 −1.56014
\(221\) 5.13500e68 0.355605
\(222\) −1.22281e67 −0.00741216
\(223\) 1.78943e69 0.949997 0.474998 0.879987i \(-0.342449\pi\)
0.474998 + 0.879987i \(0.342449\pi\)
\(224\) 1.23486e69 0.574513
\(225\) −5.93446e69 −2.42101
\(226\) −6.98768e68 −0.250112
\(227\) 3.77818e68 0.118719 0.0593595 0.998237i \(-0.481094\pi\)
0.0593595 + 0.998237i \(0.481094\pi\)
\(228\) −1.51856e68 −0.0419134
\(229\) 2.57281e69 0.624110 0.312055 0.950064i \(-0.398983\pi\)
0.312055 + 0.950064i \(0.398983\pi\)
\(230\) 5.48784e69 1.17066
\(231\) −2.22368e68 −0.0417368
\(232\) −5.00140e69 −0.826412
\(233\) 9.08473e69 1.32225 0.661123 0.750277i \(-0.270080\pi\)
0.661123 + 0.750277i \(0.270080\pi\)
\(234\) −2.35164e69 −0.301650
\(235\) −7.59787e69 −0.859389
\(236\) 1.29048e70 1.28780
\(237\) 1.34933e69 0.118862
\(238\) −1.60204e69 −0.124639
\(239\) −1.60292e70 −1.10198 −0.550992 0.834511i \(-0.685750\pi\)
−0.550992 + 0.834511i \(0.685750\pi\)
\(240\) 1.03157e69 0.0627000
\(241\) −2.77243e70 −1.49059 −0.745294 0.666736i \(-0.767691\pi\)
−0.745294 + 0.666736i \(0.767691\pi\)
\(242\) −5.30529e68 −0.0252439
\(243\) −4.90992e69 −0.206866
\(244\) 1.33320e70 0.497618
\(245\) 3.68812e70 1.22013
\(246\) 4.84891e67 0.00142252
\(247\) 2.01599e70 0.524720
\(248\) −3.05687e70 −0.706240
\(249\) 3.88855e68 0.00797824
\(250\) 6.20902e70 1.13186
\(251\) 5.84246e70 0.946719 0.473360 0.880869i \(-0.343041\pi\)
0.473360 + 0.880869i \(0.343041\pi\)
\(252\) −3.30172e70 −0.475799
\(253\) −1.18945e71 −1.52507
\(254\) −7.26746e69 −0.0829446
\(255\) −6.32841e69 −0.0643220
\(256\) −4.01133e70 −0.363253
\(257\) 1.26421e70 0.102045 0.0510224 0.998698i \(-0.483752\pi\)
0.0510224 + 0.998698i \(0.483752\pi\)
\(258\) −4.84577e69 −0.0348804
\(259\) 2.27920e70 0.146366
\(260\) −1.88009e71 −1.07762
\(261\) 2.07275e71 1.06084
\(262\) −7.52983e70 −0.344268
\(263\) 9.45182e70 0.386208 0.193104 0.981178i \(-0.438145\pi\)
0.193104 + 0.981178i \(0.438145\pi\)
\(264\) 1.51571e70 0.0553733
\(265\) 3.12417e71 1.02090
\(266\) −6.28957e70 −0.183913
\(267\) −1.11416e70 −0.0291651
\(268\) 3.75784e71 0.880971
\(269\) −6.14377e71 −1.29045 −0.645227 0.763991i \(-0.723237\pi\)
−0.645227 + 0.763991i \(0.723237\pi\)
\(270\) 5.81039e70 0.109389
\(271\) 3.10484e71 0.524137 0.262068 0.965049i \(-0.415595\pi\)
0.262068 + 0.965049i \(0.415595\pi\)
\(272\) −1.61081e71 −0.243928
\(273\) −2.12138e70 −0.0288284
\(274\) 1.40434e71 0.171329
\(275\) −2.28506e72 −2.50371
\(276\) 8.54743e70 0.0841429
\(277\) 2.42201e71 0.214300 0.107150 0.994243i \(-0.465827\pi\)
0.107150 + 0.994243i \(0.465827\pi\)
\(278\) 1.16197e71 0.0924426
\(279\) 1.26687e72 0.906583
\(280\) 1.30346e72 0.839334
\(281\) 4.41465e71 0.255894 0.127947 0.991781i \(-0.459161\pi\)
0.127947 + 0.991781i \(0.459161\pi\)
\(282\) 2.62960e70 0.0137259
\(283\) −4.82991e71 −0.227111 −0.113556 0.993532i \(-0.536224\pi\)
−0.113556 + 0.993532i \(0.536224\pi\)
\(284\) 1.34647e72 0.570568
\(285\) −2.48452e71 −0.0949115
\(286\) −9.05499e71 −0.311954
\(287\) −9.03794e70 −0.0280901
\(288\) 3.48831e72 0.978445
\(289\) −2.96080e72 −0.749761
\(290\) −3.68229e72 −0.842126
\(291\) −9.00160e70 −0.0185984
\(292\) −7.76806e72 −1.45050
\(293\) −3.92066e72 −0.661857 −0.330929 0.943656i \(-0.607362\pi\)
−0.330929 + 0.943656i \(0.607362\pi\)
\(294\) −1.27645e71 −0.0194875
\(295\) 2.11136e73 2.91617
\(296\) −1.55356e72 −0.194188
\(297\) −1.25936e72 −0.142507
\(298\) 7.68366e71 0.0787387
\(299\) −1.13473e73 −1.05340
\(300\) 1.64205e72 0.138137
\(301\) 9.03208e72 0.688773
\(302\) 1.02130e73 0.706233
\(303\) 5.81946e71 0.0365027
\(304\) −6.32401e72 −0.359933
\(305\) 2.18126e73 1.12684
\(306\) −4.52555e72 −0.212270
\(307\) −3.54986e73 −1.51227 −0.756136 0.654415i \(-0.772915\pi\)
−0.756136 + 0.654415i \(0.772915\pi\)
\(308\) −1.27132e73 −0.492051
\(309\) −9.38477e71 −0.0330102
\(310\) −2.25062e73 −0.719669
\(311\) 3.81419e73 1.10910 0.554551 0.832150i \(-0.312890\pi\)
0.554551 + 0.832150i \(0.312890\pi\)
\(312\) 1.44598e72 0.0382474
\(313\) −4.16185e73 −1.00168 −0.500840 0.865540i \(-0.666975\pi\)
−0.500840 + 0.865540i \(0.666975\pi\)
\(314\) 2.29484e73 0.502722
\(315\) −5.40195e73 −1.07743
\(316\) 7.71443e73 1.40131
\(317\) 1.46541e73 0.242499 0.121250 0.992622i \(-0.461310\pi\)
0.121250 + 0.992622i \(0.461310\pi\)
\(318\) −1.08127e72 −0.0163055
\(319\) 7.98110e73 1.09708
\(320\) 1.01117e73 0.126736
\(321\) −7.05411e72 −0.0806387
\(322\) 3.54018e73 0.369213
\(323\) 3.87961e73 0.369244
\(324\) −9.28156e73 −0.806387
\(325\) −2.17994e74 −1.72936
\(326\) 4.62685e73 0.335248
\(327\) −6.81425e72 −0.0451086
\(328\) 6.16047e72 0.0372679
\(329\) −4.90135e73 −0.271042
\(330\) 1.11594e73 0.0564262
\(331\) −1.50576e74 −0.696353 −0.348177 0.937429i \(-0.613199\pi\)
−0.348177 + 0.937429i \(0.613199\pi\)
\(332\) 2.22317e73 0.0940586
\(333\) 6.43845e73 0.249274
\(334\) 1.24318e73 0.0440567
\(335\) 6.14822e74 1.99493
\(336\) 6.65462e72 0.0197749
\(337\) −2.34878e74 −0.639381 −0.319691 0.947522i \(-0.603579\pi\)
−0.319691 + 0.947522i \(0.603579\pi\)
\(338\) 8.45590e73 0.210920
\(339\) −1.78065e73 −0.0407087
\(340\) −3.61809e74 −0.758317
\(341\) 4.87807e74 0.937549
\(342\) −1.77672e74 −0.313220
\(343\) 5.99198e74 0.969157
\(344\) −6.15647e74 −0.913815
\(345\) 1.39845e74 0.190539
\(346\) −5.21096e74 −0.651888
\(347\) −1.16630e75 −1.33996 −0.669980 0.742379i \(-0.733697\pi\)
−0.669980 + 0.742379i \(0.733697\pi\)
\(348\) −5.73525e73 −0.0605291
\(349\) 1.43487e74 0.139144 0.0695718 0.997577i \(-0.477837\pi\)
0.0695718 + 0.997577i \(0.477837\pi\)
\(350\) 6.80106e74 0.606135
\(351\) −1.20142e74 −0.0984320
\(352\) 1.34317e75 1.01187
\(353\) −1.70914e75 −1.18419 −0.592097 0.805866i \(-0.701700\pi\)
−0.592097 + 0.805866i \(0.701700\pi\)
\(354\) −7.30738e73 −0.0465763
\(355\) 2.20297e75 1.29203
\(356\) −6.36987e74 −0.343840
\(357\) −4.08243e73 −0.0202865
\(358\) −4.18441e74 −0.191463
\(359\) 2.00456e75 0.844757 0.422379 0.906420i \(-0.361195\pi\)
0.422379 + 0.906420i \(0.361195\pi\)
\(360\) 3.68210e75 1.42946
\(361\) −1.27239e75 −0.455155
\(362\) −2.39845e74 −0.0790728
\(363\) −1.35193e73 −0.00410875
\(364\) −1.21284e75 −0.339869
\(365\) −1.27094e76 −3.28461
\(366\) −7.54928e73 −0.0179976
\(367\) 3.69368e75 0.812476 0.406238 0.913767i \(-0.366840\pi\)
0.406238 + 0.913767i \(0.366840\pi\)
\(368\) 3.55957e75 0.722581
\(369\) −2.55310e74 −0.0478399
\(370\) −1.14381e75 −0.197880
\(371\) 2.01539e75 0.321980
\(372\) −3.50540e74 −0.0517274
\(373\) 2.06268e75 0.281203 0.140602 0.990066i \(-0.455096\pi\)
0.140602 + 0.990066i \(0.455096\pi\)
\(374\) −1.74256e75 −0.219521
\(375\) 1.58223e75 0.184224
\(376\) 3.34087e75 0.359599
\(377\) 7.61393e75 0.757773
\(378\) 3.74825e74 0.0345001
\(379\) 1.63106e76 1.38872 0.694359 0.719629i \(-0.255688\pi\)
0.694359 + 0.719629i \(0.255688\pi\)
\(380\) −1.42045e76 −1.11895
\(381\) −1.85195e74 −0.0135002
\(382\) −5.98443e75 −0.403788
\(383\) −1.67919e76 −1.04891 −0.524453 0.851440i \(-0.675730\pi\)
−0.524453 + 0.851440i \(0.675730\pi\)
\(384\) −1.21468e75 −0.0702574
\(385\) −2.08002e76 −1.11423
\(386\) 1.36393e76 0.676809
\(387\) 2.55145e76 1.17304
\(388\) −5.14641e75 −0.219265
\(389\) −9.77054e75 −0.385838 −0.192919 0.981215i \(-0.561796\pi\)
−0.192919 + 0.981215i \(0.561796\pi\)
\(390\) 1.06460e75 0.0389747
\(391\) −2.18370e76 −0.741273
\(392\) −1.62171e76 −0.510545
\(393\) −1.91880e75 −0.0560339
\(394\) −1.80669e75 −0.0489492
\(395\) 1.26216e77 3.17322
\(396\) −3.59133e76 −0.838006
\(397\) −2.20390e76 −0.477388 −0.238694 0.971095i \(-0.576719\pi\)
−0.238694 + 0.971095i \(0.576719\pi\)
\(398\) 1.93738e76 0.389640
\(399\) −1.60275e75 −0.0299341
\(400\) 6.83831e76 1.18626
\(401\) −8.57114e76 −1.38127 −0.690636 0.723202i \(-0.742669\pi\)
−0.690636 + 0.723202i \(0.742669\pi\)
\(402\) −2.12788e75 −0.0318625
\(403\) 4.65365e76 0.647583
\(404\) 3.32711e76 0.430345
\(405\) −1.51856e77 −1.82603
\(406\) −2.37543e76 −0.265597
\(407\) 2.47912e76 0.257788
\(408\) 2.78268e75 0.0269146
\(409\) −1.18117e77 −1.06286 −0.531428 0.847104i \(-0.678344\pi\)
−0.531428 + 0.847104i \(0.678344\pi\)
\(410\) 4.53565e75 0.0379766
\(411\) 3.57863e75 0.0278858
\(412\) −5.36547e76 −0.389171
\(413\) 1.36203e77 0.919730
\(414\) 1.00005e77 0.628801
\(415\) 3.63733e76 0.212992
\(416\) 1.28138e77 0.698915
\(417\) 2.96100e75 0.0150462
\(418\) −6.84126e76 −0.323918
\(419\) 8.82341e76 0.389334 0.194667 0.980869i \(-0.437637\pi\)
0.194667 + 0.980869i \(0.437637\pi\)
\(420\) 1.49471e76 0.0614756
\(421\) 4.95671e76 0.190052 0.0950258 0.995475i \(-0.469707\pi\)
0.0950258 + 0.995475i \(0.469707\pi\)
\(422\) 1.51873e77 0.542955
\(423\) −1.38457e77 −0.461608
\(424\) −1.37373e77 −0.427179
\(425\) −4.19512e77 −1.21694
\(426\) −7.62444e75 −0.0206360
\(427\) 1.40712e77 0.355393
\(428\) −4.03298e77 −0.950682
\(429\) −2.30746e76 −0.0507742
\(430\) −4.53271e77 −0.931191
\(431\) 8.16025e77 1.56540 0.782698 0.622402i \(-0.213843\pi\)
0.782698 + 0.622402i \(0.213843\pi\)
\(432\) 3.76878e76 0.0675197
\(433\) 5.70929e77 0.955408 0.477704 0.878521i \(-0.341469\pi\)
0.477704 + 0.878521i \(0.341469\pi\)
\(434\) −1.45187e77 −0.226976
\(435\) −9.38347e76 −0.137066
\(436\) −3.89585e77 −0.531804
\(437\) −8.57314e77 −1.09380
\(438\) 4.39868e76 0.0524609
\(439\) 1.20511e78 1.34376 0.671881 0.740659i \(-0.265487\pi\)
0.671881 + 0.740659i \(0.265487\pi\)
\(440\) 1.41779e78 1.47828
\(441\) 6.72090e77 0.655373
\(442\) −1.66240e77 −0.151627
\(443\) −9.08891e77 −0.775536 −0.387768 0.921757i \(-0.626754\pi\)
−0.387768 + 0.921757i \(0.626754\pi\)
\(444\) −1.78151e76 −0.0142230
\(445\) −1.04218e78 −0.778613
\(446\) −5.79308e77 −0.405071
\(447\) 1.95800e76 0.0128157
\(448\) 6.52302e76 0.0399712
\(449\) −2.07903e78 −1.19287 −0.596435 0.802661i \(-0.703417\pi\)
−0.596435 + 0.802661i \(0.703417\pi\)
\(450\) 1.92121e78 1.03230
\(451\) −9.83071e76 −0.0494740
\(452\) −1.01803e78 −0.479931
\(453\) 2.60254e77 0.114948
\(454\) −1.22314e77 −0.0506208
\(455\) −1.98433e78 −0.769622
\(456\) 1.09247e77 0.0397143
\(457\) 1.64014e78 0.558923 0.279462 0.960157i \(-0.409844\pi\)
0.279462 + 0.960157i \(0.409844\pi\)
\(458\) −8.32918e77 −0.266116
\(459\) −2.31205e77 −0.0692664
\(460\) 7.99523e78 2.24634
\(461\) 2.32024e78 0.611441 0.305721 0.952121i \(-0.401103\pi\)
0.305721 + 0.952121i \(0.401103\pi\)
\(462\) 7.19890e76 0.0177962
\(463\) 1.52939e78 0.354713 0.177357 0.984147i \(-0.443245\pi\)
0.177357 + 0.984147i \(0.443245\pi\)
\(464\) −2.38844e78 −0.519797
\(465\) −5.73520e77 −0.117135
\(466\) −2.94108e78 −0.563796
\(467\) −7.17147e78 −1.29051 −0.645254 0.763968i \(-0.723248\pi\)
−0.645254 + 0.763968i \(0.723248\pi\)
\(468\) −3.42611e78 −0.578827
\(469\) 3.96619e78 0.629179
\(470\) 2.45972e78 0.366437
\(471\) 5.84787e77 0.0818240
\(472\) −9.28391e78 −1.22023
\(473\) 9.82433e78 1.21311
\(474\) −4.36831e77 −0.0506818
\(475\) −1.64699e79 −1.79569
\(476\) −2.33401e78 −0.239165
\(477\) 5.69321e78 0.548359
\(478\) 5.18928e78 0.469877
\(479\) 1.52757e79 1.30048 0.650241 0.759728i \(-0.274668\pi\)
0.650241 + 0.759728i \(0.274668\pi\)
\(480\) −1.57918e78 −0.126420
\(481\) 2.36507e78 0.178059
\(482\) 8.97542e78 0.635575
\(483\) 9.02133e77 0.0600939
\(484\) −7.72928e77 −0.0484397
\(485\) −8.42006e78 −0.496517
\(486\) 1.58953e78 0.0882060
\(487\) 4.49651e78 0.234840 0.117420 0.993082i \(-0.462538\pi\)
0.117420 + 0.993082i \(0.462538\pi\)
\(488\) −9.59125e78 −0.471509
\(489\) 1.17905e78 0.0545656
\(490\) −1.19398e79 −0.520253
\(491\) 1.13413e79 0.465326 0.232663 0.972557i \(-0.425256\pi\)
0.232663 + 0.972557i \(0.425256\pi\)
\(492\) 7.06438e76 0.00272963
\(493\) 1.46524e79 0.533243
\(494\) −6.52652e78 −0.223737
\(495\) −5.87579e79 −1.89763
\(496\) −1.45982e79 −0.444211
\(497\) 1.42113e79 0.407493
\(498\) −1.25887e77 −0.00340186
\(499\) −2.74327e79 −0.698719 −0.349359 0.936989i \(-0.613601\pi\)
−0.349359 + 0.936989i \(0.613601\pi\)
\(500\) 9.04592e79 2.17189
\(501\) 3.16795e77 0.00717075
\(502\) −1.89143e79 −0.403674
\(503\) −5.28271e79 −1.06317 −0.531583 0.847006i \(-0.678403\pi\)
−0.531583 + 0.847006i \(0.678403\pi\)
\(504\) 2.37530e79 0.450836
\(505\) 5.44350e79 0.974502
\(506\) 3.85070e79 0.650279
\(507\) 2.15479e78 0.0343297
\(508\) −1.05880e79 −0.159160
\(509\) 1.13708e80 1.61294 0.806470 0.591275i \(-0.201375\pi\)
0.806470 + 0.591275i \(0.201375\pi\)
\(510\) 2.04875e78 0.0274264
\(511\) −8.19875e79 −1.03593
\(512\) −7.18915e79 −0.857459
\(513\) −9.07704e78 −0.102207
\(514\) −4.09272e78 −0.0435111
\(515\) −8.77847e79 −0.881263
\(516\) −7.05980e78 −0.0669308
\(517\) −5.33127e79 −0.477375
\(518\) −7.37865e78 −0.0624093
\(519\) −1.32789e79 −0.106103
\(520\) 1.35256e80 1.02108
\(521\) −1.18992e80 −0.848797 −0.424398 0.905476i \(-0.639514\pi\)
−0.424398 + 0.905476i \(0.639514\pi\)
\(522\) −6.71027e79 −0.452335
\(523\) 2.64671e80 1.68619 0.843097 0.537762i \(-0.180730\pi\)
0.843097 + 0.537762i \(0.180730\pi\)
\(524\) −1.09702e80 −0.660606
\(525\) 1.73309e79 0.0986558
\(526\) −3.05992e79 −0.164676
\(527\) 8.95559e79 0.455702
\(528\) 7.23833e78 0.0348287
\(529\) 2.62796e80 1.19585
\(530\) −1.01141e80 −0.435302
\(531\) 3.84756e80 1.56638
\(532\) −9.16327e79 −0.352905
\(533\) −9.37844e78 −0.0341726
\(534\) 3.60695e78 0.0124358
\(535\) −6.59838e80 −2.15279
\(536\) −2.70344e80 −0.834749
\(537\) −1.06630e79 −0.0311629
\(538\) 1.98897e80 0.550240
\(539\) 2.58788e80 0.677759
\(540\) 8.46516e79 0.209903
\(541\) −1.23574e80 −0.290141 −0.145071 0.989421i \(-0.546341\pi\)
−0.145071 + 0.989421i \(0.546341\pi\)
\(542\) −1.00515e80 −0.223488
\(543\) −6.11189e78 −0.0128701
\(544\) 2.46591e80 0.491825
\(545\) −6.37403e80 −1.20425
\(546\) 6.86771e78 0.0122922
\(547\) −6.88700e80 −1.16789 −0.583947 0.811792i \(-0.698493\pi\)
−0.583947 + 0.811792i \(0.698493\pi\)
\(548\) 2.04598e80 0.328757
\(549\) 3.97493e80 0.605265
\(550\) 7.39762e80 1.06756
\(551\) 5.75250e80 0.786837
\(552\) −6.14914e79 −0.0797282
\(553\) 8.14214e80 1.00080
\(554\) −7.84097e79 −0.0913760
\(555\) −2.91473e79 −0.0322074
\(556\) 1.69287e80 0.177385
\(557\) −1.64679e81 −1.63648 −0.818239 0.574878i \(-0.805049\pi\)
−0.818239 + 0.574878i \(0.805049\pi\)
\(558\) −4.10134e80 −0.386560
\(559\) 9.37237e80 0.837917
\(560\) 6.22470e80 0.527924
\(561\) −4.44052e79 −0.0357297
\(562\) −1.42919e80 −0.109111
\(563\) −8.28386e80 −0.600116 −0.300058 0.953921i \(-0.597006\pi\)
−0.300058 + 0.953921i \(0.597006\pi\)
\(564\) 3.83107e79 0.0263382
\(565\) −1.66561e81 −1.08679
\(566\) 1.56363e80 0.0968385
\(567\) −9.79616e80 −0.575912
\(568\) −9.68673e80 −0.540632
\(569\) 1.62848e80 0.0862919 0.0431460 0.999069i \(-0.486262\pi\)
0.0431460 + 0.999069i \(0.486262\pi\)
\(570\) 8.04334e79 0.0404695
\(571\) 2.39641e81 1.14497 0.572487 0.819914i \(-0.305979\pi\)
0.572487 + 0.819914i \(0.305979\pi\)
\(572\) −1.31922e81 −0.598598
\(573\) −1.52500e80 −0.0657215
\(574\) 2.92593e79 0.0119774
\(575\) 9.27035e81 3.60491
\(576\) 1.84267e80 0.0680744
\(577\) −3.77209e81 −1.32402 −0.662012 0.749493i \(-0.730297\pi\)
−0.662012 + 0.749493i \(0.730297\pi\)
\(578\) 9.58525e80 0.319692
\(579\) 3.47566e80 0.110159
\(580\) −5.36473e81 −1.61593
\(581\) 2.34643e80 0.0671755
\(582\) 2.91416e79 0.00793023
\(583\) 2.19217e81 0.567089
\(584\) 5.58846e81 1.37440
\(585\) −5.60547e81 −1.31073
\(586\) 1.26927e81 0.282211
\(587\) −8.21302e81 −1.73652 −0.868258 0.496113i \(-0.834760\pi\)
−0.868258 + 0.496113i \(0.834760\pi\)
\(588\) −1.85966e80 −0.0373940
\(589\) 3.51594e81 0.672420
\(590\) −6.83529e81 −1.24343
\(591\) −4.60394e79 −0.00796707
\(592\) −7.41907e80 −0.122140
\(593\) 7.94731e81 1.24482 0.622410 0.782691i \(-0.286154\pi\)
0.622410 + 0.782691i \(0.286154\pi\)
\(594\) 4.07703e80 0.0607637
\(595\) −3.81869e81 −0.541581
\(596\) 1.11943e81 0.151089
\(597\) 4.93697e80 0.0634187
\(598\) 3.67355e81 0.449160
\(599\) 5.80570e81 0.675715 0.337857 0.941197i \(-0.390298\pi\)
0.337857 + 0.941197i \(0.390298\pi\)
\(600\) −1.18132e81 −0.130889
\(601\) −7.35889e81 −0.776274 −0.388137 0.921602i \(-0.626881\pi\)
−0.388137 + 0.921602i \(0.626881\pi\)
\(602\) −2.92403e81 −0.293687
\(603\) 1.12040e82 1.07155
\(604\) 1.48793e82 1.35517
\(605\) −1.26459e81 −0.109690
\(606\) −1.88398e80 −0.0155645
\(607\) −1.69742e82 −1.33574 −0.667870 0.744278i \(-0.732794\pi\)
−0.667870 + 0.744278i \(0.732794\pi\)
\(608\) 9.68112e81 0.725722
\(609\) −6.05323e80 −0.0432292
\(610\) −7.06157e81 −0.480475
\(611\) −5.08601e81 −0.329732
\(612\) −6.59328e81 −0.407319
\(613\) −1.34842e82 −0.793852 −0.396926 0.917851i \(-0.629923\pi\)
−0.396926 + 0.917851i \(0.629923\pi\)
\(614\) 1.14923e82 0.644820
\(615\) 1.15581e80 0.00618115
\(616\) 9.14609e81 0.466235
\(617\) −3.18225e82 −1.54640 −0.773199 0.634163i \(-0.781345\pi\)
−0.773199 + 0.634163i \(0.781345\pi\)
\(618\) 3.03821e80 0.0140753
\(619\) 3.44849e82 1.52319 0.761596 0.648053i \(-0.224416\pi\)
0.761596 + 0.648053i \(0.224416\pi\)
\(620\) −3.27893e82 −1.38095
\(621\) 5.10915e81 0.205185
\(622\) −1.23480e82 −0.472912
\(623\) −6.72304e81 −0.245566
\(624\) 6.90533e80 0.0240569
\(625\) 7.47935e82 2.48544
\(626\) 1.34735e82 0.427108
\(627\) −1.74334e81 −0.0527216
\(628\) 3.34335e82 0.964656
\(629\) 4.55140e81 0.125300
\(630\) 1.74882e82 0.459408
\(631\) −4.48510e82 −1.12436 −0.562181 0.827014i \(-0.690038\pi\)
−0.562181 + 0.827014i \(0.690038\pi\)
\(632\) −5.54987e82 −1.32779
\(633\) 3.87014e81 0.0883725
\(634\) −4.74409e81 −0.103400
\(635\) −1.73230e82 −0.360412
\(636\) −1.57530e81 −0.0312880
\(637\) 2.46882e82 0.468141
\(638\) −2.58379e82 −0.467786
\(639\) 4.01450e82 0.693995
\(640\) −1.13621e83 −1.87564
\(641\) 3.38457e82 0.533570 0.266785 0.963756i \(-0.414039\pi\)
0.266785 + 0.963756i \(0.414039\pi\)
\(642\) 2.28368e81 0.0343837
\(643\) −3.04533e82 −0.437936 −0.218968 0.975732i \(-0.570269\pi\)
−0.218968 + 0.975732i \(0.570269\pi\)
\(644\) 5.15769e82 0.708470
\(645\) −1.15506e82 −0.151563
\(646\) −1.25598e82 −0.157443
\(647\) −1.22434e83 −1.46631 −0.733157 0.680060i \(-0.761954\pi\)
−0.733157 + 0.680060i \(0.761954\pi\)
\(648\) 6.67729e82 0.764078
\(649\) 1.48150e83 1.61988
\(650\) 7.05729e82 0.737384
\(651\) −3.69975e81 −0.0369431
\(652\) 6.74086e82 0.643296
\(653\) 9.26564e82 0.845156 0.422578 0.906327i \(-0.361125\pi\)
0.422578 + 0.906327i \(0.361125\pi\)
\(654\) 2.20603e81 0.0192340
\(655\) −1.79484e83 −1.49592
\(656\) 2.94195e81 0.0234408
\(657\) −2.31604e83 −1.76428
\(658\) 1.58675e82 0.115570
\(659\) 1.42910e83 0.995275 0.497638 0.867385i \(-0.334201\pi\)
0.497638 + 0.867385i \(0.334201\pi\)
\(660\) 1.62582e82 0.108274
\(661\) 1.00439e83 0.639674 0.319837 0.947473i \(-0.396372\pi\)
0.319837 + 0.947473i \(0.396372\pi\)
\(662\) 4.87472e82 0.296920
\(663\) −4.23623e81 −0.0246792
\(664\) −1.59938e82 −0.0891236
\(665\) −1.49921e83 −0.799140
\(666\) −2.08437e82 −0.106288
\(667\) −3.23788e83 −1.57961
\(668\) 1.81118e82 0.0845389
\(669\) −1.47623e82 −0.0659302
\(670\) −1.99041e83 −0.850622
\(671\) 1.53054e83 0.625939
\(672\) −1.01872e82 −0.0398715
\(673\) 2.95487e83 1.10686 0.553432 0.832894i \(-0.313318\pi\)
0.553432 + 0.832894i \(0.313318\pi\)
\(674\) 7.60389e82 0.272627
\(675\) 9.81523e82 0.336852
\(676\) 1.23194e83 0.404727
\(677\) −8.74198e81 −0.0274944 −0.0137472 0.999906i \(-0.504376\pi\)
−0.0137472 + 0.999906i \(0.504376\pi\)
\(678\) 5.76464e81 0.0173579
\(679\) −5.43174e82 −0.156596
\(680\) 2.60290e83 0.718531
\(681\) −3.11690e81 −0.00823915
\(682\) −1.57922e83 −0.399763
\(683\) 3.28450e83 0.796267 0.398134 0.917327i \(-0.369658\pi\)
0.398134 + 0.917327i \(0.369658\pi\)
\(684\) −2.58850e83 −0.601027
\(685\) 3.34744e83 0.744459
\(686\) −1.93983e83 −0.413241
\(687\) −2.12250e82 −0.0433135
\(688\) −2.94005e83 −0.574771
\(689\) 2.09132e83 0.391699
\(690\) −4.52731e82 −0.0812442
\(691\) −6.66760e83 −1.14648 −0.573241 0.819387i \(-0.694314\pi\)
−0.573241 + 0.819387i \(0.694314\pi\)
\(692\) −7.59185e83 −1.25089
\(693\) −3.79044e83 −0.598494
\(694\) 3.77577e83 0.571349
\(695\) 2.76971e83 0.401682
\(696\) 4.12602e82 0.0573533
\(697\) −1.80481e82 −0.0240472
\(698\) −4.64523e82 −0.0593297
\(699\) −7.49465e82 −0.0917646
\(700\) 9.90847e83 1.16309
\(701\) 2.68462e83 0.302135 0.151068 0.988523i \(-0.451729\pi\)
0.151068 + 0.988523i \(0.451729\pi\)
\(702\) 3.88947e82 0.0419706
\(703\) 1.78687e83 0.184889
\(704\) 7.09518e82 0.0703996
\(705\) 6.26803e82 0.0596420
\(706\) 5.53313e83 0.504931
\(707\) 3.51158e83 0.307347
\(708\) −1.06461e83 −0.0893738
\(709\) −7.40264e83 −0.596105 −0.298053 0.954549i \(-0.596337\pi\)
−0.298053 + 0.954549i \(0.596337\pi\)
\(710\) −7.13187e83 −0.550912
\(711\) 2.30005e84 1.70445
\(712\) 4.58258e83 0.325799
\(713\) −1.97900e84 −1.34991
\(714\) 1.32164e82 0.00864998
\(715\) −2.15838e84 −1.35550
\(716\) −6.09627e83 −0.367392
\(717\) 1.32237e83 0.0764782
\(718\) −6.48951e83 −0.360198
\(719\) 1.09772e84 0.584773 0.292387 0.956300i \(-0.405551\pi\)
0.292387 + 0.956300i \(0.405551\pi\)
\(720\) 1.75840e84 0.899101
\(721\) −5.66295e83 −0.277941
\(722\) 4.11922e83 0.194074
\(723\) 2.28718e83 0.103448
\(724\) −3.49430e83 −0.151730
\(725\) −6.22032e84 −2.59323
\(726\) 4.37672e81 0.00175194
\(727\) 4.10850e84 1.57913 0.789566 0.613666i \(-0.210306\pi\)
0.789566 + 0.613666i \(0.210306\pi\)
\(728\) 8.72533e83 0.322037
\(729\) −2.74018e84 −0.971217
\(730\) 4.11451e84 1.40053
\(731\) 1.80364e84 0.589640
\(732\) −1.09985e83 −0.0345349
\(733\) 4.99365e84 1.50609 0.753045 0.657969i \(-0.228584\pi\)
0.753045 + 0.657969i \(0.228584\pi\)
\(734\) −1.19579e84 −0.346433
\(735\) −3.04260e83 −0.0846774
\(736\) −5.44917e84 −1.45692
\(737\) 4.31408e84 1.10815
\(738\) 8.26536e82 0.0203986
\(739\) −1.62337e83 −0.0384951 −0.0192476 0.999815i \(-0.506127\pi\)
−0.0192476 + 0.999815i \(0.506127\pi\)
\(740\) −1.66641e84 −0.379706
\(741\) −1.66313e83 −0.0364158
\(742\) −6.52458e83 −0.137290
\(743\) −3.18863e84 −0.644814 −0.322407 0.946601i \(-0.604492\pi\)
−0.322407 + 0.946601i \(0.604492\pi\)
\(744\) 2.52183e83 0.0490134
\(745\) 1.83151e84 0.342136
\(746\) −6.67767e83 −0.119903
\(747\) 6.62835e83 0.114406
\(748\) −2.53874e84 −0.421232
\(749\) −4.25659e84 −0.678966
\(750\) −5.12227e83 −0.0785516
\(751\) −1.31852e85 −1.94405 −0.972026 0.234872i \(-0.924533\pi\)
−0.972026 + 0.234872i \(0.924533\pi\)
\(752\) 1.59544e84 0.226181
\(753\) −4.81987e83 −0.0657028
\(754\) −2.46492e84 −0.323108
\(755\) 2.43441e85 3.06873
\(756\) 5.46083e83 0.0662012
\(757\) 8.93658e84 1.04194 0.520970 0.853575i \(-0.325570\pi\)
0.520970 + 0.853575i \(0.325570\pi\)
\(758\) −5.28038e84 −0.592138
\(759\) 9.81263e83 0.105841
\(760\) 1.02189e85 1.06024
\(761\) −5.17623e83 −0.0516614 −0.0258307 0.999666i \(-0.508223\pi\)
−0.0258307 + 0.999666i \(0.508223\pi\)
\(762\) 5.99546e82 0.00575640
\(763\) −4.11185e84 −0.379808
\(764\) −8.71872e84 −0.774817
\(765\) −1.07873e85 −0.922359
\(766\) 5.43618e84 0.447245
\(767\) 1.41334e85 1.11888
\(768\) 3.30924e83 0.0252099
\(769\) −2.04223e85 −1.49719 −0.748596 0.663026i \(-0.769272\pi\)
−0.748596 + 0.663026i \(0.769272\pi\)
\(770\) 6.73382e84 0.475100
\(771\) −1.04294e83 −0.00708196
\(772\) 1.98711e85 1.29871
\(773\) −1.06063e85 −0.667221 −0.333611 0.942711i \(-0.608267\pi\)
−0.333611 + 0.942711i \(0.608267\pi\)
\(774\) −8.26001e84 −0.500175
\(775\) −3.80188e85 −2.21614
\(776\) 3.70240e84 0.207760
\(777\) −1.88028e83 −0.0101579
\(778\) 3.16310e84 0.164518
\(779\) −7.08563e83 −0.0354833
\(780\) 1.55102e84 0.0747872
\(781\) 1.54578e85 0.717700
\(782\) 7.06947e84 0.316073
\(783\) −3.42819e84 −0.147602
\(784\) −7.74453e84 −0.321123
\(785\) 5.47007e85 2.18443
\(786\) 6.21190e83 0.0238924
\(787\) −6.47255e84 −0.239784 −0.119892 0.992787i \(-0.538255\pi\)
−0.119892 + 0.992787i \(0.538255\pi\)
\(788\) −2.63217e84 −0.0939270
\(789\) −7.79749e83 −0.0268030
\(790\) −4.08610e85 −1.35304
\(791\) −1.07448e85 −0.342761
\(792\) 2.58365e85 0.794038
\(793\) 1.46013e85 0.432348
\(794\) 7.13487e84 0.203555
\(795\) −2.57735e84 −0.0708507
\(796\) 2.82257e85 0.747668
\(797\) 3.83924e85 0.979997 0.489998 0.871723i \(-0.336997\pi\)
0.489998 + 0.871723i \(0.336997\pi\)
\(798\) 5.18872e83 0.0127636
\(799\) −9.78762e84 −0.232032
\(800\) −1.04684e86 −2.39181
\(801\) −1.89917e85 −0.418220
\(802\) 2.77480e85 0.588964
\(803\) −8.91790e85 −1.82454
\(804\) −3.10011e84 −0.0611398
\(805\) 8.43851e85 1.60431
\(806\) −1.50657e85 −0.276124
\(807\) 5.06844e84 0.0895582
\(808\) −2.39357e85 −0.407766
\(809\) −5.32062e85 −0.873938 −0.436969 0.899476i \(-0.643948\pi\)
−0.436969 + 0.899476i \(0.643948\pi\)
\(810\) 4.91616e85 0.778607
\(811\) 3.55627e85 0.543100 0.271550 0.962424i \(-0.412464\pi\)
0.271550 + 0.962424i \(0.412464\pi\)
\(812\) −3.46076e85 −0.509646
\(813\) −2.56140e84 −0.0363753
\(814\) −8.02587e84 −0.109919
\(815\) 1.10287e86 1.45672
\(816\) 1.32888e84 0.0169288
\(817\) 7.08104e85 0.870054
\(818\) 3.82389e85 0.453193
\(819\) −3.61606e85 −0.413391
\(820\) 6.60799e84 0.0728720
\(821\) 1.58053e84 0.0168144 0.00840719 0.999965i \(-0.497324\pi\)
0.00840719 + 0.999965i \(0.497324\pi\)
\(822\) −1.15854e84 −0.0118903
\(823\) −1.35395e84 −0.0134063 −0.00670315 0.999978i \(-0.502134\pi\)
−0.00670315 + 0.999978i \(0.502134\pi\)
\(824\) 3.86000e85 0.368752
\(825\) 1.88511e85 0.173758
\(826\) −4.40941e85 −0.392166
\(827\) −2.09737e86 −1.79996 −0.899980 0.435930i \(-0.856419\pi\)
−0.899980 + 0.435930i \(0.856419\pi\)
\(828\) 1.45698e86 1.20659
\(829\) −2.20814e86 −1.76469 −0.882345 0.470603i \(-0.844037\pi\)
−0.882345 + 0.470603i \(0.844037\pi\)
\(830\) −1.17754e85 −0.0908183
\(831\) −1.99809e84 −0.0148725
\(832\) 6.76877e84 0.0486264
\(833\) 4.75106e85 0.329430
\(834\) −9.58590e83 −0.00641556
\(835\) 2.96328e85 0.191435
\(836\) −9.96703e85 −0.621556
\(837\) −2.09532e85 −0.126139
\(838\) −2.85647e85 −0.166009
\(839\) 1.14299e86 0.641307 0.320654 0.947197i \(-0.396097\pi\)
0.320654 + 0.947197i \(0.396097\pi\)
\(840\) −1.07532e85 −0.0582502
\(841\) 2.60617e85 0.136308
\(842\) −1.60468e85 −0.0810365
\(843\) −3.64196e84 −0.0177591
\(844\) 2.21264e86 1.04186
\(845\) 2.01558e86 0.916490
\(846\) 4.48237e85 0.196826
\(847\) −8.15782e84 −0.0345950
\(848\) −6.56032e85 −0.268687
\(849\) 3.98454e84 0.0157616
\(850\) 1.35812e86 0.518896
\(851\) −1.00577e86 −0.371171
\(852\) −1.11080e85 −0.0395977
\(853\) −2.96557e86 −1.02120 −0.510601 0.859818i \(-0.670577\pi\)
−0.510601 + 0.859818i \(0.670577\pi\)
\(854\) −4.55538e85 −0.151537
\(855\) −4.23506e86 −1.36100
\(856\) 2.90139e86 0.900803
\(857\) 4.75436e86 1.42612 0.713062 0.701101i \(-0.247308\pi\)
0.713062 + 0.701101i \(0.247308\pi\)
\(858\) 7.47012e84 0.0216497
\(859\) 2.70859e86 0.758481 0.379240 0.925298i \(-0.376185\pi\)
0.379240 + 0.925298i \(0.376185\pi\)
\(860\) −6.60371e86 −1.78683
\(861\) 7.45605e83 0.00194947
\(862\) −2.64179e86 −0.667472
\(863\) 6.38040e86 1.55786 0.778932 0.627109i \(-0.215762\pi\)
0.778932 + 0.627109i \(0.215762\pi\)
\(864\) −5.76945e85 −0.136138
\(865\) −1.24211e87 −2.83259
\(866\) −1.84831e86 −0.407379
\(867\) 2.44258e85 0.0520338
\(868\) −2.11523e86 −0.435537
\(869\) 8.85633e86 1.76267
\(870\) 3.03779e85 0.0584439
\(871\) 4.11561e86 0.765418
\(872\) 2.80273e86 0.503901
\(873\) −1.53440e86 −0.266697
\(874\) 2.77545e86 0.466387
\(875\) 9.54746e86 1.55114
\(876\) 6.40844e85 0.100666
\(877\) −1.05932e87 −1.60894 −0.804469 0.593995i \(-0.797550\pi\)
−0.804469 + 0.593995i \(0.797550\pi\)
\(878\) −3.90139e86 −0.572970
\(879\) 3.23444e85 0.0459332
\(880\) 6.77070e86 0.929811
\(881\) −3.34361e86 −0.444045 −0.222022 0.975042i \(-0.571266\pi\)
−0.222022 + 0.975042i \(0.571266\pi\)
\(882\) −2.17581e86 −0.279446
\(883\) 1.56798e87 1.94761 0.973803 0.227394i \(-0.0730204\pi\)
0.973803 + 0.227394i \(0.0730204\pi\)
\(884\) −2.42194e86 −0.290953
\(885\) −1.74182e86 −0.202384
\(886\) 2.94243e86 0.330682
\(887\) −1.35049e87 −1.46806 −0.734032 0.679115i \(-0.762364\pi\)
−0.734032 + 0.679115i \(0.762364\pi\)
\(888\) 1.28164e85 0.0134767
\(889\) −1.11750e86 −0.113670
\(890\) 3.37393e86 0.331994
\(891\) −1.06554e87 −1.01433
\(892\) −8.43994e86 −0.777278
\(893\) −3.84260e86 −0.342379
\(894\) −6.33881e84 −0.00546450
\(895\) −9.97413e86 −0.831947
\(896\) −7.32964e86 −0.591557
\(897\) 9.36120e85 0.0731063
\(898\) 6.73061e86 0.508630
\(899\) 1.32789e87 0.971074
\(900\) 2.79901e87 1.98085
\(901\) 4.02458e86 0.275638
\(902\) 3.18258e85 0.0210953
\(903\) −7.45122e85 −0.0478012
\(904\) 7.32389e86 0.454750
\(905\) −5.71703e86 −0.343588
\(906\) −8.42543e85 −0.0490129
\(907\) −2.09556e87 −1.18001 −0.590003 0.807401i \(-0.700873\pi\)
−0.590003 + 0.807401i \(0.700873\pi\)
\(908\) −1.78200e86 −0.0971346
\(909\) 9.91975e86 0.523439
\(910\) 6.42403e86 0.328161
\(911\) 1.73916e87 0.860096 0.430048 0.902806i \(-0.358497\pi\)
0.430048 + 0.902806i \(0.358497\pi\)
\(912\) 5.21714e85 0.0249795
\(913\) 2.55224e86 0.118313
\(914\) −5.30975e86 −0.238320
\(915\) −1.79948e86 −0.0782031
\(916\) −1.21348e87 −0.510641
\(917\) −1.15784e87 −0.471797
\(918\) 7.48498e85 0.0295346
\(919\) 2.15988e87 0.825320 0.412660 0.910885i \(-0.364600\pi\)
0.412660 + 0.910885i \(0.364600\pi\)
\(920\) −5.75188e87 −2.12848
\(921\) 2.92854e86 0.104952
\(922\) −7.51149e86 −0.260714
\(923\) 1.47467e87 0.495729
\(924\) 1.04881e86 0.0341486
\(925\) −1.93218e87 −0.609350
\(926\) −4.95120e86 −0.151247
\(927\) −1.59971e87 −0.473357
\(928\) 3.65634e87 1.04805
\(929\) 3.13437e87 0.870336 0.435168 0.900349i \(-0.356689\pi\)
0.435168 + 0.900349i \(0.356689\pi\)
\(930\) 1.85670e86 0.0499454
\(931\) 1.86525e87 0.486096
\(932\) −4.28485e87 −1.08185
\(933\) −3.14660e86 −0.0769722
\(934\) 2.32168e87 0.550262
\(935\) −4.15364e87 −0.953864
\(936\) 2.46479e87 0.548457
\(937\) 3.43491e87 0.740624 0.370312 0.928907i \(-0.379251\pi\)
0.370312 + 0.928907i \(0.379251\pi\)
\(938\) −1.28401e87 −0.268277
\(939\) 3.43341e86 0.0695170
\(940\) 3.58357e87 0.703143
\(941\) 6.94454e87 1.32053 0.660267 0.751031i \(-0.270443\pi\)
0.660267 + 0.751031i \(0.270443\pi\)
\(942\) −1.89318e86 −0.0348891
\(943\) 3.98826e86 0.0712341
\(944\) −4.43356e87 −0.767501
\(945\) 8.93449e86 0.149910
\(946\) −3.18051e87 −0.517260
\(947\) −2.62366e87 −0.413603 −0.206801 0.978383i \(-0.566305\pi\)
−0.206801 + 0.978383i \(0.566305\pi\)
\(948\) −6.36419e86 −0.0972517
\(949\) −8.50764e87 −1.26025
\(950\) 5.33195e87 0.765666
\(951\) −1.20892e86 −0.0168296
\(952\) 1.67912e87 0.226617
\(953\) −7.56122e86 −0.0989353 −0.0494676 0.998776i \(-0.515752\pi\)
−0.0494676 + 0.998776i \(0.515752\pi\)
\(954\) −1.84311e87 −0.233816
\(955\) −1.42647e88 −1.75455
\(956\) 7.56026e87 0.901632
\(957\) −6.58419e86 −0.0761378
\(958\) −4.94534e87 −0.554515
\(959\) 2.15942e87 0.234794
\(960\) −8.34188e85 −0.00879554
\(961\) −1.66391e87 −0.170133
\(962\) −7.65664e86 −0.0759231
\(963\) −1.20243e88 −1.15634
\(964\) 1.30763e88 1.21958
\(965\) 3.25112e88 2.94088
\(966\) −2.92055e86 −0.0256235
\(967\) 1.62324e87 0.138134 0.0690671 0.997612i \(-0.477998\pi\)
0.0690671 + 0.997612i \(0.477998\pi\)
\(968\) 5.56056e86 0.0458982
\(969\) −3.20057e86 −0.0256257
\(970\) 2.72590e87 0.211711
\(971\) −1.28331e88 −0.966859 −0.483430 0.875383i \(-0.660609\pi\)
−0.483430 + 0.875383i \(0.660609\pi\)
\(972\) 2.31578e87 0.169256
\(973\) 1.78673e87 0.126686
\(974\) −1.45569e87 −0.100134
\(975\) 1.79839e87 0.120018
\(976\) −4.58033e87 −0.296570
\(977\) 7.50188e87 0.471281 0.235641 0.971840i \(-0.424281\pi\)
0.235641 + 0.971840i \(0.424281\pi\)
\(978\) −3.81702e86 −0.0232664
\(979\) −7.31275e87 −0.432505
\(980\) −1.73952e88 −0.998296
\(981\) −1.16155e88 −0.646845
\(982\) −3.67160e87 −0.198411
\(983\) 2.00914e88 1.05361 0.526807 0.849985i \(-0.323389\pi\)
0.526807 + 0.849985i \(0.323389\pi\)
\(984\) −5.08222e85 −0.00258641
\(985\) −4.30650e87 −0.212694
\(986\) −4.74355e87 −0.227371
\(987\) 4.04348e86 0.0188104
\(988\) −9.50849e87 −0.429321
\(989\) −3.98567e88 −1.74667
\(990\) 1.90222e88 0.809136
\(991\) −9.16723e87 −0.378500 −0.189250 0.981929i \(-0.560606\pi\)
−0.189250 + 0.981929i \(0.560606\pi\)
\(992\) 2.23477e88 0.895648
\(993\) 1.24221e87 0.0483272
\(994\) −4.60073e87 −0.173752
\(995\) 4.61802e88 1.69307
\(996\) −1.83405e86 −0.00652771
\(997\) 4.97874e88 1.72033 0.860167 0.510013i \(-0.170359\pi\)
0.860167 + 0.510013i \(0.170359\pi\)
\(998\) 8.88101e87 0.297928
\(999\) −1.06488e87 −0.0346832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))