Properties

Label 1.60.a.a.1.2
Level 1
Weight 60
Character 1.1
Self dual Yes
Analytic conductor 22.046
Analytic rank 0
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 60 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(22.045800551\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{39}\cdot 3^{13}\cdot 5^{3}\cdot 7^{2} \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.35709e7\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q-6.55640e8 q^{2} +1.58783e14 q^{3} -1.46597e17 q^{4} +7.23713e20 q^{5} -1.04104e23 q^{6} +1.08717e25 q^{7} +4.74066e26 q^{8} +1.10817e28 q^{9} +O(q^{10})\) \(q-6.55640e8 q^{2} +1.58783e14 q^{3} -1.46597e17 q^{4} +7.23713e20 q^{5} -1.04104e23 q^{6} +1.08717e25 q^{7} +4.74066e26 q^{8} +1.10817e28 q^{9} -4.74495e29 q^{10} -2.58746e30 q^{11} -2.32772e31 q^{12} -5.56960e32 q^{13} -7.12795e33 q^{14} +1.14913e35 q^{15} -2.26309e35 q^{16} +1.35524e35 q^{17} -7.26557e36 q^{18} +4.79817e37 q^{19} -1.06094e38 q^{20} +1.72625e39 q^{21} +1.69644e39 q^{22} -3.11625e39 q^{23} +7.52736e40 q^{24} +3.50288e41 q^{25} +3.65165e41 q^{26} -4.84086e41 q^{27} -1.59377e42 q^{28} +1.44322e43 q^{29} -7.53417e43 q^{30} -1.86617e43 q^{31} -1.24903e44 q^{32} -4.10845e44 q^{33} -8.88552e43 q^{34} +7.86802e45 q^{35} -1.62454e45 q^{36} +1.60698e46 q^{37} -3.14587e46 q^{38} -8.84357e46 q^{39} +3.43087e47 q^{40} -6.72686e47 q^{41} -1.13180e48 q^{42} +1.54440e48 q^{43} +3.79316e47 q^{44} +8.01994e48 q^{45} +2.04314e48 q^{46} +4.96944e48 q^{47} -3.59339e49 q^{48} +4.56203e49 q^{49} -2.29663e50 q^{50} +2.15190e49 q^{51} +8.16489e49 q^{52} +3.89245e50 q^{53} +3.17386e50 q^{54} -1.87258e51 q^{55} +5.15392e51 q^{56} +7.61868e51 q^{57} -9.46232e51 q^{58} -2.34464e52 q^{59} -1.68460e52 q^{60} -7.62724e51 q^{61} +1.22353e52 q^{62} +1.20477e53 q^{63} +2.12350e53 q^{64} -4.03079e53 q^{65} +2.69366e53 q^{66} +2.92761e53 q^{67} -1.98675e52 q^{68} -4.94807e53 q^{69} -5.15859e54 q^{70} +2.90747e54 q^{71} +5.25343e54 q^{72} -6.77367e54 q^{73} -1.05360e55 q^{74} +5.56197e55 q^{75} -7.03400e54 q^{76} -2.81302e55 q^{77} +5.79820e55 q^{78} -1.07018e56 q^{79} -1.63782e56 q^{80} -2.33453e56 q^{81} +4.41039e56 q^{82} +5.08183e56 q^{83} -2.53064e56 q^{84} +9.80807e55 q^{85} -1.01257e57 q^{86} +2.29159e57 q^{87} -1.22663e57 q^{88} +3.31938e57 q^{89} -5.25819e57 q^{90} -6.05512e57 q^{91} +4.56834e56 q^{92} -2.96315e57 q^{93} -3.25816e57 q^{94} +3.47250e58 q^{95} -1.98325e58 q^{96} +7.26288e58 q^{97} -2.99105e58 q^{98} -2.86734e58 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5q - 449691864q^{2} + 84016631749932q^{3} + 1738819379139544640q^{4} + \)\(17\!\cdots\!90\)\(q^{5} + \)\(31\!\cdots\!60\)\(q^{6} + \)\(14\!\cdots\!56\)\(q^{7} - \)\(34\!\cdots\!80\)\(q^{8} + \)\(32\!\cdots\!85\)\(q^{9} + O(q^{10}) \) \( 5q - 449691864q^{2} + 84016631749932q^{3} + 1738819379139544640q^{4} + \)\(17\!\cdots\!90\)\(q^{5} + \)\(31\!\cdots\!60\)\(q^{6} + \)\(14\!\cdots\!56\)\(q^{7} - \)\(34\!\cdots\!80\)\(q^{8} + \)\(32\!\cdots\!85\)\(q^{9} - \)\(81\!\cdots\!60\)\(q^{10} + \)\(42\!\cdots\!60\)\(q^{11} - \)\(44\!\cdots\!44\)\(q^{12} - \)\(84\!\cdots\!78\)\(q^{13} + \)\(62\!\cdots\!80\)\(q^{14} - \)\(40\!\cdots\!20\)\(q^{15} + \)\(69\!\cdots\!80\)\(q^{16} - \)\(34\!\cdots\!54\)\(q^{17} + \)\(96\!\cdots\!52\)\(q^{18} + \)\(64\!\cdots\!00\)\(q^{19} + \)\(16\!\cdots\!20\)\(q^{20} + \)\(34\!\cdots\!60\)\(q^{21} + \)\(16\!\cdots\!12\)\(q^{22} + \)\(26\!\cdots\!12\)\(q^{23} + \)\(43\!\cdots\!00\)\(q^{24} + \)\(62\!\cdots\!75\)\(q^{25} + \)\(27\!\cdots\!60\)\(q^{26} + \)\(42\!\cdots\!80\)\(q^{27} - \)\(56\!\cdots\!52\)\(q^{28} - \)\(17\!\cdots\!50\)\(q^{29} - \)\(15\!\cdots\!20\)\(q^{30} - \)\(35\!\cdots\!40\)\(q^{31} - \)\(10\!\cdots\!84\)\(q^{32} + \)\(75\!\cdots\!44\)\(q^{33} + \)\(13\!\cdots\!80\)\(q^{34} + \)\(87\!\cdots\!40\)\(q^{35} + \)\(50\!\cdots\!80\)\(q^{36} + \)\(12\!\cdots\!26\)\(q^{37} - \)\(45\!\cdots\!20\)\(q^{38} - \)\(92\!\cdots\!80\)\(q^{39} - \)\(62\!\cdots\!00\)\(q^{40} - \)\(12\!\cdots\!90\)\(q^{41} - \)\(18\!\cdots\!88\)\(q^{42} + \)\(13\!\cdots\!92\)\(q^{43} + \)\(10\!\cdots\!80\)\(q^{44} + \)\(10\!\cdots\!30\)\(q^{45} + \)\(35\!\cdots\!60\)\(q^{46} + \)\(58\!\cdots\!16\)\(q^{47} - \)\(14\!\cdots\!88\)\(q^{48} - \)\(17\!\cdots\!35\)\(q^{49} - \)\(23\!\cdots\!00\)\(q^{50} - \)\(46\!\cdots\!40\)\(q^{51} - \)\(99\!\cdots\!24\)\(q^{52} + \)\(22\!\cdots\!82\)\(q^{53} + \)\(42\!\cdots\!00\)\(q^{54} + \)\(90\!\cdots\!80\)\(q^{55} + \)\(13\!\cdots\!00\)\(q^{56} - \)\(14\!\cdots\!40\)\(q^{57} - \)\(19\!\cdots\!80\)\(q^{58} - \)\(21\!\cdots\!00\)\(q^{59} - \)\(15\!\cdots\!60\)\(q^{60} - \)\(55\!\cdots\!90\)\(q^{61} + \)\(18\!\cdots\!92\)\(q^{62} + \)\(18\!\cdots\!92\)\(q^{63} + \)\(44\!\cdots\!40\)\(q^{64} + \)\(10\!\cdots\!80\)\(q^{65} + \)\(18\!\cdots\!20\)\(q^{66} + \)\(25\!\cdots\!96\)\(q^{67} - \)\(58\!\cdots\!32\)\(q^{68} - \)\(11\!\cdots\!80\)\(q^{69} - \)\(57\!\cdots\!60\)\(q^{70} - \)\(63\!\cdots\!40\)\(q^{71} + \)\(50\!\cdots\!40\)\(q^{72} + \)\(12\!\cdots\!62\)\(q^{73} + \)\(30\!\cdots\!80\)\(q^{74} + \)\(71\!\cdots\!00\)\(q^{75} + \)\(44\!\cdots\!00\)\(q^{76} + \)\(17\!\cdots\!52\)\(q^{77} - \)\(20\!\cdots\!56\)\(q^{78} - \)\(19\!\cdots\!00\)\(q^{79} - \)\(20\!\cdots\!60\)\(q^{80} - \)\(27\!\cdots\!95\)\(q^{81} - \)\(90\!\cdots\!68\)\(q^{82} + \)\(13\!\cdots\!52\)\(q^{83} + \)\(17\!\cdots\!80\)\(q^{84} + \)\(24\!\cdots\!40\)\(q^{85} - \)\(14\!\cdots\!40\)\(q^{86} + \)\(27\!\cdots\!40\)\(q^{87} - \)\(76\!\cdots\!60\)\(q^{88} + \)\(41\!\cdots\!50\)\(q^{89} - \)\(27\!\cdots\!20\)\(q^{90} + \)\(20\!\cdots\!60\)\(q^{91} - \)\(40\!\cdots\!04\)\(q^{92} + \)\(35\!\cdots\!04\)\(q^{93} - \)\(11\!\cdots\!20\)\(q^{94} + \)\(87\!\cdots\!00\)\(q^{95} + \)\(35\!\cdots\!60\)\(q^{96} + \)\(11\!\cdots\!66\)\(q^{97} - \)\(10\!\cdots\!52\)\(q^{98} + \)\(23\!\cdots\!20\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.55640e8 −0.863536 −0.431768 0.901985i \(-0.642110\pi\)
−0.431768 + 0.901985i \(0.642110\pi\)
\(3\) 1.58783e14 1.33576 0.667878 0.744271i \(-0.267203\pi\)
0.667878 + 0.744271i \(0.267203\pi\)
\(4\) −1.46597e17 −0.254306
\(5\) 7.23713e20 1.73761 0.868803 0.495159i \(-0.164890\pi\)
0.868803 + 0.495159i \(0.164890\pi\)
\(6\) −1.04104e23 −1.15347
\(7\) 1.08717e25 1.27617 0.638083 0.769968i \(-0.279728\pi\)
0.638083 + 0.769968i \(0.279728\pi\)
\(8\) 4.74066e26 1.08314
\(9\) 1.10817e28 0.784243
\(10\) −4.74495e29 −1.50048
\(11\) −2.58746e30 −0.491802 −0.245901 0.969295i \(-0.579084\pi\)
−0.245901 + 0.969295i \(0.579084\pi\)
\(12\) −2.32772e31 −0.339691
\(13\) −5.56960e32 −0.766469 −0.383235 0.923651i \(-0.625190\pi\)
−0.383235 + 0.923651i \(0.625190\pi\)
\(14\) −7.12795e33 −1.10201
\(15\) 1.14913e35 2.32102
\(16\) −2.26309e35 −0.681022
\(17\) 1.35524e35 0.0681984 0.0340992 0.999418i \(-0.489144\pi\)
0.0340992 + 0.999418i \(0.489144\pi\)
\(18\) −7.26557e36 −0.677222
\(19\) 4.79817e37 0.907496 0.453748 0.891130i \(-0.350087\pi\)
0.453748 + 0.891130i \(0.350087\pi\)
\(20\) −1.06094e38 −0.441883
\(21\) 1.72625e39 1.70465
\(22\) 1.69644e39 0.424688
\(23\) −3.11625e39 −0.210214 −0.105107 0.994461i \(-0.533518\pi\)
−0.105107 + 0.994461i \(0.533518\pi\)
\(24\) 7.52736e40 1.44681
\(25\) 3.50288e41 2.01927
\(26\) 3.65165e41 0.661874
\(27\) −4.84086e41 −0.288198
\(28\) −1.59377e42 −0.324537
\(29\) 1.44322e43 1.04374 0.521869 0.853026i \(-0.325235\pi\)
0.521869 + 0.853026i \(0.325235\pi\)
\(30\) −7.53417e43 −2.00428
\(31\) −1.86617e43 −0.188704 −0.0943518 0.995539i \(-0.530078\pi\)
−0.0943518 + 0.995539i \(0.530078\pi\)
\(32\) −1.24903e44 −0.495051
\(33\) −4.10845e44 −0.656927
\(34\) −8.88552e43 −0.0588918
\(35\) 7.86802e45 2.21747
\(36\) −1.62454e45 −0.199438
\(37\) 1.60698e46 0.879141 0.439571 0.898208i \(-0.355131\pi\)
0.439571 + 0.898208i \(0.355131\pi\)
\(38\) −3.14587e46 −0.783655
\(39\) −8.84357e46 −1.02382
\(40\) 3.43087e47 1.88207
\(41\) −6.72686e47 −1.78110 −0.890550 0.454885i \(-0.849681\pi\)
−0.890550 + 0.454885i \(0.849681\pi\)
\(42\) −1.13180e48 −1.47202
\(43\) 1.54440e48 1.00332 0.501660 0.865065i \(-0.332723\pi\)
0.501660 + 0.865065i \(0.332723\pi\)
\(44\) 3.79316e47 0.125068
\(45\) 8.01994e48 1.36270
\(46\) 2.04314e48 0.181527
\(47\) 4.96944e48 0.234110 0.117055 0.993125i \(-0.462655\pi\)
0.117055 + 0.993125i \(0.462655\pi\)
\(48\) −3.59339e49 −0.909680
\(49\) 4.56203e49 0.628599
\(50\) −2.29663e50 −1.74371
\(51\) 2.15190e49 0.0910964
\(52\) 8.16489e49 0.194918
\(53\) 3.89245e50 0.529768 0.264884 0.964280i \(-0.414666\pi\)
0.264884 + 0.964280i \(0.414666\pi\)
\(54\) 3.17386e50 0.248870
\(55\) −1.87258e51 −0.854557
\(56\) 5.15392e51 1.38226
\(57\) 7.61868e51 1.21219
\(58\) −9.46232e51 −0.901305
\(59\) −2.34464e52 −1.34878 −0.674390 0.738375i \(-0.735593\pi\)
−0.674390 + 0.738375i \(0.735593\pi\)
\(60\) −1.68460e52 −0.590248
\(61\) −7.62724e51 −0.164111 −0.0820554 0.996628i \(-0.526148\pi\)
−0.0820554 + 0.996628i \(0.526148\pi\)
\(62\) 1.22353e52 0.162952
\(63\) 1.20477e53 1.00082
\(64\) 2.12350e53 1.10852
\(65\) −4.03079e53 −1.33182
\(66\) 2.69366e53 0.567280
\(67\) 2.92761e53 0.395646 0.197823 0.980238i \(-0.436613\pi\)
0.197823 + 0.980238i \(0.436613\pi\)
\(68\) −1.98675e52 −0.0173433
\(69\) −4.94807e53 −0.280794
\(70\) −5.15859e54 −1.91487
\(71\) 2.90747e54 0.710223 0.355111 0.934824i \(-0.384443\pi\)
0.355111 + 0.934824i \(0.384443\pi\)
\(72\) 5.25343e54 0.849444
\(73\) −6.77367e54 −0.729121 −0.364561 0.931180i \(-0.618781\pi\)
−0.364561 + 0.931180i \(0.618781\pi\)
\(74\) −1.05360e55 −0.759170
\(75\) 5.56197e55 2.69725
\(76\) −7.03400e54 −0.230782
\(77\) −2.81302e55 −0.627620
\(78\) 5.79820e55 0.884101
\(79\) −1.07018e56 −1.12062 −0.560308 0.828284i \(-0.689317\pi\)
−0.560308 + 0.828284i \(0.689317\pi\)
\(80\) −1.63782e56 −1.18335
\(81\) −2.33453e56 −1.16921
\(82\) 4.41039e56 1.53804
\(83\) 5.08183e56 1.23941 0.619707 0.784834i \(-0.287252\pi\)
0.619707 + 0.784834i \(0.287252\pi\)
\(84\) −2.53064e56 −0.433502
\(85\) 9.80807e55 0.118502
\(86\) −1.01257e57 −0.866403
\(87\) 2.29159e57 1.39418
\(88\) −1.22663e57 −0.532689
\(89\) 3.31938e57 1.03289 0.516443 0.856322i \(-0.327256\pi\)
0.516443 + 0.856322i \(0.327256\pi\)
\(90\) −5.25819e57 −1.17674
\(91\) −6.05512e57 −0.978142
\(92\) 4.56834e56 0.0534586
\(93\) −2.96315e57 −0.252062
\(94\) −3.25816e57 −0.202163
\(95\) 3.47250e58 1.57687
\(96\) −1.98325e58 −0.661267
\(97\) 7.26288e58 1.78379 0.891893 0.452246i \(-0.149377\pi\)
0.891893 + 0.452246i \(0.149377\pi\)
\(98\) −2.99105e58 −0.542817
\(99\) −2.86734e58 −0.385692
\(100\) −5.13513e58 −0.513513
\(101\) 2.72416e58 0.203120 0.101560 0.994829i \(-0.467617\pi\)
0.101560 + 0.994829i \(0.467617\pi\)
\(102\) −1.41087e58 −0.0786650
\(103\) −4.07754e59 −1.70490 −0.852452 0.522805i \(-0.824886\pi\)
−0.852452 + 0.522805i \(0.824886\pi\)
\(104\) −2.64035e59 −0.830192
\(105\) 1.24931e60 2.96200
\(106\) −2.55205e59 −0.457473
\(107\) 4.45535e59 0.605425 0.302713 0.953082i \(-0.402108\pi\)
0.302713 + 0.953082i \(0.402108\pi\)
\(108\) 7.09658e58 0.0732906
\(109\) −1.92062e60 −1.51133 −0.755664 0.654959i \(-0.772686\pi\)
−0.755664 + 0.654959i \(0.772686\pi\)
\(110\) 1.22774e60 0.737941
\(111\) 2.55161e60 1.17432
\(112\) −2.46037e60 −0.869097
\(113\) 1.02620e60 0.278881 0.139440 0.990230i \(-0.455470\pi\)
0.139440 + 0.990230i \(0.455470\pi\)
\(114\) −4.99511e60 −1.04677
\(115\) −2.25527e60 −0.365268
\(116\) −2.11572e60 −0.265429
\(117\) −6.17204e60 −0.601098
\(118\) 1.53724e61 1.16472
\(119\) 1.47339e60 0.0870325
\(120\) 5.44764e61 2.51398
\(121\) −2.09852e61 −0.758131
\(122\) 5.00072e60 0.141716
\(123\) −1.06811e62 −2.37912
\(124\) 2.73575e60 0.0479885
\(125\) 1.27964e62 1.77109
\(126\) −7.89895e61 −0.864247
\(127\) −1.57917e62 −1.36842 −0.684212 0.729284i \(-0.739853\pi\)
−0.684212 + 0.729284i \(0.739853\pi\)
\(128\) −6.72229e61 −0.462193
\(129\) 2.45224e62 1.34019
\(130\) 2.64274e62 1.15007
\(131\) −2.72028e62 −0.944300 −0.472150 0.881518i \(-0.656522\pi\)
−0.472150 + 0.881518i \(0.656522\pi\)
\(132\) 6.02289e61 0.167060
\(133\) 5.21645e62 1.15811
\(134\) −1.91946e62 −0.341654
\(135\) −3.50339e62 −0.500775
\(136\) 6.42475e61 0.0738683
\(137\) −4.95801e62 −0.459251 −0.229626 0.973279i \(-0.573750\pi\)
−0.229626 + 0.973279i \(0.573750\pi\)
\(138\) 3.24415e62 0.242476
\(139\) −5.52437e62 −0.333692 −0.166846 0.985983i \(-0.553358\pi\)
−0.166846 + 0.985983i \(0.553358\pi\)
\(140\) −1.15343e63 −0.563916
\(141\) 7.89062e62 0.312714
\(142\) −1.90626e63 −0.613303
\(143\) 1.44111e63 0.376951
\(144\) −2.50787e63 −0.534087
\(145\) 1.04448e64 1.81361
\(146\) 4.44109e63 0.629622
\(147\) 7.24372e63 0.839654
\(148\) −2.35579e63 −0.223571
\(149\) −1.36260e64 −1.06016 −0.530081 0.847947i \(-0.677838\pi\)
−0.530081 + 0.847947i \(0.677838\pi\)
\(150\) −3.64665e64 −2.32917
\(151\) −1.02852e63 −0.0540000 −0.0270000 0.999635i \(-0.508595\pi\)
−0.0270000 + 0.999635i \(0.508595\pi\)
\(152\) 2.27465e64 0.982943
\(153\) 1.50184e63 0.0534842
\(154\) 1.84433e64 0.541973
\(155\) −1.35057e64 −0.327892
\(156\) 1.29645e64 0.260363
\(157\) −2.81384e64 −0.468015 −0.234007 0.972235i \(-0.575184\pi\)
−0.234007 + 0.972235i \(0.575184\pi\)
\(158\) 7.01651e64 0.967692
\(159\) 6.18056e64 0.707640
\(160\) −9.03942e64 −0.860203
\(161\) −3.38790e64 −0.268267
\(162\) 1.53061e65 1.00965
\(163\) −1.02410e65 −0.563387 −0.281693 0.959504i \(-0.590896\pi\)
−0.281693 + 0.959504i \(0.590896\pi\)
\(164\) 9.86140e64 0.452945
\(165\) −2.97334e65 −1.14148
\(166\) −3.33185e65 −1.07028
\(167\) −1.89739e65 −0.510529 −0.255264 0.966871i \(-0.582162\pi\)
−0.255264 + 0.966871i \(0.582162\pi\)
\(168\) 8.18355e65 1.84637
\(169\) −2.17825e65 −0.412525
\(170\) −6.43056e64 −0.102331
\(171\) 5.31717e65 0.711697
\(172\) −2.26405e65 −0.255150
\(173\) 7.44337e65 0.706984 0.353492 0.935438i \(-0.384994\pi\)
0.353492 + 0.935438i \(0.384994\pi\)
\(174\) −1.50246e66 −1.20392
\(175\) 3.80824e66 2.57692
\(176\) 5.85565e65 0.334928
\(177\) −3.72288e66 −1.80164
\(178\) −2.17632e66 −0.891934
\(179\) −3.24427e66 −1.12707 −0.563537 0.826091i \(-0.690560\pi\)
−0.563537 + 0.826091i \(0.690560\pi\)
\(180\) −1.17570e66 −0.346544
\(181\) 2.66375e66 0.666770 0.333385 0.942791i \(-0.391809\pi\)
0.333385 + 0.942791i \(0.391809\pi\)
\(182\) 3.96998e66 0.844660
\(183\) −1.21108e66 −0.219212
\(184\) −1.47731e66 −0.227690
\(185\) 1.16299e67 1.52760
\(186\) 1.94276e66 0.217664
\(187\) −3.50664e65 −0.0335401
\(188\) −7.28507e65 −0.0595356
\(189\) −5.26286e66 −0.367789
\(190\) −2.27671e67 −1.36168
\(191\) −5.19175e66 −0.265968 −0.132984 0.991118i \(-0.542456\pi\)
−0.132984 + 0.991118i \(0.542456\pi\)
\(192\) 3.37175e67 1.48071
\(193\) 4.45977e67 1.68024 0.840121 0.542399i \(-0.182484\pi\)
0.840121 + 0.542399i \(0.182484\pi\)
\(194\) −4.76183e67 −1.54036
\(195\) −6.40020e67 −1.77899
\(196\) −6.68782e66 −0.159856
\(197\) 2.05470e67 0.422663 0.211331 0.977414i \(-0.432220\pi\)
0.211331 + 0.977414i \(0.432220\pi\)
\(198\) 1.87994e67 0.333059
\(199\) −8.18192e67 −1.24936 −0.624682 0.780879i \(-0.714772\pi\)
−0.624682 + 0.780879i \(0.714772\pi\)
\(200\) 1.66059e68 2.18715
\(201\) 4.64855e67 0.528486
\(202\) −1.78607e67 −0.175401
\(203\) 1.56903e68 1.33198
\(204\) −3.15463e66 −0.0231664
\(205\) −4.86831e68 −3.09485
\(206\) 2.67340e68 1.47225
\(207\) −3.45332e67 −0.164859
\(208\) 1.26045e68 0.521983
\(209\) −1.24151e68 −0.446308
\(210\) −8.19096e68 −2.55779
\(211\) 4.28352e68 1.16270 0.581351 0.813653i \(-0.302524\pi\)
0.581351 + 0.813653i \(0.302524\pi\)
\(212\) −5.70624e67 −0.134723
\(213\) 4.61658e68 0.948684
\(214\) −2.92111e68 −0.522806
\(215\) 1.11770e69 1.74337
\(216\) −2.29489e68 −0.312159
\(217\) −2.02885e68 −0.240817
\(218\) 1.25923e69 1.30509
\(219\) −1.07554e69 −0.973928
\(220\) 2.74515e68 0.217319
\(221\) −7.54816e67 −0.0522720
\(222\) −1.67293e69 −1.01407
\(223\) −1.66903e69 −0.886076 −0.443038 0.896503i \(-0.646099\pi\)
−0.443038 + 0.896503i \(0.646099\pi\)
\(224\) −1.35792e69 −0.631767
\(225\) 3.88177e69 1.58360
\(226\) −6.72818e68 −0.240823
\(227\) 3.77482e69 1.18613 0.593066 0.805154i \(-0.297917\pi\)
0.593066 + 0.805154i \(0.297917\pi\)
\(228\) −1.11688e69 −0.308268
\(229\) −6.77671e69 −1.64389 −0.821944 0.569569i \(-0.807110\pi\)
−0.821944 + 0.569569i \(0.807110\pi\)
\(230\) 1.47864e69 0.315422
\(231\) −4.46660e69 −0.838348
\(232\) 6.84181e69 1.13051
\(233\) 8.16171e69 1.18791 0.593953 0.804500i \(-0.297567\pi\)
0.593953 + 0.804500i \(0.297567\pi\)
\(234\) 4.04663e69 0.519070
\(235\) 3.59644e69 0.406791
\(236\) 3.43718e69 0.343003
\(237\) −1.69926e70 −1.49687
\(238\) −9.66011e68 −0.0751557
\(239\) 5.21276e69 0.358368 0.179184 0.983816i \(-0.442654\pi\)
0.179184 + 0.983816i \(0.442654\pi\)
\(240\) −2.60059e70 −1.58066
\(241\) −9.20131e69 −0.494706 −0.247353 0.968925i \(-0.579561\pi\)
−0.247353 + 0.968925i \(0.579561\pi\)
\(242\) 1.37587e70 0.654673
\(243\) −3.02280e70 −1.27357
\(244\) 1.11813e69 0.0417344
\(245\) 3.30160e70 1.09226
\(246\) 7.00296e70 2.05445
\(247\) −2.67239e70 −0.695568
\(248\) −8.84685e69 −0.204392
\(249\) 8.06908e70 1.65555
\(250\) −8.38980e70 −1.52940
\(251\) −2.03203e70 −0.329272 −0.164636 0.986354i \(-0.552645\pi\)
−0.164636 + 0.986354i \(0.552645\pi\)
\(252\) −1.76616e70 −0.254516
\(253\) 8.06318e69 0.103383
\(254\) 1.03537e71 1.18168
\(255\) 1.55736e70 0.158290
\(256\) −7.83372e70 −0.709397
\(257\) −2.26975e71 −1.83211 −0.916055 0.401053i \(-0.868644\pi\)
−0.916055 + 0.401053i \(0.868644\pi\)
\(258\) −1.60779e71 −1.15730
\(259\) 1.74706e71 1.12193
\(260\) 5.90903e70 0.338690
\(261\) 1.59933e71 0.818545
\(262\) 1.78352e71 0.815437
\(263\) −9.72811e70 −0.397497 −0.198749 0.980051i \(-0.563688\pi\)
−0.198749 + 0.980051i \(0.563688\pi\)
\(264\) −1.94768e71 −0.711543
\(265\) 2.81702e71 0.920527
\(266\) −3.42011e71 −1.00007
\(267\) 5.27062e71 1.37968
\(268\) −4.29180e70 −0.100615
\(269\) −3.85798e71 −0.810340 −0.405170 0.914241i \(-0.632788\pi\)
−0.405170 + 0.914241i \(0.632788\pi\)
\(270\) 2.29696e71 0.432437
\(271\) 4.86572e71 0.821398 0.410699 0.911771i \(-0.365285\pi\)
0.410699 + 0.911771i \(0.365285\pi\)
\(272\) −3.06703e70 −0.0464447
\(273\) −9.61450e71 −1.30656
\(274\) 3.25067e71 0.396580
\(275\) −9.06357e71 −0.993081
\(276\) 7.25375e70 0.0714076
\(277\) −1.75710e72 −1.55469 −0.777344 0.629076i \(-0.783433\pi\)
−0.777344 + 0.629076i \(0.783433\pi\)
\(278\) 3.62199e71 0.288155
\(279\) −2.06802e71 −0.147990
\(280\) 3.72996e72 2.40183
\(281\) 3.44814e71 0.199870 0.0999351 0.994994i \(-0.468136\pi\)
0.0999351 + 0.994994i \(0.468136\pi\)
\(282\) −5.17340e71 −0.270040
\(283\) 1.33526e72 0.627863 0.313932 0.949446i \(-0.398354\pi\)
0.313932 + 0.949446i \(0.398354\pi\)
\(284\) −4.26228e71 −0.180614
\(285\) 5.51374e72 2.10631
\(286\) −9.44850e71 −0.325511
\(287\) −7.31327e72 −2.27298
\(288\) −1.38414e72 −0.388240
\(289\) −3.93063e72 −0.995349
\(290\) −6.84800e72 −1.56611
\(291\) 1.15322e73 2.38270
\(292\) 9.93003e71 0.185420
\(293\) 7.74487e72 1.30743 0.653716 0.756740i \(-0.273209\pi\)
0.653716 + 0.756740i \(0.273209\pi\)
\(294\) −4.74927e72 −0.725071
\(295\) −1.69684e73 −2.34365
\(296\) 7.61812e72 0.952232
\(297\) 1.25255e72 0.141736
\(298\) 8.93372e72 0.915488
\(299\) 1.73562e72 0.161122
\(300\) −8.15371e72 −0.685928
\(301\) 1.67903e73 1.28040
\(302\) 6.74340e71 0.0466310
\(303\) 4.32551e72 0.271318
\(304\) −1.08587e73 −0.618025
\(305\) −5.51993e72 −0.285160
\(306\) −9.84663e71 −0.0461855
\(307\) 1.91212e73 0.814577 0.407288 0.913300i \(-0.366474\pi\)
0.407288 + 0.913300i \(0.366474\pi\)
\(308\) 4.12382e72 0.159608
\(309\) −6.47444e73 −2.27734
\(310\) 8.85486e72 0.283147
\(311\) 1.53350e73 0.445914 0.222957 0.974828i \(-0.428429\pi\)
0.222957 + 0.974828i \(0.428429\pi\)
\(312\) −4.19243e73 −1.10893
\(313\) −9.46132e72 −0.227716 −0.113858 0.993497i \(-0.536321\pi\)
−0.113858 + 0.993497i \(0.536321\pi\)
\(314\) 1.84486e73 0.404147
\(315\) 8.71907e73 1.73904
\(316\) 1.56885e73 0.284979
\(317\) −5.08207e73 −0.840993 −0.420496 0.907294i \(-0.638144\pi\)
−0.420496 + 0.907294i \(0.638144\pi\)
\(318\) −4.05222e73 −0.611072
\(319\) −3.73428e73 −0.513312
\(320\) 1.53680e74 1.92616
\(321\) 7.07434e73 0.808700
\(322\) 2.22124e73 0.231658
\(323\) 6.50269e72 0.0618898
\(324\) 3.42236e73 0.297336
\(325\) −1.95096e74 −1.54771
\(326\) 6.71438e73 0.486505
\(327\) −3.04961e74 −2.01876
\(328\) −3.18897e74 −1.92918
\(329\) 5.40264e73 0.298763
\(330\) 1.94944e74 0.985708
\(331\) 2.90945e74 1.34551 0.672753 0.739867i \(-0.265112\pi\)
0.672753 + 0.739867i \(0.265112\pi\)
\(332\) −7.44983e73 −0.315190
\(333\) 1.78080e74 0.689461
\(334\) 1.24400e74 0.440860
\(335\) 2.11875e74 0.687476
\(336\) −3.90665e74 −1.16090
\(337\) −4.42174e73 −0.120368 −0.0601840 0.998187i \(-0.519169\pi\)
−0.0601840 + 0.998187i \(0.519169\pi\)
\(338\) 1.42815e74 0.356230
\(339\) 1.62943e74 0.372517
\(340\) −1.43784e73 −0.0301358
\(341\) 4.82864e73 0.0928048
\(342\) −3.48615e74 −0.614576
\(343\) −2.93040e74 −0.473970
\(344\) 7.32146e74 1.08673
\(345\) −3.58098e74 −0.487909
\(346\) −4.88017e74 −0.610506
\(347\) 1.08045e75 1.24133 0.620663 0.784078i \(-0.286864\pi\)
0.620663 + 0.784078i \(0.286864\pi\)
\(348\) −3.35941e74 −0.354548
\(349\) −3.17015e74 −0.307419 −0.153709 0.988116i \(-0.549122\pi\)
−0.153709 + 0.988116i \(0.549122\pi\)
\(350\) −2.49683e75 −2.22527
\(351\) 2.69616e74 0.220895
\(352\) 3.23183e74 0.243467
\(353\) −6.44178e74 −0.446326 −0.223163 0.974781i \(-0.571638\pi\)
−0.223163 + 0.974781i \(0.571638\pi\)
\(354\) 2.44087e75 1.55578
\(355\) 2.10418e75 1.23409
\(356\) −4.86613e74 −0.262669
\(357\) 2.33949e74 0.116254
\(358\) 2.12707e75 0.973268
\(359\) −3.30229e75 −1.39164 −0.695822 0.718214i \(-0.744960\pi\)
−0.695822 + 0.718214i \(0.744960\pi\)
\(360\) 3.80198e75 1.47600
\(361\) −4.93274e74 −0.176452
\(362\) −1.74646e75 −0.575779
\(363\) −3.33209e75 −1.01268
\(364\) 8.87665e74 0.248747
\(365\) −4.90219e75 −1.26693
\(366\) 7.94029e74 0.189297
\(367\) 5.43152e75 1.19474 0.597368 0.801967i \(-0.296213\pi\)
0.597368 + 0.801967i \(0.296213\pi\)
\(368\) 7.05233e74 0.143160
\(369\) −7.45448e75 −1.39682
\(370\) −7.62502e75 −1.31914
\(371\) 4.23178e75 0.676071
\(372\) 4.34391e74 0.0641009
\(373\) 5.16798e75 0.704547 0.352274 0.935897i \(-0.385409\pi\)
0.352274 + 0.935897i \(0.385409\pi\)
\(374\) 2.29910e74 0.0289631
\(375\) 2.03184e76 2.36574
\(376\) 2.35584e75 0.253574
\(377\) −8.03815e75 −0.799993
\(378\) 3.45054e75 0.317599
\(379\) 1.10163e75 0.0937950 0.0468975 0.998900i \(-0.485067\pi\)
0.0468975 + 0.998900i \(0.485067\pi\)
\(380\) −5.09059e75 −0.401007
\(381\) −2.50746e76 −1.82788
\(382\) 3.40392e75 0.229673
\(383\) 3.09321e76 1.93217 0.966084 0.258228i \(-0.0831384\pi\)
0.966084 + 0.258228i \(0.0831384\pi\)
\(384\) −1.06739e76 −0.617377
\(385\) −2.03582e76 −1.09056
\(386\) −2.92400e76 −1.45095
\(387\) 1.71145e76 0.786847
\(388\) −1.06472e76 −0.453628
\(389\) 1.22185e76 0.482507 0.241254 0.970462i \(-0.422441\pi\)
0.241254 + 0.970462i \(0.422441\pi\)
\(390\) 4.19623e76 1.53622
\(391\) −4.22328e74 −0.0143362
\(392\) 2.16270e76 0.680859
\(393\) −4.31934e76 −1.26135
\(394\) −1.34714e76 −0.364984
\(395\) −7.74501e76 −1.94719
\(396\) 4.20345e75 0.0980838
\(397\) 8.16439e76 1.76850 0.884248 0.467018i \(-0.154672\pi\)
0.884248 + 0.467018i \(0.154672\pi\)
\(398\) 5.36439e76 1.07887
\(399\) 8.28284e76 1.54696
\(400\) −7.92731e76 −1.37517
\(401\) 8.81919e76 1.42125 0.710623 0.703573i \(-0.248413\pi\)
0.710623 + 0.703573i \(0.248413\pi\)
\(402\) −3.04777e76 −0.456367
\(403\) 1.03938e76 0.144636
\(404\) −3.99355e75 −0.0516546
\(405\) −1.68953e77 −2.03162
\(406\) −1.02872e77 −1.15021
\(407\) −4.15799e76 −0.432363
\(408\) 1.02014e76 0.0986700
\(409\) −9.51763e76 −0.856428 −0.428214 0.903677i \(-0.640857\pi\)
−0.428214 + 0.903677i \(0.640857\pi\)
\(410\) 3.19186e77 2.67251
\(411\) −7.87248e76 −0.613448
\(412\) 5.97757e76 0.433568
\(413\) −2.54903e77 −1.72127
\(414\) 2.26413e76 0.142361
\(415\) 3.67778e77 2.15361
\(416\) 6.95661e76 0.379441
\(417\) −8.77176e76 −0.445731
\(418\) 8.13983e76 0.385403
\(419\) 3.31477e77 1.46265 0.731324 0.682030i \(-0.238903\pi\)
0.731324 + 0.682030i \(0.238903\pi\)
\(420\) −1.83145e77 −0.753255
\(421\) −2.10408e77 −0.806752 −0.403376 0.915034i \(-0.632163\pi\)
−0.403376 + 0.915034i \(0.632163\pi\)
\(422\) −2.80844e77 −1.00403
\(423\) 5.50696e76 0.183599
\(424\) 1.84528e77 0.573811
\(425\) 4.74725e76 0.137711
\(426\) −3.02681e77 −0.819223
\(427\) −8.29214e76 −0.209433
\(428\) −6.53143e76 −0.153963
\(429\) 2.28824e77 0.503514
\(430\) −7.32808e77 −1.50547
\(431\) 4.43348e77 0.850482 0.425241 0.905080i \(-0.360189\pi\)
0.425241 + 0.905080i \(0.360189\pi\)
\(432\) 1.09553e77 0.196270
\(433\) −1.00421e78 −1.68047 −0.840236 0.542220i \(-0.817584\pi\)
−0.840236 + 0.542220i \(0.817584\pi\)
\(434\) 1.33019e77 0.207954
\(435\) 1.65845e78 2.42253
\(436\) 2.81557e77 0.384340
\(437\) −1.49523e77 −0.190768
\(438\) 7.05169e77 0.841022
\(439\) −5.00093e77 −0.557631 −0.278816 0.960345i \(-0.589942\pi\)
−0.278816 + 0.960345i \(0.589942\pi\)
\(440\) −8.87726e77 −0.925603
\(441\) 5.05548e77 0.492974
\(442\) 4.94887e76 0.0451387
\(443\) −1.24372e78 −1.06124 −0.530618 0.847611i \(-0.678040\pi\)
−0.530618 + 0.847611i \(0.678040\pi\)
\(444\) −3.74059e77 −0.298636
\(445\) 2.40228e78 1.79475
\(446\) 1.09428e78 0.765158
\(447\) −2.16357e78 −1.41612
\(448\) 2.30861e78 1.41465
\(449\) −2.77078e78 −1.58977 −0.794886 0.606759i \(-0.792469\pi\)
−0.794886 + 0.606759i \(0.792469\pi\)
\(450\) −2.54504e78 −1.36749
\(451\) 1.74055e78 0.875948
\(452\) −1.50439e77 −0.0709211
\(453\) −1.63312e77 −0.0721309
\(454\) −2.47492e78 −1.02427
\(455\) −4.38217e78 −1.69962
\(456\) 3.61175e78 1.31297
\(457\) 1.86231e78 0.634636 0.317318 0.948319i \(-0.397218\pi\)
0.317318 + 0.948319i \(0.397218\pi\)
\(458\) 4.44308e78 1.41956
\(459\) −6.56055e76 −0.0196547
\(460\) 3.30617e77 0.0928899
\(461\) 3.95029e78 1.04100 0.520501 0.853861i \(-0.325745\pi\)
0.520501 + 0.853861i \(0.325745\pi\)
\(462\) 2.92848e78 0.723943
\(463\) 3.19378e78 0.740739 0.370370 0.928884i \(-0.379231\pi\)
0.370370 + 0.928884i \(0.379231\pi\)
\(464\) −3.26613e78 −0.710809
\(465\) −2.14447e78 −0.437984
\(466\) −5.35114e78 −1.02580
\(467\) −5.82978e78 −1.04907 −0.524535 0.851389i \(-0.675761\pi\)
−0.524535 + 0.851389i \(0.675761\pi\)
\(468\) 9.04805e77 0.152863
\(469\) 3.18282e78 0.504910
\(470\) −2.35797e78 −0.351279
\(471\) −4.46790e78 −0.625153
\(472\) −1.11151e79 −1.46091
\(473\) −3.99607e78 −0.493435
\(474\) 1.11410e79 1.29260
\(475\) 1.68074e79 1.83248
\(476\) −2.15995e77 −0.0221329
\(477\) 4.31349e78 0.415467
\(478\) −3.41769e78 −0.309464
\(479\) 2.24826e78 0.191403 0.0957017 0.995410i \(-0.469491\pi\)
0.0957017 + 0.995410i \(0.469491\pi\)
\(480\) −1.43531e79 −1.14902
\(481\) −8.95021e78 −0.673835
\(482\) 6.03274e78 0.427196
\(483\) −5.37942e78 −0.358340
\(484\) 3.07637e78 0.192797
\(485\) 5.25624e79 3.09952
\(486\) 1.98187e79 1.09978
\(487\) −3.09514e79 −1.61650 −0.808251 0.588838i \(-0.799586\pi\)
−0.808251 + 0.588838i \(0.799586\pi\)
\(488\) −3.61581e78 −0.177755
\(489\) −1.62609e79 −0.752547
\(490\) −2.16466e79 −0.943202
\(491\) −2.38917e79 −0.980262 −0.490131 0.871649i \(-0.663051\pi\)
−0.490131 + 0.871649i \(0.663051\pi\)
\(492\) 1.56582e79 0.605023
\(493\) 1.95592e78 0.0711813
\(494\) 1.75212e79 0.600647
\(495\) −2.07513e79 −0.670181
\(496\) 4.22329e78 0.128511
\(497\) 3.16093e79 0.906362
\(498\) −5.29041e79 −1.42963
\(499\) 1.08643e79 0.276717 0.138358 0.990382i \(-0.455817\pi\)
0.138358 + 0.990382i \(0.455817\pi\)
\(500\) −1.87591e79 −0.450399
\(501\) −3.01273e79 −0.681941
\(502\) 1.33228e79 0.284338
\(503\) 5.40902e79 1.08859 0.544293 0.838895i \(-0.316798\pi\)
0.544293 + 0.838895i \(0.316798\pi\)
\(504\) 5.71140e79 1.08403
\(505\) 1.97151e79 0.352942
\(506\) −5.28654e78 −0.0892752
\(507\) −3.45869e79 −0.551032
\(508\) 2.31503e79 0.347998
\(509\) 4.74617e79 0.673238 0.336619 0.941641i \(-0.390717\pi\)
0.336619 + 0.941641i \(0.390717\pi\)
\(510\) −1.02106e79 −0.136689
\(511\) −7.36416e79 −0.930480
\(512\) 9.01123e79 1.07478
\(513\) −2.32273e79 −0.261539
\(514\) 1.48814e80 1.58209
\(515\) −2.95097e80 −2.96245
\(516\) −3.59492e79 −0.340819
\(517\) −1.28582e79 −0.115136
\(518\) −1.14544e80 −0.968827
\(519\) 1.18188e80 0.944358
\(520\) −1.91086e80 −1.44255
\(521\) 1.73445e79 0.123723 0.0618613 0.998085i \(-0.480296\pi\)
0.0618613 + 0.998085i \(0.480296\pi\)
\(522\) −1.04858e80 −0.706843
\(523\) 1.18403e80 0.754335 0.377167 0.926145i \(-0.376898\pi\)
0.377167 + 0.926145i \(0.376898\pi\)
\(524\) 3.98786e79 0.240141
\(525\) 6.04684e80 3.44214
\(526\) 6.37814e79 0.343253
\(527\) −2.52911e78 −0.0128693
\(528\) 9.29778e79 0.447382
\(529\) −2.10046e80 −0.955810
\(530\) −1.84695e80 −0.794908
\(531\) −2.59825e80 −1.05777
\(532\) −7.64718e79 −0.294516
\(533\) 3.74659e80 1.36516
\(534\) −3.45563e80 −1.19141
\(535\) 3.22440e80 1.05199
\(536\) 1.38788e80 0.428539
\(537\) −5.15135e80 −1.50549
\(538\) 2.52944e80 0.699758
\(539\) −1.18041e80 −0.309146
\(540\) 5.13588e79 0.127350
\(541\) 7.98203e79 0.187411 0.0937053 0.995600i \(-0.470129\pi\)
0.0937053 + 0.995600i \(0.470129\pi\)
\(542\) −3.19016e80 −0.709306
\(543\) 4.22959e80 0.890641
\(544\) −1.69275e79 −0.0337617
\(545\) −1.38997e81 −2.62609
\(546\) 6.30365e80 1.12826
\(547\) −1.05852e79 −0.0179504 −0.00897518 0.999960i \(-0.502857\pi\)
−0.00897518 + 0.999960i \(0.502857\pi\)
\(548\) 7.26831e79 0.116790
\(549\) −8.45225e79 −0.128703
\(550\) 5.94243e80 0.857561
\(551\) 6.92482e80 0.947188
\(552\) −2.34571e80 −0.304139
\(553\) −1.16347e81 −1.43009
\(554\) 1.15202e81 1.34253
\(555\) 1.84663e81 2.04050
\(556\) 8.09858e79 0.0848599
\(557\) −4.29933e80 −0.427241 −0.213620 0.976917i \(-0.568526\pi\)
−0.213620 + 0.976917i \(0.568526\pi\)
\(558\) 1.35588e80 0.127794
\(559\) −8.60167e80 −0.769014
\(560\) −1.78060e81 −1.51015
\(561\) −5.56796e79 −0.0448014
\(562\) −2.26074e80 −0.172595
\(563\) −1.67492e78 −0.00121338 −0.000606690 1.00000i \(-0.500193\pi\)
−0.000606690 1.00000i \(0.500193\pi\)
\(564\) −1.15674e80 −0.0795251
\(565\) 7.42675e80 0.484585
\(566\) −8.75447e80 −0.542182
\(567\) −2.53804e81 −1.49210
\(568\) 1.37833e81 0.769269
\(569\) 3.30406e81 1.75080 0.875399 0.483401i \(-0.160599\pi\)
0.875399 + 0.483401i \(0.160599\pi\)
\(570\) −3.61502e81 −1.81888
\(571\) 5.82486e80 0.278305 0.139152 0.990271i \(-0.455562\pi\)
0.139152 + 0.990271i \(0.455562\pi\)
\(572\) −2.11263e80 −0.0958609
\(573\) −8.24361e80 −0.355268
\(574\) 4.79487e81 1.96280
\(575\) −1.09158e81 −0.424478
\(576\) 2.35319e81 0.869347
\(577\) −4.10666e81 −1.44146 −0.720730 0.693216i \(-0.756193\pi\)
−0.720730 + 0.693216i \(0.756193\pi\)
\(578\) 2.57707e81 0.859519
\(579\) 7.08136e81 2.24439
\(580\) −1.53118e81 −0.461211
\(581\) 5.52483e81 1.58170
\(582\) −7.56098e81 −2.05755
\(583\) −1.00716e81 −0.260541
\(584\) −3.21117e81 −0.789739
\(585\) −4.46678e81 −1.04447
\(586\) −5.07784e81 −1.12901
\(587\) −4.15508e80 −0.0878528 −0.0439264 0.999035i \(-0.513987\pi\)
−0.0439264 + 0.999035i \(0.513987\pi\)
\(588\) −1.06191e81 −0.213529
\(589\) −8.95418e80 −0.171248
\(590\) 1.11252e82 2.02382
\(591\) 3.26251e81 0.564574
\(592\) −3.63672e81 −0.598715
\(593\) −5.04161e80 −0.0789689 −0.0394845 0.999220i \(-0.512572\pi\)
−0.0394845 + 0.999220i \(0.512572\pi\)
\(594\) −8.21225e80 −0.122394
\(595\) 1.06631e81 0.151228
\(596\) 1.99753e81 0.269606
\(597\) −1.29915e82 −1.66885
\(598\) −1.13794e81 −0.139135
\(599\) 1.04485e82 1.21608 0.608041 0.793906i \(-0.291956\pi\)
0.608041 + 0.793906i \(0.291956\pi\)
\(600\) 2.63674e82 2.92150
\(601\) −1.04932e82 −1.10690 −0.553452 0.832881i \(-0.686690\pi\)
−0.553452 + 0.832881i \(0.686690\pi\)
\(602\) −1.10084e82 −1.10567
\(603\) 3.24428e81 0.310283
\(604\) 1.50779e80 0.0137325
\(605\) −1.51872e82 −1.31733
\(606\) −2.83597e81 −0.234293
\(607\) 1.83220e82 1.44180 0.720902 0.693037i \(-0.243728\pi\)
0.720902 + 0.693037i \(0.243728\pi\)
\(608\) −5.99308e81 −0.449257
\(609\) 2.49136e82 1.77920
\(610\) 3.61908e81 0.246246
\(611\) −2.76778e81 −0.179438
\(612\) −2.20165e80 −0.0136013
\(613\) 7.20904e81 0.424418 0.212209 0.977224i \(-0.431934\pi\)
0.212209 + 0.977224i \(0.431934\pi\)
\(614\) −1.25366e82 −0.703416
\(615\) −7.73005e82 −4.13396
\(616\) −1.33356e82 −0.679800
\(617\) −1.07578e82 −0.522772 −0.261386 0.965234i \(-0.584180\pi\)
−0.261386 + 0.965234i \(0.584180\pi\)
\(618\) 4.24490e82 1.96656
\(619\) 1.25527e82 0.554449 0.277224 0.960805i \(-0.410585\pi\)
0.277224 + 0.960805i \(0.410585\pi\)
\(620\) 1.97990e81 0.0833850
\(621\) 1.50853e81 0.0605832
\(622\) −1.00542e82 −0.385063
\(623\) 3.60875e82 1.31813
\(624\) 2.00138e82 0.697241
\(625\) 3.18436e82 1.05819
\(626\) 6.20321e81 0.196641
\(627\) −1.97131e82 −0.596158
\(628\) 4.12502e81 0.119019
\(629\) 2.17785e81 0.0599561
\(630\) −5.71657e82 −1.50172
\(631\) 5.54665e82 1.39048 0.695239 0.718778i \(-0.255298\pi\)
0.695239 + 0.718778i \(0.255298\pi\)
\(632\) −5.07335e82 −1.21378
\(633\) 6.80150e82 1.55308
\(634\) 3.33200e82 0.726227
\(635\) −1.14287e83 −2.37778
\(636\) −9.06054e81 −0.179957
\(637\) −2.54086e82 −0.481802
\(638\) 2.44834e82 0.443264
\(639\) 3.22196e82 0.556987
\(640\) −4.86501e82 −0.803108
\(641\) −2.80336e82 −0.441944 −0.220972 0.975280i \(-0.570923\pi\)
−0.220972 + 0.975280i \(0.570923\pi\)
\(642\) −4.63822e82 −0.698342
\(643\) −3.52192e82 −0.506473 −0.253236 0.967404i \(-0.581495\pi\)
−0.253236 + 0.967404i \(0.581495\pi\)
\(644\) 4.96658e81 0.0682220
\(645\) 1.77472e83 2.32872
\(646\) −4.26342e81 −0.0534440
\(647\) −1.31942e82 −0.158018 −0.0790088 0.996874i \(-0.525176\pi\)
−0.0790088 + 0.996874i \(0.525176\pi\)
\(648\) −1.10672e83 −1.26641
\(649\) 6.06666e82 0.663332
\(650\) 1.27913e83 1.33650
\(651\) −3.22147e82 −0.321673
\(652\) 1.50130e82 0.143273
\(653\) −1.65618e82 −0.151066 −0.0755332 0.997143i \(-0.524066\pi\)
−0.0755332 + 0.997143i \(0.524066\pi\)
\(654\) 1.99945e83 1.74328
\(655\) −1.96870e83 −1.64082
\(656\) 1.52235e83 1.21297
\(657\) −7.50635e82 −0.571809
\(658\) −3.54219e82 −0.257993
\(659\) −9.65525e81 −0.0672425 −0.0336212 0.999435i \(-0.510704\pi\)
−0.0336212 + 0.999435i \(0.510704\pi\)
\(660\) 4.35884e82 0.290285
\(661\) −2.85133e83 −1.81595 −0.907976 0.419022i \(-0.862373\pi\)
−0.907976 + 0.419022i \(0.862373\pi\)
\(662\) −1.90755e83 −1.16189
\(663\) −1.19852e82 −0.0698226
\(664\) 2.40912e83 1.34246
\(665\) 3.77521e83 2.01235
\(666\) −1.16756e83 −0.595374
\(667\) −4.49743e82 −0.219408
\(668\) 2.78152e82 0.129831
\(669\) −2.65014e83 −1.18358
\(670\) −1.38914e83 −0.593660
\(671\) 1.97352e82 0.0807100
\(672\) −2.15614e83 −0.843886
\(673\) 2.49097e83 0.933091 0.466546 0.884497i \(-0.345498\pi\)
0.466546 + 0.884497i \(0.345498\pi\)
\(674\) 2.89907e82 0.103942
\(675\) −1.69569e83 −0.581951
\(676\) 3.19326e82 0.104908
\(677\) −1.42903e82 −0.0449445 −0.0224722 0.999747i \(-0.507154\pi\)
−0.0224722 + 0.999747i \(0.507154\pi\)
\(678\) −1.06832e83 −0.321681
\(679\) 7.89602e83 2.27641
\(680\) 4.64967e82 0.128354
\(681\) 5.99377e83 1.58438
\(682\) −3.16584e82 −0.0801402
\(683\) 2.48288e83 0.601928 0.300964 0.953635i \(-0.402692\pi\)
0.300964 + 0.953635i \(0.402692\pi\)
\(684\) −7.79484e82 −0.180989
\(685\) −3.58817e83 −0.797998
\(686\) 1.92129e83 0.409290
\(687\) −1.07603e84 −2.19583
\(688\) −3.49510e83 −0.683284
\(689\) −2.16794e83 −0.406051
\(690\) 2.34783e83 0.421327
\(691\) 5.53022e82 0.0950912 0.0475456 0.998869i \(-0.484860\pi\)
0.0475456 + 0.998869i \(0.484860\pi\)
\(692\) −1.09118e83 −0.179790
\(693\) −3.11730e83 −0.492207
\(694\) −7.08387e83 −1.07193
\(695\) −3.99805e83 −0.579825
\(696\) 1.08636e84 1.51009
\(697\) −9.11653e82 −0.121468
\(698\) 2.07848e83 0.265467
\(699\) 1.29594e84 1.58675
\(700\) −5.58278e83 −0.655328
\(701\) 3.90202e83 0.439145 0.219572 0.975596i \(-0.429534\pi\)
0.219572 + 0.975596i \(0.429534\pi\)
\(702\) −1.76771e83 −0.190751
\(703\) 7.71055e83 0.797817
\(704\) −5.49447e83 −0.545170
\(705\) 5.71054e83 0.543373
\(706\) 4.22349e83 0.385418
\(707\) 2.96164e83 0.259215
\(708\) 5.45765e83 0.458168
\(709\) −1.40891e84 −1.13454 −0.567270 0.823532i \(-0.692001\pi\)
−0.567270 + 0.823532i \(0.692001\pi\)
\(710\) −1.37958e84 −1.06568
\(711\) −1.18593e84 −0.878835
\(712\) 1.57361e84 1.11876
\(713\) 5.81543e82 0.0396681
\(714\) −1.53386e83 −0.100390
\(715\) 1.04295e84 0.654992
\(716\) 4.75601e83 0.286622
\(717\) 8.27698e83 0.478693
\(718\) 2.16511e84 1.20173
\(719\) −3.73873e84 −1.99169 −0.995845 0.0910630i \(-0.970974\pi\)
−0.995845 + 0.0910630i \(0.970974\pi\)
\(720\) −1.81498e84 −0.928033
\(721\) −4.43300e84 −2.17574
\(722\) 3.23410e83 0.152372
\(723\) −1.46101e84 −0.660806
\(724\) −3.90499e83 −0.169564
\(725\) 5.05542e84 2.10759
\(726\) 2.18465e84 0.874484
\(727\) 4.53192e84 1.74188 0.870938 0.491392i \(-0.163512\pi\)
0.870938 + 0.491392i \(0.163512\pi\)
\(728\) −2.87052e84 −1.05946
\(729\) −1.50092e84 −0.531979
\(730\) 3.21407e84 1.09404
\(731\) 2.09304e83 0.0684249
\(732\) 1.77541e83 0.0557469
\(733\) −5.45127e84 −1.64411 −0.822054 0.569409i \(-0.807172\pi\)
−0.822054 + 0.569409i \(0.807172\pi\)
\(734\) −3.56112e84 −1.03170
\(735\) 5.24237e84 1.45899
\(736\) 3.89230e83 0.104066
\(737\) −7.57508e83 −0.194579
\(738\) 4.88745e84 1.20620
\(739\) 7.25178e84 1.71963 0.859813 0.510609i \(-0.170580\pi\)
0.859813 + 0.510609i \(0.170580\pi\)
\(740\) −1.70491e84 −0.388478
\(741\) −4.24330e84 −0.929108
\(742\) −2.77452e84 −0.583812
\(743\) 1.87471e84 0.379108 0.189554 0.981870i \(-0.439296\pi\)
0.189554 + 0.981870i \(0.439296\pi\)
\(744\) −1.40473e84 −0.273018
\(745\) −9.86128e84 −1.84214
\(746\) −3.38833e84 −0.608402
\(747\) 5.63151e84 0.972001
\(748\) 5.14065e82 0.00852945
\(749\) 4.84375e84 0.772623
\(750\) −1.33216e85 −2.04291
\(751\) 5.00370e83 0.0737756 0.0368878 0.999319i \(-0.488256\pi\)
0.0368878 + 0.999319i \(0.488256\pi\)
\(752\) −1.12463e84 −0.159434
\(753\) −3.22652e84 −0.439827
\(754\) 5.27013e84 0.690823
\(755\) −7.44355e83 −0.0938307
\(756\) 7.71522e83 0.0935309
\(757\) 1.39411e85 1.62543 0.812714 0.582663i \(-0.197989\pi\)
0.812714 + 0.582663i \(0.197989\pi\)
\(758\) −7.22273e83 −0.0809953
\(759\) 1.28030e84 0.138095
\(760\) 1.64619e85 1.70797
\(761\) 4.02373e84 0.401588 0.200794 0.979633i \(-0.435648\pi\)
0.200794 + 0.979633i \(0.435648\pi\)
\(762\) 1.64399e85 1.57844
\(763\) −2.08804e85 −1.92870
\(764\) 7.61097e83 0.0676372
\(765\) 1.08690e84 0.0929343
\(766\) −2.02803e85 −1.66850
\(767\) 1.30587e85 1.03380
\(768\) −1.24386e85 −0.947581
\(769\) −1.19509e85 −0.876143 −0.438072 0.898940i \(-0.644338\pi\)
−0.438072 + 0.898940i \(0.644338\pi\)
\(770\) 1.33477e85 0.941734
\(771\) −3.60398e85 −2.44725
\(772\) −6.53791e84 −0.427296
\(773\) 2.46928e85 1.55337 0.776685 0.629889i \(-0.216900\pi\)
0.776685 + 0.629889i \(0.216900\pi\)
\(774\) −1.12209e85 −0.679471
\(775\) −6.53695e84 −0.381044
\(776\) 3.44308e85 1.93209
\(777\) 2.77404e85 1.49862
\(778\) −8.01092e84 −0.416662
\(779\) −3.22766e85 −1.61634
\(780\) 9.38254e84 0.452407
\(781\) −7.52298e84 −0.349289
\(782\) 2.76895e83 0.0123799
\(783\) −6.98643e84 −0.300804
\(784\) −1.03243e85 −0.428090
\(785\) −2.03641e85 −0.813225
\(786\) 2.83193e85 1.08922
\(787\) 2.95880e85 1.09613 0.548064 0.836437i \(-0.315365\pi\)
0.548064 + 0.836437i \(0.315365\pi\)
\(788\) −3.01213e84 −0.107486
\(789\) −1.54466e85 −0.530959
\(790\) 5.07794e85 1.68147
\(791\) 1.11566e85 0.355898
\(792\) −1.35931e85 −0.417758
\(793\) 4.24806e84 0.125786
\(794\) −5.35290e85 −1.52716
\(795\) 4.47295e85 1.22960
\(796\) 1.19945e85 0.317721
\(797\) 2.78567e85 0.711065 0.355532 0.934664i \(-0.384300\pi\)
0.355532 + 0.934664i \(0.384300\pi\)
\(798\) −5.43056e85 −1.33585
\(799\) 6.73480e83 0.0159659
\(800\) −4.37521e85 −0.999642
\(801\) 3.67843e85 0.810034
\(802\) −5.78221e85 −1.22730
\(803\) 1.75266e85 0.358583
\(804\) −6.81465e84 −0.134397
\(805\) −2.45187e85 −0.466143
\(806\) −6.81458e84 −0.124898
\(807\) −6.12581e85 −1.08242
\(808\) 1.29143e85 0.220007
\(809\) −3.79734e85 −0.623732 −0.311866 0.950126i \(-0.600954\pi\)
−0.311866 + 0.950126i \(0.600954\pi\)
\(810\) 1.10772e86 1.75437
\(811\) 1.37244e85 0.209594 0.104797 0.994494i \(-0.466581\pi\)
0.104797 + 0.994494i \(0.466581\pi\)
\(812\) −2.30016e85 −0.338731
\(813\) 7.72594e85 1.09719
\(814\) 2.72615e85 0.373361
\(815\) −7.41152e85 −0.978944
\(816\) −4.86993e84 −0.0620387
\(817\) 7.41028e85 0.910509
\(818\) 6.24013e85 0.739557
\(819\) −6.71008e85 −0.767101
\(820\) 7.13682e85 0.787039
\(821\) 5.67502e85 0.603732 0.301866 0.953350i \(-0.402390\pi\)
0.301866 + 0.953350i \(0.402390\pi\)
\(822\) 5.16151e85 0.529734
\(823\) −3.36239e85 −0.332930 −0.166465 0.986047i \(-0.553235\pi\)
−0.166465 + 0.986047i \(0.553235\pi\)
\(824\) −1.93302e86 −1.84665
\(825\) −1.43914e86 −1.32651
\(826\) 1.67124e86 1.48638
\(827\) 1.72236e86 1.47812 0.739061 0.673638i \(-0.235269\pi\)
0.739061 + 0.673638i \(0.235269\pi\)
\(828\) 5.06248e84 0.0419245
\(829\) 1.06995e86 0.855080 0.427540 0.903996i \(-0.359380\pi\)
0.427540 + 0.903996i \(0.359380\pi\)
\(830\) −2.41130e86 −1.85972
\(831\) −2.78998e86 −2.07668
\(832\) −1.18270e86 −0.849644
\(833\) 6.18266e84 0.0428694
\(834\) 5.75111e85 0.384905
\(835\) −1.37316e86 −0.887097
\(836\) 1.82002e85 0.113499
\(837\) 9.03385e84 0.0543841
\(838\) −2.17330e86 −1.26305
\(839\) 2.77617e86 1.55764 0.778822 0.627245i \(-0.215817\pi\)
0.778822 + 0.627245i \(0.215817\pi\)
\(840\) 5.92254e86 3.20826
\(841\) 1.70911e85 0.0893898
\(842\) 1.37952e86 0.696659
\(843\) 5.47506e85 0.266978
\(844\) −6.27953e85 −0.295682
\(845\) −1.57643e86 −0.716805
\(846\) −3.61058e85 −0.158545
\(847\) −2.28146e86 −0.967501
\(848\) −8.80895e85 −0.360784
\(849\) 2.12016e86 0.838672
\(850\) −3.11249e85 −0.118918
\(851\) −5.00774e85 −0.184807
\(852\) −6.76778e85 −0.241256
\(853\) −2.60122e86 −0.895737 −0.447869 0.894099i \(-0.647817\pi\)
−0.447869 + 0.894099i \(0.647817\pi\)
\(854\) 5.43665e85 0.180853
\(855\) 3.84810e86 1.23665
\(856\) 2.11213e86 0.655759
\(857\) 1.69052e86 0.507091 0.253545 0.967323i \(-0.418403\pi\)
0.253545 + 0.967323i \(0.418403\pi\)
\(858\) −1.50026e86 −0.434803
\(859\) 3.14436e86 0.880509 0.440254 0.897873i \(-0.354888\pi\)
0.440254 + 0.897873i \(0.354888\pi\)
\(860\) −1.63852e86 −0.443351
\(861\) −1.16122e87 −3.03615
\(862\) −2.90676e86 −0.734422
\(863\) 1.46329e86 0.357282 0.178641 0.983914i \(-0.442830\pi\)
0.178641 + 0.983914i \(0.442830\pi\)
\(864\) 6.04640e85 0.142673
\(865\) 5.38686e86 1.22846
\(866\) 6.58400e86 1.45115
\(867\) −6.24117e86 −1.32954
\(868\) 2.97424e85 0.0612412
\(869\) 2.76905e86 0.551121
\(870\) −1.08735e87 −2.09194
\(871\) −1.63056e86 −0.303250
\(872\) −9.10498e86 −1.63698
\(873\) 8.04848e86 1.39892
\(874\) 9.80331e85 0.164735
\(875\) 1.39119e87 2.26021
\(876\) 1.57672e86 0.247676
\(877\) 5.57754e86 0.847139 0.423570 0.905864i \(-0.360777\pi\)
0.423570 + 0.905864i \(0.360777\pi\)
\(878\) 3.27881e86 0.481535
\(879\) 1.22975e87 1.74641
\(880\) 4.23781e86 0.581972
\(881\) −8.88813e86 −1.18038 −0.590189 0.807265i \(-0.700947\pi\)
−0.590189 + 0.807265i \(0.700947\pi\)
\(882\) −3.31457e86 −0.425701
\(883\) −1.03961e87 −1.29131 −0.645654 0.763630i \(-0.723415\pi\)
−0.645654 + 0.763630i \(0.723415\pi\)
\(884\) 1.10654e85 0.0132931
\(885\) −2.69430e87 −3.13054
\(886\) 8.15431e86 0.916415
\(887\) 1.24157e87 1.34967 0.674833 0.737971i \(-0.264216\pi\)
0.674833 + 0.737971i \(0.264216\pi\)
\(888\) 1.20963e87 1.27195
\(889\) −1.71684e87 −1.74633
\(890\) −1.57503e87 −1.54983
\(891\) 6.04050e86 0.575017
\(892\) 2.44676e86 0.225334
\(893\) 2.38442e86 0.212454
\(894\) 1.41852e87 1.22287
\(895\) −2.34792e87 −1.95841
\(896\) −7.30830e86 −0.589834
\(897\) 2.75588e86 0.215220
\(898\) 1.81663e87 1.37282
\(899\) −2.69329e86 −0.196957
\(900\) −5.69058e86 −0.402719
\(901\) 5.27523e85 0.0361293
\(902\) −1.14117e87 −0.756413
\(903\) 2.66601e87 1.71031
\(904\) 4.86487e86 0.302066
\(905\) 1.92779e87 1.15858
\(906\) 1.07074e86 0.0622876
\(907\) −1.22203e87 −0.688122 −0.344061 0.938947i \(-0.611803\pi\)
−0.344061 + 0.938947i \(0.611803\pi\)
\(908\) −5.53378e86 −0.301640
\(909\) 3.01882e86 0.159295
\(910\) 2.87312e87 1.46769
\(911\) 1.00822e87 0.498611 0.249306 0.968425i \(-0.419798\pi\)
0.249306 + 0.968425i \(0.419798\pi\)
\(912\) −1.72417e87 −0.825530
\(913\) −1.31490e87 −0.609546
\(914\) −1.22101e87 −0.548031
\(915\) −8.76471e86 −0.380904
\(916\) 9.93448e86 0.418051
\(917\) −2.95742e87 −1.20508
\(918\) 4.30135e85 0.0169725
\(919\) −3.55829e86 −0.135967 −0.0679835 0.997686i \(-0.521657\pi\)
−0.0679835 + 0.997686i \(0.521657\pi\)
\(920\) −1.06914e87 −0.395636
\(921\) 3.03612e87 1.08808
\(922\) −2.58996e87 −0.898942
\(923\) −1.61935e87 −0.544364
\(924\) 6.54793e86 0.213197
\(925\) 5.62904e87 1.77522
\(926\) −2.09397e87 −0.639655
\(927\) −4.51859e87 −1.33706
\(928\) −1.80263e87 −0.516704
\(929\) 3.60367e87 1.00065 0.500324 0.865838i \(-0.333214\pi\)
0.500324 + 0.865838i \(0.333214\pi\)
\(930\) 1.40600e87 0.378215
\(931\) 2.18894e87 0.570451
\(932\) −1.19649e87 −0.302091
\(933\) 2.43493e87 0.595633
\(934\) 3.82224e87 0.905909
\(935\) −2.53780e86 −0.0582794
\(936\) −2.92595e87 −0.651073
\(937\) −4.13844e87 −0.892316 −0.446158 0.894954i \(-0.647208\pi\)
−0.446158 + 0.894954i \(0.647208\pi\)
\(938\) −2.08678e87 −0.436007
\(939\) −1.50230e87 −0.304173
\(940\) −5.27230e86 −0.103449
\(941\) 6.38918e87 1.21493 0.607465 0.794346i \(-0.292186\pi\)
0.607465 + 0.794346i \(0.292186\pi\)
\(942\) 2.92933e87 0.539842
\(943\) 2.09626e87 0.374412
\(944\) 5.30611e87 0.918549
\(945\) −3.80880e87 −0.639072
\(946\) 2.61998e87 0.426098
\(947\) 3.09168e87 0.487383 0.243692 0.969853i \(-0.421641\pi\)
0.243692 + 0.969853i \(0.421641\pi\)
\(948\) 2.49107e87 0.380663
\(949\) 3.77266e87 0.558849
\(950\) −1.10196e88 −1.58241
\(951\) −8.06946e87 −1.12336
\(952\) 6.98482e86 0.0942682
\(953\) −1.26538e88 −1.65569 −0.827845 0.560957i \(-0.810433\pi\)
−0.827845 + 0.560957i \(0.810433\pi\)
\(954\) −2.82809e87 −0.358770
\(955\) −3.75733e87 −0.462147
\(956\) −7.64177e86 −0.0911352
\(957\) −5.92940e87 −0.685660
\(958\) −1.47405e87 −0.165284
\(959\) −5.39022e87 −0.586081
\(960\) 2.44018e88 2.57288
\(961\) −9.43177e87 −0.964391
\(962\) 5.86811e87 0.581880
\(963\) 4.93727e87 0.474801
\(964\) 1.34889e87 0.125807
\(965\) 3.22759e88 2.91960
\(966\) 3.52696e87 0.309439
\(967\) 2.19059e87 0.186415 0.0932073 0.995647i \(-0.470288\pi\)
0.0932073 + 0.995647i \(0.470288\pi\)
\(968\) −9.94835e87 −0.821161
\(969\) 1.03252e87 0.0826696
\(970\) −3.44620e88 −2.67654
\(971\) 2.13221e88 1.60643 0.803217 0.595686i \(-0.203120\pi\)
0.803217 + 0.595686i \(0.203120\pi\)
\(972\) 4.43135e87 0.323878
\(973\) −6.00595e87 −0.425846
\(974\) 2.02930e88 1.39591
\(975\) −3.09779e88 −2.06736
\(976\) 1.72611e87 0.111763
\(977\) 6.88952e87 0.432812 0.216406 0.976303i \(-0.430566\pi\)
0.216406 + 0.976303i \(0.430566\pi\)
\(978\) 1.06613e88 0.649851
\(979\) −8.58878e87 −0.507975
\(980\) −4.84006e87 −0.277767
\(981\) −2.12836e88 −1.18525
\(982\) 1.56643e88 0.846491
\(983\) 4.93080e87 0.258576 0.129288 0.991607i \(-0.458731\pi\)
0.129288 + 0.991607i \(0.458731\pi\)
\(984\) −5.06355e88 −2.57691
\(985\) 1.48701e88 0.734421
\(986\) −1.28238e87 −0.0614676
\(987\) 8.57848e87 0.399075
\(988\) 3.91765e87 0.176887
\(989\) −4.81272e87 −0.210912
\(990\) 1.36054e88 0.578725
\(991\) 4.59414e87 0.189684 0.0948421 0.995492i \(-0.469765\pi\)
0.0948421 + 0.995492i \(0.469765\pi\)
\(992\) 2.33090e87 0.0934179
\(993\) 4.61972e88 1.79727
\(994\) −2.07243e88 −0.782676
\(995\) −5.92136e88 −2.17090
\(996\) −1.18291e88 −0.421017
\(997\) 3.03646e88 1.04921 0.524603 0.851347i \(-0.324214\pi\)
0.524603 + 0.851347i \(0.324214\pi\)
\(998\) −7.12306e87 −0.238955
\(999\) −7.77915e87 −0.253367
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))