Properties

Label 1.60.a.a.1.1
Level 1
Weight 60
Character 1.1
Self dual Yes
Analytic conductor 22.046
Analytic rank 0
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 60 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(22.045800551\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{39}\cdot 3^{13}\cdot 5^{3}\cdot 7^{2} \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.54999e7\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.42193e9 q^{2} -1.64208e14 q^{3} +1.44544e18 q^{4} +2.46018e20 q^{5} +2.33493e23 q^{6} -6.31094e24 q^{7} -1.23563e27 q^{8} +1.28340e28 q^{9} +O(q^{10})\) \(q-1.42193e9 q^{2} -1.64208e14 q^{3} +1.44544e18 q^{4} +2.46018e20 q^{5} +2.33493e23 q^{6} -6.31094e24 q^{7} -1.23563e27 q^{8} +1.28340e28 q^{9} -3.49822e29 q^{10} -1.85237e29 q^{11} -2.37353e32 q^{12} -9.37557e32 q^{13} +8.97374e33 q^{14} -4.03982e34 q^{15} +9.23746e35 q^{16} -2.12710e36 q^{17} -1.82491e37 q^{18} +2.93477e37 q^{19} +3.55604e38 q^{20} +1.03631e39 q^{21} +2.63395e38 q^{22} -1.73933e40 q^{23} +2.02901e41 q^{24} -1.12947e41 q^{25} +1.33315e42 q^{26} +2.12883e41 q^{27} -9.12207e42 q^{28} +2.89914e41 q^{29} +5.74436e43 q^{30} -1.46222e44 q^{31} -6.01215e44 q^{32} +3.04175e43 q^{33} +3.02460e45 q^{34} -1.55260e45 q^{35} +1.85507e46 q^{36} -2.03766e46 q^{37} -4.17306e46 q^{38} +1.53955e47 q^{39} -3.03987e47 q^{40} +2.62740e47 q^{41} -1.47356e48 q^{42} +8.93006e47 q^{43} -2.67749e47 q^{44} +3.15739e48 q^{45} +2.47321e49 q^{46} +2.53928e49 q^{47} -1.51687e50 q^{48} -3.27466e49 q^{49} +1.60604e50 q^{50} +3.49288e50 q^{51} -1.35518e51 q^{52} +1.22660e51 q^{53} -3.02706e50 q^{54} -4.55717e49 q^{55} +7.79798e51 q^{56} -4.81914e51 q^{57} -4.12239e50 q^{58} +5.85329e50 q^{59} -5.83931e52 q^{60} -6.37747e52 q^{61} +2.07918e53 q^{62} -8.09944e52 q^{63} +3.22385e53 q^{64} -2.30656e53 q^{65} -4.32517e52 q^{66} +6.46551e53 q^{67} -3.07460e54 q^{68} +2.85612e54 q^{69} +2.20770e54 q^{70} -1.44338e54 q^{71} -1.58580e55 q^{72} -2.42309e54 q^{73} +2.89742e55 q^{74} +1.85469e55 q^{75} +4.24203e55 q^{76} +1.16902e54 q^{77} -2.18913e56 q^{78} +4.97858e54 q^{79} +2.27258e56 q^{80} -2.16306e56 q^{81} -3.73599e56 q^{82} +3.44463e56 q^{83} +1.49792e57 q^{84} -5.23306e56 q^{85} -1.26980e57 q^{86} -4.76063e55 q^{87} +2.28885e56 q^{88} +3.85023e57 q^{89} -4.48960e57 q^{90} +5.91687e57 q^{91} -2.51409e58 q^{92} +2.40109e58 q^{93} -3.61069e58 q^{94} +7.22007e57 q^{95} +9.87245e58 q^{96} -2.95516e58 q^{97} +4.65635e58 q^{98} -2.37733e57 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5q - 449691864q^{2} + 84016631749932q^{3} + 1738819379139544640q^{4} + \)\(17\!\cdots\!90\)\(q^{5} + \)\(31\!\cdots\!60\)\(q^{6} + \)\(14\!\cdots\!56\)\(q^{7} - \)\(34\!\cdots\!80\)\(q^{8} + \)\(32\!\cdots\!85\)\(q^{9} + O(q^{10}) \) \( 5q - 449691864q^{2} + 84016631749932q^{3} + 1738819379139544640q^{4} + \)\(17\!\cdots\!90\)\(q^{5} + \)\(31\!\cdots\!60\)\(q^{6} + \)\(14\!\cdots\!56\)\(q^{7} - \)\(34\!\cdots\!80\)\(q^{8} + \)\(32\!\cdots\!85\)\(q^{9} - \)\(81\!\cdots\!60\)\(q^{10} + \)\(42\!\cdots\!60\)\(q^{11} - \)\(44\!\cdots\!44\)\(q^{12} - \)\(84\!\cdots\!78\)\(q^{13} + \)\(62\!\cdots\!80\)\(q^{14} - \)\(40\!\cdots\!20\)\(q^{15} + \)\(69\!\cdots\!80\)\(q^{16} - \)\(34\!\cdots\!54\)\(q^{17} + \)\(96\!\cdots\!52\)\(q^{18} + \)\(64\!\cdots\!00\)\(q^{19} + \)\(16\!\cdots\!20\)\(q^{20} + \)\(34\!\cdots\!60\)\(q^{21} + \)\(16\!\cdots\!12\)\(q^{22} + \)\(26\!\cdots\!12\)\(q^{23} + \)\(43\!\cdots\!00\)\(q^{24} + \)\(62\!\cdots\!75\)\(q^{25} + \)\(27\!\cdots\!60\)\(q^{26} + \)\(42\!\cdots\!80\)\(q^{27} - \)\(56\!\cdots\!52\)\(q^{28} - \)\(17\!\cdots\!50\)\(q^{29} - \)\(15\!\cdots\!20\)\(q^{30} - \)\(35\!\cdots\!40\)\(q^{31} - \)\(10\!\cdots\!84\)\(q^{32} + \)\(75\!\cdots\!44\)\(q^{33} + \)\(13\!\cdots\!80\)\(q^{34} + \)\(87\!\cdots\!40\)\(q^{35} + \)\(50\!\cdots\!80\)\(q^{36} + \)\(12\!\cdots\!26\)\(q^{37} - \)\(45\!\cdots\!20\)\(q^{38} - \)\(92\!\cdots\!80\)\(q^{39} - \)\(62\!\cdots\!00\)\(q^{40} - \)\(12\!\cdots\!90\)\(q^{41} - \)\(18\!\cdots\!88\)\(q^{42} + \)\(13\!\cdots\!92\)\(q^{43} + \)\(10\!\cdots\!80\)\(q^{44} + \)\(10\!\cdots\!30\)\(q^{45} + \)\(35\!\cdots\!60\)\(q^{46} + \)\(58\!\cdots\!16\)\(q^{47} - \)\(14\!\cdots\!88\)\(q^{48} - \)\(17\!\cdots\!35\)\(q^{49} - \)\(23\!\cdots\!00\)\(q^{50} - \)\(46\!\cdots\!40\)\(q^{51} - \)\(99\!\cdots\!24\)\(q^{52} + \)\(22\!\cdots\!82\)\(q^{53} + \)\(42\!\cdots\!00\)\(q^{54} + \)\(90\!\cdots\!80\)\(q^{55} + \)\(13\!\cdots\!00\)\(q^{56} - \)\(14\!\cdots\!40\)\(q^{57} - \)\(19\!\cdots\!80\)\(q^{58} - \)\(21\!\cdots\!00\)\(q^{59} - \)\(15\!\cdots\!60\)\(q^{60} - \)\(55\!\cdots\!90\)\(q^{61} + \)\(18\!\cdots\!92\)\(q^{62} + \)\(18\!\cdots\!92\)\(q^{63} + \)\(44\!\cdots\!40\)\(q^{64} + \)\(10\!\cdots\!80\)\(q^{65} + \)\(18\!\cdots\!20\)\(q^{66} + \)\(25\!\cdots\!96\)\(q^{67} - \)\(58\!\cdots\!32\)\(q^{68} - \)\(11\!\cdots\!80\)\(q^{69} - \)\(57\!\cdots\!60\)\(q^{70} - \)\(63\!\cdots\!40\)\(q^{71} + \)\(50\!\cdots\!40\)\(q^{72} + \)\(12\!\cdots\!62\)\(q^{73} + \)\(30\!\cdots\!80\)\(q^{74} + \)\(71\!\cdots\!00\)\(q^{75} + \)\(44\!\cdots\!00\)\(q^{76} + \)\(17\!\cdots\!52\)\(q^{77} - \)\(20\!\cdots\!56\)\(q^{78} - \)\(19\!\cdots\!00\)\(q^{79} - \)\(20\!\cdots\!60\)\(q^{80} - \)\(27\!\cdots\!95\)\(q^{81} - \)\(90\!\cdots\!68\)\(q^{82} + \)\(13\!\cdots\!52\)\(q^{83} + \)\(17\!\cdots\!80\)\(q^{84} + \)\(24\!\cdots\!40\)\(q^{85} - \)\(14\!\cdots\!40\)\(q^{86} + \)\(27\!\cdots\!40\)\(q^{87} - \)\(76\!\cdots\!60\)\(q^{88} + \)\(41\!\cdots\!50\)\(q^{89} - \)\(27\!\cdots\!20\)\(q^{90} + \)\(20\!\cdots\!60\)\(q^{91} - \)\(40\!\cdots\!04\)\(q^{92} + \)\(35\!\cdots\!04\)\(q^{93} - \)\(11\!\cdots\!20\)\(q^{94} + \)\(87\!\cdots\!00\)\(q^{95} + \)\(35\!\cdots\!60\)\(q^{96} + \)\(11\!\cdots\!66\)\(q^{97} - \)\(10\!\cdots\!52\)\(q^{98} + \)\(23\!\cdots\!20\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.42193e9 −1.87281 −0.936407 0.350915i \(-0.885871\pi\)
−0.936407 + 0.350915i \(0.885871\pi\)
\(3\) −1.64208e14 −1.38140 −0.690698 0.723144i \(-0.742696\pi\)
−0.690698 + 0.723144i \(0.742696\pi\)
\(4\) 1.44544e18 2.50744
\(5\) 2.46018e20 0.590679 0.295340 0.955392i \(-0.404567\pi\)
0.295340 + 0.955392i \(0.404567\pi\)
\(6\) 2.33493e23 2.58710
\(7\) −6.31094e24 −0.740801 −0.370401 0.928872i \(-0.620780\pi\)
−0.370401 + 0.928872i \(0.620780\pi\)
\(8\) −1.23563e27 −2.82315
\(9\) 1.28340e28 0.908253
\(10\) −3.49822e29 −1.10623
\(11\) −1.85237e29 −0.0352082 −0.0176041 0.999845i \(-0.505604\pi\)
−0.0176041 + 0.999845i \(0.505604\pi\)
\(12\) −2.37353e32 −3.46376
\(13\) −9.37557e32 −1.29024 −0.645118 0.764083i \(-0.723192\pi\)
−0.645118 + 0.764083i \(0.723192\pi\)
\(14\) 8.97374e33 1.38738
\(15\) −4.03982e34 −0.815962
\(16\) 9.23746e35 2.77980
\(17\) −2.12710e36 −1.07040 −0.535199 0.844726i \(-0.679763\pi\)
−0.535199 + 0.844726i \(0.679763\pi\)
\(18\) −1.82491e37 −1.70099
\(19\) 2.93477e37 0.555064 0.277532 0.960716i \(-0.410484\pi\)
0.277532 + 0.960716i \(0.410484\pi\)
\(20\) 3.55604e38 1.48109
\(21\) 1.03631e39 1.02334
\(22\) 2.63395e38 0.0659385
\(23\) −1.73933e40 −1.17330 −0.586652 0.809839i \(-0.699554\pi\)
−0.586652 + 0.809839i \(0.699554\pi\)
\(24\) 2.02901e41 3.89988
\(25\) −1.12947e41 −0.651098
\(26\) 1.33315e42 2.41637
\(27\) 2.12883e41 0.126739
\(28\) −9.12207e42 −1.85751
\(29\) 2.89914e41 0.0209666 0.0104833 0.999945i \(-0.496663\pi\)
0.0104833 + 0.999945i \(0.496663\pi\)
\(30\) 5.74436e43 1.52815
\(31\) −1.46222e44 −1.47857 −0.739287 0.673390i \(-0.764837\pi\)
−0.739287 + 0.673390i \(0.764837\pi\)
\(32\) −6.01215e44 −2.38290
\(33\) 3.04175e43 0.0486365
\(34\) 3.02460e45 2.00466
\(35\) −1.55260e45 −0.437576
\(36\) 1.85507e46 2.27739
\(37\) −2.03766e46 −1.11476 −0.557379 0.830258i \(-0.688193\pi\)
−0.557379 + 0.830258i \(0.688193\pi\)
\(38\) −4.17306e46 −1.03953
\(39\) 1.53955e47 1.78232
\(40\) −3.03987e47 −1.66758
\(41\) 2.62740e47 0.695669 0.347835 0.937556i \(-0.386917\pi\)
0.347835 + 0.937556i \(0.386917\pi\)
\(42\) −1.47356e48 −1.91653
\(43\) 8.93006e47 0.580143 0.290071 0.957005i \(-0.406321\pi\)
0.290071 + 0.957005i \(0.406321\pi\)
\(44\) −2.67749e47 −0.0882824
\(45\) 3.15739e48 0.536486
\(46\) 2.47321e49 2.19738
\(47\) 2.53928e49 1.19626 0.598128 0.801401i \(-0.295911\pi\)
0.598128 + 0.801401i \(0.295911\pi\)
\(48\) −1.51687e50 −3.84000
\(49\) −3.27466e49 −0.451213
\(50\) 1.60604e50 1.21939
\(51\) 3.49288e50 1.47864
\(52\) −1.35518e51 −3.23518
\(53\) 1.22660e51 1.66942 0.834710 0.550690i \(-0.185635\pi\)
0.834710 + 0.550690i \(0.185635\pi\)
\(54\) −3.02706e50 −0.237359
\(55\) −4.55717e49 −0.0207968
\(56\) 7.79798e51 2.09139
\(57\) −4.81914e51 −0.766763
\(58\) −4.12239e50 −0.0392666
\(59\) 5.85329e50 0.0336717 0.0168359 0.999858i \(-0.494641\pi\)
0.0168359 + 0.999858i \(0.494641\pi\)
\(60\) −5.83931e52 −2.04597
\(61\) −6.37747e52 −1.37220 −0.686102 0.727506i \(-0.740680\pi\)
−0.686102 + 0.727506i \(0.740680\pi\)
\(62\) 2.07918e53 2.76910
\(63\) −8.09944e52 −0.672835
\(64\) 3.22385e53 1.68293
\(65\) −2.30656e53 −0.762115
\(66\) −4.32517e52 −0.0910871
\(67\) 6.46551e53 0.873767 0.436884 0.899518i \(-0.356082\pi\)
0.436884 + 0.899518i \(0.356082\pi\)
\(68\) −3.07460e54 −2.68395
\(69\) 2.85612e54 1.62080
\(70\) 2.20770e54 0.819499
\(71\) −1.44338e54 −0.352580 −0.176290 0.984338i \(-0.556410\pi\)
−0.176290 + 0.984338i \(0.556410\pi\)
\(72\) −1.58580e55 −2.56413
\(73\) −2.42309e54 −0.260822 −0.130411 0.991460i \(-0.541630\pi\)
−0.130411 + 0.991460i \(0.541630\pi\)
\(74\) 2.89742e55 2.08773
\(75\) 1.85469e55 0.899424
\(76\) 4.24203e55 1.39179
\(77\) 1.16902e54 0.0260823
\(78\) −2.18913e56 −3.33796
\(79\) 4.97858e54 0.0521322 0.0260661 0.999660i \(-0.491702\pi\)
0.0260661 + 0.999660i \(0.491702\pi\)
\(80\) 2.27258e56 1.64197
\(81\) −2.16306e56 −1.08333
\(82\) −3.73599e56 −1.30286
\(83\) 3.44463e56 0.840116 0.420058 0.907497i \(-0.362010\pi\)
0.420058 + 0.907497i \(0.362010\pi\)
\(84\) 1.49792e57 2.56596
\(85\) −5.23306e56 −0.632262
\(86\) −1.26980e57 −1.08650
\(87\) −4.76063e55 −0.0289632
\(88\) 2.28885e56 0.0993981
\(89\) 3.85023e57 1.19807 0.599034 0.800724i \(-0.295551\pi\)
0.599034 + 0.800724i \(0.295551\pi\)
\(90\) −4.48960e57 −1.00474
\(91\) 5.91687e57 0.955808
\(92\) −2.51409e58 −2.94198
\(93\) 2.40109e58 2.04250
\(94\) −3.61069e58 −2.24037
\(95\) 7.22007e57 0.327865
\(96\) 9.87245e58 3.29172
\(97\) −2.95516e58 −0.725797 −0.362899 0.931829i \(-0.618213\pi\)
−0.362899 + 0.931829i \(0.618213\pi\)
\(98\) 4.65635e58 0.845039
\(99\) −2.37733e57 −0.0319780
\(100\) −1.63259e59 −1.63259
\(101\) 6.95950e57 0.0518916 0.0259458 0.999663i \(-0.491740\pi\)
0.0259458 + 0.999663i \(0.491740\pi\)
\(102\) −4.96665e59 −2.76922
\(103\) 9.43331e58 0.394426 0.197213 0.980361i \(-0.436811\pi\)
0.197213 + 0.980361i \(0.436811\pi\)
\(104\) 1.15847e60 3.64252
\(105\) 2.54951e59 0.604466
\(106\) −1.74415e60 −3.12651
\(107\) 4.79536e59 0.651627 0.325814 0.945434i \(-0.394362\pi\)
0.325814 + 0.945434i \(0.394362\pi\)
\(108\) 3.07710e59 0.317790
\(109\) 8.62112e59 0.678394 0.339197 0.940715i \(-0.389845\pi\)
0.339197 + 0.940715i \(0.389845\pi\)
\(110\) 6.48000e58 0.0389485
\(111\) 3.34600e60 1.53992
\(112\) −5.82971e60 −2.05928
\(113\) −3.86899e60 −1.05144 −0.525719 0.850658i \(-0.676204\pi\)
−0.525719 + 0.850658i \(0.676204\pi\)
\(114\) 6.85250e60 1.43601
\(115\) −4.27906e60 −0.693046
\(116\) 4.19053e59 0.0525725
\(117\) −1.20326e61 −1.17186
\(118\) −8.32299e59 −0.0630609
\(119\) 1.34240e61 0.792952
\(120\) 4.99172e61 2.30358
\(121\) −2.76458e61 −0.998760
\(122\) 9.06835e61 2.56988
\(123\) −4.31441e61 −0.960994
\(124\) −2.11355e62 −3.70743
\(125\) −7.04644e61 −0.975269
\(126\) 1.15169e62 1.26010
\(127\) 2.00091e62 1.73388 0.866939 0.498414i \(-0.166084\pi\)
0.866939 + 0.498414i \(0.166084\pi\)
\(128\) −1.11834e62 −0.768918
\(129\) −1.46639e62 −0.801406
\(130\) 3.27978e62 1.42730
\(131\) 1.11788e62 0.388053 0.194026 0.980996i \(-0.437845\pi\)
0.194026 + 0.980996i \(0.437845\pi\)
\(132\) 4.39666e61 0.121953
\(133\) −1.85212e62 −0.411192
\(134\) −9.19353e62 −1.63640
\(135\) 5.23731e61 0.0748621
\(136\) 2.62831e63 3.02189
\(137\) 2.78939e62 0.258376 0.129188 0.991620i \(-0.458763\pi\)
0.129188 + 0.991620i \(0.458763\pi\)
\(138\) −4.06122e63 −3.03545
\(139\) 2.28698e63 1.38142 0.690710 0.723132i \(-0.257298\pi\)
0.690710 + 0.723132i \(0.257298\pi\)
\(140\) −2.24419e63 −1.09719
\(141\) −4.16971e63 −1.65250
\(142\) 2.05239e63 0.660317
\(143\) 1.73671e62 0.0454269
\(144\) 1.18553e64 2.52476
\(145\) 7.13242e61 0.0123846
\(146\) 3.44547e63 0.488472
\(147\) 5.37726e63 0.623304
\(148\) −2.94531e64 −2.79518
\(149\) 1.95296e64 1.51949 0.759745 0.650221i \(-0.225324\pi\)
0.759745 + 0.650221i \(0.225324\pi\)
\(150\) −2.63725e64 −1.68445
\(151\) 3.23263e64 1.69721 0.848607 0.529024i \(-0.177442\pi\)
0.848607 + 0.529024i \(0.177442\pi\)
\(152\) −3.62629e64 −1.56703
\(153\) −2.72992e64 −0.972192
\(154\) −1.66227e63 −0.0488473
\(155\) −3.59733e64 −0.873363
\(156\) 2.22532e65 4.46906
\(157\) 1.75281e64 0.291538 0.145769 0.989319i \(-0.453434\pi\)
0.145769 + 0.989319i \(0.453434\pi\)
\(158\) −7.07922e63 −0.0976340
\(159\) −2.01418e65 −2.30613
\(160\) −1.47910e65 −1.40753
\(161\) 1.09768e65 0.869185
\(162\) 3.07573e65 2.02888
\(163\) −3.13298e65 −1.72355 −0.861774 0.507292i \(-0.830646\pi\)
−0.861774 + 0.507292i \(0.830646\pi\)
\(164\) 3.79775e65 1.74435
\(165\) 7.48325e63 0.0287286
\(166\) −4.89804e65 −1.57338
\(167\) 1.87971e65 0.505772 0.252886 0.967496i \(-0.418620\pi\)
0.252886 + 0.967496i \(0.418620\pi\)
\(168\) −1.28049e66 −2.88904
\(169\) 3.50984e65 0.664706
\(170\) 7.44107e65 1.18411
\(171\) 3.76648e65 0.504139
\(172\) 1.29078e66 1.45467
\(173\) −1.53152e65 −0.145466 −0.0727330 0.997351i \(-0.523172\pi\)
−0.0727330 + 0.997351i \(0.523172\pi\)
\(174\) 6.76931e64 0.0542428
\(175\) 7.12805e65 0.482334
\(176\) −1.71112e65 −0.0978718
\(177\) −9.61158e64 −0.0465140
\(178\) −5.47478e66 −2.24376
\(179\) −4.89309e66 −1.69988 −0.849941 0.526878i \(-0.823363\pi\)
−0.849941 + 0.526878i \(0.823363\pi\)
\(180\) 4.56381e66 1.34520
\(181\) 2.49289e66 0.624002 0.312001 0.950082i \(-0.399001\pi\)
0.312001 + 0.950082i \(0.399001\pi\)
\(182\) −8.41340e66 −1.79005
\(183\) 1.04723e67 1.89556
\(184\) 2.14916e67 3.31241
\(185\) −5.01300e66 −0.658464
\(186\) −3.41419e67 −3.82522
\(187\) 3.94019e65 0.0376868
\(188\) 3.67037e67 2.99953
\(189\) −1.34349e66 −0.0938885
\(190\) −1.02665e67 −0.614030
\(191\) 9.18865e66 0.470725 0.235362 0.971908i \(-0.424372\pi\)
0.235362 + 0.971908i \(0.424372\pi\)
\(192\) −5.29383e67 −2.32479
\(193\) −6.86206e66 −0.258532 −0.129266 0.991610i \(-0.541262\pi\)
−0.129266 + 0.991610i \(0.541262\pi\)
\(194\) 4.20205e67 1.35928
\(195\) 3.78756e67 1.05278
\(196\) −4.73332e67 −1.13139
\(197\) −2.65331e67 −0.545800 −0.272900 0.962042i \(-0.587983\pi\)
−0.272900 + 0.962042i \(0.587983\pi\)
\(198\) 3.38041e66 0.0598888
\(199\) −4.85073e67 −0.740699 −0.370349 0.928892i \(-0.620762\pi\)
−0.370349 + 0.928892i \(0.620762\pi\)
\(200\) 1.39561e68 1.83815
\(201\) −1.06169e68 −1.20702
\(202\) −9.89595e66 −0.0971834
\(203\) −1.82963e66 −0.0155321
\(204\) 5.04874e68 3.70760
\(205\) 6.46388e67 0.410917
\(206\) −1.34136e68 −0.738687
\(207\) −2.23225e68 −1.06566
\(208\) −8.66065e68 −3.58659
\(209\) −5.43629e66 −0.0195428
\(210\) −3.62523e68 −1.13205
\(211\) 1.87935e67 0.0510124 0.0255062 0.999675i \(-0.491880\pi\)
0.0255062 + 0.999675i \(0.491880\pi\)
\(212\) 1.77298e69 4.18596
\(213\) 2.37014e68 0.487053
\(214\) −6.81868e68 −1.22038
\(215\) 2.19695e68 0.342678
\(216\) −2.63045e68 −0.357803
\(217\) 9.22799e68 1.09533
\(218\) −1.22587e69 −1.27051
\(219\) 3.97891e68 0.360299
\(220\) −6.58711e67 −0.0521466
\(221\) 1.99428e69 1.38107
\(222\) −4.75780e69 −2.88399
\(223\) −9.19286e68 −0.488042 −0.244021 0.969770i \(-0.578467\pi\)
−0.244021 + 0.969770i \(0.578467\pi\)
\(224\) 3.79423e69 1.76525
\(225\) −1.44956e69 −0.591362
\(226\) 5.50146e69 1.96915
\(227\) −3.67098e69 −1.15350 −0.576752 0.816919i \(-0.695680\pi\)
−0.576752 + 0.816919i \(0.695680\pi\)
\(228\) −6.96577e69 −1.92261
\(229\) 4.99969e68 0.121282 0.0606410 0.998160i \(-0.480686\pi\)
0.0606410 + 0.998160i \(0.480686\pi\)
\(230\) 6.08454e69 1.29795
\(231\) −1.91963e68 −0.0360300
\(232\) −3.58227e68 −0.0591919
\(233\) −6.24576e69 −0.909046 −0.454523 0.890735i \(-0.650190\pi\)
−0.454523 + 0.890735i \(0.650190\pi\)
\(234\) 1.71095e70 2.19468
\(235\) 6.24709e69 0.706603
\(236\) 8.46056e68 0.0844297
\(237\) −8.17524e68 −0.0720152
\(238\) −1.90881e70 −1.48505
\(239\) 7.76076e69 0.533539 0.266770 0.963760i \(-0.414044\pi\)
0.266770 + 0.963760i \(0.414044\pi\)
\(240\) −3.73177e70 −2.26821
\(241\) −1.26377e70 −0.679462 −0.339731 0.940523i \(-0.610336\pi\)
−0.339731 + 0.940523i \(0.610336\pi\)
\(242\) 3.93106e70 1.87049
\(243\) 3.25111e70 1.36977
\(244\) −9.21824e70 −3.44071
\(245\) −8.05625e69 −0.266522
\(246\) 6.13481e70 1.79976
\(247\) −2.75152e70 −0.716163
\(248\) 1.80676e71 4.17423
\(249\) −5.65637e70 −1.16053
\(250\) 1.00196e71 1.82650
\(251\) −6.71368e70 −1.08789 −0.543946 0.839120i \(-0.683070\pi\)
−0.543946 + 0.839120i \(0.683070\pi\)
\(252\) −1.17072e71 −1.68709
\(253\) 3.22188e69 0.0413099
\(254\) −2.84517e71 −3.24723
\(255\) 8.59311e70 0.873404
\(256\) −2.68217e70 −0.242888
\(257\) 1.99205e71 1.60795 0.803977 0.594661i \(-0.202714\pi\)
0.803977 + 0.594661i \(0.202714\pi\)
\(258\) 2.08511e71 1.50089
\(259\) 1.28595e71 0.825814
\(260\) −3.33399e71 −1.91095
\(261\) 3.72075e69 0.0190430
\(262\) −1.58955e71 −0.726751
\(263\) −9.75645e70 −0.398655 −0.199328 0.979933i \(-0.563876\pi\)
−0.199328 + 0.979933i \(0.563876\pi\)
\(264\) −3.75848e70 −0.137308
\(265\) 3.01766e71 0.986092
\(266\) 2.63359e71 0.770087
\(267\) −6.32240e71 −1.65501
\(268\) 9.34549e71 2.19092
\(269\) 5.47919e71 1.15086 0.575432 0.817850i \(-0.304834\pi\)
0.575432 + 0.817850i \(0.304834\pi\)
\(270\) −7.44711e70 −0.140203
\(271\) 4.44087e71 0.749677 0.374839 0.927090i \(-0.377698\pi\)
0.374839 + 0.927090i \(0.377698\pi\)
\(272\) −1.96490e72 −2.97549
\(273\) −9.71598e71 −1.32035
\(274\) −3.96634e71 −0.483891
\(275\) 2.09221e70 0.0229240
\(276\) 4.12834e72 4.06404
\(277\) −1.63500e72 −1.44665 −0.723325 0.690507i \(-0.757387\pi\)
−0.723325 + 0.690507i \(0.757387\pi\)
\(278\) −3.25194e72 −2.58714
\(279\) −1.87661e72 −1.34292
\(280\) 1.91844e72 1.23534
\(281\) 1.36625e72 0.791944 0.395972 0.918263i \(-0.370408\pi\)
0.395972 + 0.918263i \(0.370408\pi\)
\(282\) 5.92906e72 3.09483
\(283\) 2.35491e72 1.10732 0.553661 0.832742i \(-0.313230\pi\)
0.553661 + 0.832742i \(0.313230\pi\)
\(284\) −2.08631e72 −0.884072
\(285\) −1.18559e72 −0.452911
\(286\) −2.46948e71 −0.0850762
\(287\) −1.65814e72 −0.515353
\(288\) −7.71597e72 −2.16427
\(289\) 5.75573e71 0.145752
\(290\) −1.01418e71 −0.0231940
\(291\) 4.85262e72 1.00261
\(292\) −3.50242e72 −0.653995
\(293\) 3.23554e71 0.0546200 0.0273100 0.999627i \(-0.491306\pi\)
0.0273100 + 0.999627i \(0.491306\pi\)
\(294\) −7.64612e72 −1.16733
\(295\) 1.44001e71 0.0198892
\(296\) 2.51779e73 3.14712
\(297\) −3.94339e70 −0.00446226
\(298\) −2.77698e73 −2.84572
\(299\) 1.63072e73 1.51384
\(300\) 2.68084e73 2.25525
\(301\) −5.63570e72 −0.429770
\(302\) −4.59659e73 −3.17857
\(303\) −1.14281e72 −0.0716828
\(304\) 2.71099e73 1.54297
\(305\) −1.56897e73 −0.810532
\(306\) 3.88176e73 1.82074
\(307\) −7.55894e72 −0.322017 −0.161008 0.986953i \(-0.551475\pi\)
−0.161008 + 0.986953i \(0.551475\pi\)
\(308\) 1.68975e72 0.0653997
\(309\) −1.54903e73 −0.544859
\(310\) 5.11517e73 1.63565
\(311\) 4.75210e71 0.0138183 0.00690914 0.999976i \(-0.497801\pi\)
0.00690914 + 0.999976i \(0.497801\pi\)
\(312\) −1.90231e74 −5.03177
\(313\) 4.85436e73 1.16835 0.584176 0.811627i \(-0.301418\pi\)
0.584176 + 0.811627i \(0.301418\pi\)
\(314\) −2.49239e73 −0.545997
\(315\) −1.99261e73 −0.397430
\(316\) 7.19623e72 0.130718
\(317\) 5.69481e73 0.942391 0.471195 0.882029i \(-0.343823\pi\)
0.471195 + 0.882029i \(0.343823\pi\)
\(318\) 2.86404e74 4.31895
\(319\) −5.37030e70 −0.000738199 0
\(320\) 7.93126e73 0.994072
\(321\) −7.87437e73 −0.900155
\(322\) −1.56083e74 −1.62782
\(323\) −6.24256e73 −0.594140
\(324\) −3.12657e74 −2.71638
\(325\) 1.05895e74 0.840069
\(326\) 4.45489e74 3.22789
\(327\) −1.41566e74 −0.937131
\(328\) −3.24649e74 −1.96398
\(329\) −1.60252e74 −0.886188
\(330\) −1.06407e73 −0.0538033
\(331\) 1.34777e74 0.623288 0.311644 0.950199i \(-0.399120\pi\)
0.311644 + 0.950199i \(0.399120\pi\)
\(332\) 4.97900e74 2.10654
\(333\) −2.61512e74 −1.01248
\(334\) −2.67282e74 −0.947217
\(335\) 1.59063e74 0.516116
\(336\) 9.57286e74 2.84468
\(337\) −2.02155e74 −0.550303 −0.275151 0.961401i \(-0.588728\pi\)
−0.275151 + 0.961401i \(0.588728\pi\)
\(338\) −4.99077e74 −1.24487
\(339\) 6.35320e74 1.45245
\(340\) −7.56406e74 −1.58536
\(341\) 2.70858e73 0.0520580
\(342\) −5.35568e74 −0.944158
\(343\) 6.64675e74 1.07506
\(344\) −1.10342e75 −1.63783
\(345\) 7.02657e74 0.957370
\(346\) 2.17772e74 0.272431
\(347\) 1.04939e75 1.20564 0.602818 0.797879i \(-0.294045\pi\)
0.602818 + 0.797879i \(0.294045\pi\)
\(348\) −6.88120e73 −0.0726234
\(349\) −7.51505e74 −0.728755 −0.364378 0.931251i \(-0.618718\pi\)
−0.364378 + 0.931251i \(0.618718\pi\)
\(350\) −1.01356e75 −0.903323
\(351\) −1.99590e74 −0.163523
\(352\) 1.11367e74 0.0838977
\(353\) −2.22200e75 −1.53954 −0.769770 0.638321i \(-0.779629\pi\)
−0.769770 + 0.638321i \(0.779629\pi\)
\(354\) 1.36670e74 0.0871120
\(355\) −3.55096e74 −0.208262
\(356\) 5.56527e75 3.00408
\(357\) −2.20433e75 −1.09538
\(358\) 6.95766e75 3.18356
\(359\) −3.15427e74 −0.132927 −0.0664635 0.997789i \(-0.521172\pi\)
−0.0664635 + 0.997789i \(0.521172\pi\)
\(360\) −3.90136e75 −1.51458
\(361\) −1.93423e75 −0.691904
\(362\) −3.54473e75 −1.16864
\(363\) 4.53967e75 1.37968
\(364\) 8.55246e75 2.39663
\(365\) −5.96123e74 −0.154062
\(366\) −1.48910e76 −3.55002
\(367\) −2.41055e75 −0.530233 −0.265116 0.964216i \(-0.585410\pi\)
−0.265116 + 0.964216i \(0.585410\pi\)
\(368\) −1.60670e76 −3.26155
\(369\) 3.37200e75 0.631843
\(370\) 7.12817e75 1.23318
\(371\) −7.74101e75 −1.23671
\(372\) 3.47063e76 5.12143
\(373\) 6.47651e75 0.882938 0.441469 0.897276i \(-0.354457\pi\)
0.441469 + 0.897276i \(0.354457\pi\)
\(374\) −5.60269e74 −0.0705804
\(375\) 1.15708e76 1.34723
\(376\) −3.13761e76 −3.37721
\(377\) −2.71811e74 −0.0270519
\(378\) 1.91036e75 0.175836
\(379\) 3.32994e75 0.283517 0.141759 0.989901i \(-0.454724\pi\)
0.141759 + 0.989901i \(0.454724\pi\)
\(380\) 1.04362e76 0.822100
\(381\) −3.28567e76 −2.39517
\(382\) −1.30657e76 −0.881581
\(383\) 2.22332e76 1.38880 0.694398 0.719591i \(-0.255671\pi\)
0.694398 + 0.719591i \(0.255671\pi\)
\(384\) 1.83641e76 1.06218
\(385\) 2.87600e74 0.0154063
\(386\) 9.75740e75 0.484182
\(387\) 1.14608e76 0.526916
\(388\) −4.27151e76 −1.81989
\(389\) −1.38935e76 −0.548653 −0.274327 0.961637i \(-0.588455\pi\)
−0.274327 + 0.961637i \(0.588455\pi\)
\(390\) −5.38566e76 −1.97167
\(391\) 3.69973e76 1.25590
\(392\) 4.04627e76 1.27384
\(393\) −1.83565e76 −0.536054
\(394\) 3.77283e76 1.02218
\(395\) 1.22482e75 0.0307934
\(396\) −3.43628e75 −0.0801827
\(397\) −2.17609e76 −0.471364 −0.235682 0.971830i \(-0.575732\pi\)
−0.235682 + 0.971830i \(0.575732\pi\)
\(398\) 6.89743e76 1.38719
\(399\) 3.04133e76 0.568019
\(400\) −1.04335e77 −1.80992
\(401\) −1.16224e77 −1.87300 −0.936499 0.350671i \(-0.885954\pi\)
−0.936499 + 0.350671i \(0.885954\pi\)
\(402\) 1.50965e77 2.26052
\(403\) 1.37092e77 1.90771
\(404\) 1.00595e76 0.130115
\(405\) −5.32152e76 −0.639900
\(406\) 2.60162e75 0.0290888
\(407\) 3.77450e75 0.0392486
\(408\) −4.31590e77 −4.17443
\(409\) 4.02114e76 0.361836 0.180918 0.983498i \(-0.442093\pi\)
0.180918 + 0.983498i \(0.442093\pi\)
\(410\) −9.19122e76 −0.769572
\(411\) −4.58041e76 −0.356920
\(412\) 1.36353e77 0.988999
\(413\) −3.69397e75 −0.0249441
\(414\) 3.17411e77 1.99578
\(415\) 8.47442e76 0.496239
\(416\) 5.63674e77 3.07450
\(417\) −3.75541e77 −1.90829
\(418\) 7.73006e75 0.0366001
\(419\) −1.98426e77 −0.875557 −0.437778 0.899083i \(-0.644235\pi\)
−0.437778 + 0.899083i \(0.644235\pi\)
\(420\) 3.68515e77 1.51566
\(421\) −1.57509e77 −0.603927 −0.301963 0.953320i \(-0.597642\pi\)
−0.301963 + 0.953320i \(0.597642\pi\)
\(422\) −2.67232e76 −0.0955368
\(423\) 3.25890e77 1.08650
\(424\) −1.51563e78 −4.71302
\(425\) 2.40251e77 0.696934
\(426\) −3.37019e77 −0.912159
\(427\) 4.02478e77 1.01653
\(428\) 6.93139e77 1.63391
\(429\) −2.85181e76 −0.0627525
\(430\) −3.12393e77 −0.641773
\(431\) −1.55654e77 −0.298594 −0.149297 0.988792i \(-0.547701\pi\)
−0.149297 + 0.988792i \(0.547701\pi\)
\(432\) 1.96650e77 0.352309
\(433\) 1.11740e78 1.86989 0.934946 0.354789i \(-0.115447\pi\)
0.934946 + 0.354789i \(0.115447\pi\)
\(434\) −1.31216e78 −2.05135
\(435\) −1.17120e76 −0.0171080
\(436\) 1.24613e78 1.70103
\(437\) −5.10453e77 −0.651259
\(438\) −5.65775e77 −0.674773
\(439\) 3.27856e77 0.365578 0.182789 0.983152i \(-0.441487\pi\)
0.182789 + 0.983152i \(0.441487\pi\)
\(440\) 5.63098e76 0.0587124
\(441\) −4.20269e77 −0.409816
\(442\) −2.83574e78 −2.58648
\(443\) 1.54152e78 1.31534 0.657672 0.753304i \(-0.271541\pi\)
0.657672 + 0.753304i \(0.271541\pi\)
\(444\) 4.83644e78 3.86125
\(445\) 9.47226e77 0.707674
\(446\) 1.30716e78 0.914012
\(447\) −3.20692e78 −2.09902
\(448\) −2.03455e78 −1.24672
\(449\) −2.79348e78 −1.60280 −0.801398 0.598132i \(-0.795910\pi\)
−0.801398 + 0.598132i \(0.795910\pi\)
\(450\) 2.06119e78 1.10751
\(451\) −4.86693e76 −0.0244933
\(452\) −5.59239e78 −2.63641
\(453\) −5.30825e78 −2.34452
\(454\) 5.21989e78 2.16030
\(455\) 1.45566e78 0.564576
\(456\) 5.95467e78 2.16469
\(457\) 5.45392e78 1.85858 0.929290 0.369351i \(-0.120420\pi\)
0.929290 + 0.369351i \(0.120420\pi\)
\(458\) −7.10924e77 −0.227139
\(459\) −4.52824e77 −0.135661
\(460\) −6.18512e78 −1.73777
\(461\) −1.71684e78 −0.452430 −0.226215 0.974077i \(-0.572635\pi\)
−0.226215 + 0.974077i \(0.572635\pi\)
\(462\) 2.72959e77 0.0674775
\(463\) 5.84613e78 1.35590 0.677952 0.735106i \(-0.262868\pi\)
0.677952 + 0.735106i \(0.262868\pi\)
\(464\) 2.67807e77 0.0582830
\(465\) 5.90711e78 1.20646
\(466\) 8.88107e78 1.70247
\(467\) −2.20699e78 −0.397148 −0.198574 0.980086i \(-0.563631\pi\)
−0.198574 + 0.980086i \(0.563631\pi\)
\(468\) −1.73923e79 −2.93836
\(469\) −4.08034e78 −0.647288
\(470\) −8.88295e78 −1.32334
\(471\) −2.87826e78 −0.402730
\(472\) −7.23249e77 −0.0950603
\(473\) −1.65418e77 −0.0204258
\(474\) 1.16247e78 0.134871
\(475\) −3.31475e78 −0.361401
\(476\) 1.94036e79 1.98828
\(477\) 1.57422e79 1.51626
\(478\) −1.10353e79 −0.999220
\(479\) −1.40796e79 −1.19865 −0.599326 0.800505i \(-0.704565\pi\)
−0.599326 + 0.800505i \(0.704565\pi\)
\(480\) 2.42880e79 1.94435
\(481\) 1.91042e79 1.43830
\(482\) 1.79700e79 1.27251
\(483\) −1.80248e79 −1.20069
\(484\) −3.99603e79 −2.50433
\(485\) −7.27023e78 −0.428713
\(486\) −4.62287e79 −2.56532
\(487\) −2.26249e79 −1.18163 −0.590816 0.806806i \(-0.701194\pi\)
−0.590816 + 0.806806i \(0.701194\pi\)
\(488\) 7.88019e79 3.87393
\(489\) 5.14461e79 2.38090
\(490\) 1.14555e79 0.499147
\(491\) 2.61865e78 0.107442 0.0537210 0.998556i \(-0.482892\pi\)
0.0537210 + 0.998556i \(0.482892\pi\)
\(492\) −6.23621e79 −2.40963
\(493\) −6.16678e77 −0.0224427
\(494\) 3.91248e79 1.34124
\(495\) −5.84866e77 −0.0188887
\(496\) −1.35072e80 −4.11014
\(497\) 9.10905e78 0.261192
\(498\) 8.04299e79 2.17346
\(499\) 2.62064e79 0.667485 0.333743 0.942664i \(-0.391688\pi\)
0.333743 + 0.942664i \(0.391688\pi\)
\(500\) −1.01852e80 −2.44543
\(501\) −3.08664e79 −0.698671
\(502\) 9.54642e79 2.03742
\(503\) −5.52525e79 −1.11198 −0.555989 0.831190i \(-0.687660\pi\)
−0.555989 + 0.831190i \(0.687660\pi\)
\(504\) 1.00079e80 1.89951
\(505\) 1.71216e78 0.0306513
\(506\) −4.58131e78 −0.0773659
\(507\) −5.76345e79 −0.918222
\(508\) 2.89220e80 4.34759
\(509\) −4.32837e79 −0.613974 −0.306987 0.951714i \(-0.599321\pi\)
−0.306987 + 0.951714i \(0.599321\pi\)
\(510\) −1.22188e80 −1.63572
\(511\) 1.52920e79 0.193217
\(512\) 1.02607e80 1.22380
\(513\) 6.24764e78 0.0703483
\(514\) −2.83257e80 −3.01140
\(515\) 2.32076e79 0.232979
\(516\) −2.11957e80 −2.00947
\(517\) −4.70370e78 −0.0421181
\(518\) −1.82854e80 −1.54660
\(519\) 2.51488e79 0.200946
\(520\) 2.85005e80 2.15156
\(521\) 2.41170e80 1.72033 0.860164 0.510018i \(-0.170361\pi\)
0.860164 + 0.510018i \(0.170361\pi\)
\(522\) −5.29067e78 −0.0356640
\(523\) −2.16416e80 −1.37876 −0.689380 0.724400i \(-0.742117\pi\)
−0.689380 + 0.724400i \(0.742117\pi\)
\(524\) 1.61582e80 0.973017
\(525\) −1.17048e80 −0.666294
\(526\) 1.38730e80 0.746607
\(527\) 3.11030e80 1.58266
\(528\) 2.80980e79 0.135200
\(529\) 8.27693e79 0.376640
\(530\) −4.29092e80 −1.84677
\(531\) 7.51209e78 0.0305824
\(532\) −2.67712e80 −1.03104
\(533\) −2.46334e80 −0.897577
\(534\) 8.99004e80 3.09952
\(535\) 1.17974e80 0.384903
\(536\) −7.98897e80 −2.46677
\(537\) 8.03486e80 2.34821
\(538\) −7.79105e80 −2.15536
\(539\) 6.06589e78 0.0158864
\(540\) 7.57021e79 0.187712
\(541\) −3.15606e80 −0.741012 −0.370506 0.928830i \(-0.620816\pi\)
−0.370506 + 0.928830i \(0.620816\pi\)
\(542\) −6.31463e80 −1.40401
\(543\) −4.09354e80 −0.861993
\(544\) 1.27885e81 2.55065
\(545\) 2.12095e80 0.400713
\(546\) 1.38155e81 2.47277
\(547\) −7.77150e80 −1.31789 −0.658945 0.752191i \(-0.728997\pi\)
−0.658945 + 0.752191i \(0.728997\pi\)
\(548\) 4.03190e80 0.647862
\(549\) −8.18483e80 −1.24631
\(550\) −2.97498e79 −0.0429324
\(551\) 8.50833e78 0.0116378
\(552\) −3.52911e81 −4.57575
\(553\) −3.14195e79 −0.0386196
\(554\) 2.32486e81 2.70931
\(555\) 8.23177e80 0.909599
\(556\) 3.30569e81 3.46382
\(557\) −1.16000e81 −1.15274 −0.576368 0.817191i \(-0.695530\pi\)
−0.576368 + 0.817191i \(0.695530\pi\)
\(558\) 2.66842e81 2.51504
\(559\) −8.37244e80 −0.748520
\(560\) −1.43421e81 −1.21637
\(561\) −6.47011e79 −0.0520604
\(562\) −1.94272e81 −1.48316
\(563\) 2.67395e81 1.93712 0.968558 0.248786i \(-0.0800316\pi\)
0.968558 + 0.248786i \(0.0800316\pi\)
\(564\) −6.02706e81 −4.14354
\(565\) −9.51842e80 −0.621063
\(566\) −3.34852e81 −2.07381
\(567\) 1.36509e81 0.802532
\(568\) 1.78348e81 0.995386
\(569\) 8.26000e80 0.437691 0.218846 0.975759i \(-0.429771\pi\)
0.218846 + 0.975759i \(0.429771\pi\)
\(570\) 1.68584e81 0.848219
\(571\) 1.96473e81 0.938722 0.469361 0.883006i \(-0.344484\pi\)
0.469361 + 0.883006i \(0.344484\pi\)
\(572\) 2.51030e80 0.113905
\(573\) −1.50885e81 −0.650257
\(574\) 2.35776e81 0.965160
\(575\) 1.96453e81 0.763935
\(576\) 4.13748e81 1.52853
\(577\) −1.98064e81 −0.695215 −0.347607 0.937640i \(-0.613006\pi\)
−0.347607 + 0.937640i \(0.613006\pi\)
\(578\) −8.18428e80 −0.272966
\(579\) 1.12681e81 0.357135
\(580\) 1.03095e80 0.0310535
\(581\) −2.17389e81 −0.622359
\(582\) −6.90011e81 −1.87771
\(583\) −2.27212e80 −0.0587773
\(584\) 2.99404e81 0.736340
\(585\) −2.96023e81 −0.692193
\(586\) −4.60072e80 −0.102293
\(587\) −2.18290e81 −0.461540 −0.230770 0.973008i \(-0.574124\pi\)
−0.230770 + 0.973008i \(0.574124\pi\)
\(588\) 7.77250e81 1.56289
\(589\) −4.29129e81 −0.820704
\(590\) −2.04761e80 −0.0372488
\(591\) 4.35695e81 0.753966
\(592\) −1.88228e82 −3.09880
\(593\) 8.01746e81 1.25581 0.627904 0.778290i \(-0.283913\pi\)
0.627904 + 0.778290i \(0.283913\pi\)
\(594\) 5.60725e79 0.00835698
\(595\) 3.30255e81 0.468381
\(596\) 2.82288e82 3.81002
\(597\) 7.96531e81 1.02320
\(598\) −2.31878e82 −2.83514
\(599\) −3.31265e81 −0.385553 −0.192776 0.981243i \(-0.561749\pi\)
−0.192776 + 0.981243i \(0.561749\pi\)
\(600\) −2.29171e82 −2.53921
\(601\) −1.30012e82 −1.37147 −0.685733 0.727853i \(-0.740518\pi\)
−0.685733 + 0.727853i \(0.740518\pi\)
\(602\) 8.01360e81 0.804880
\(603\) 8.29781e81 0.793602
\(604\) 4.67257e82 4.25565
\(605\) −6.80137e81 −0.589947
\(606\) 1.62500e81 0.134249
\(607\) 6.65424e80 0.0523639 0.0261820 0.999657i \(-0.491665\pi\)
0.0261820 + 0.999657i \(0.491665\pi\)
\(608\) −1.76443e82 −1.32266
\(609\) 3.00441e80 0.0214560
\(610\) 2.23098e82 1.51798
\(611\) −2.38072e82 −1.54345
\(612\) −3.94593e82 −2.43771
\(613\) 1.87920e82 1.10634 0.553169 0.833069i \(-0.313418\pi\)
0.553169 + 0.833069i \(0.313418\pi\)
\(614\) 1.07483e82 0.603078
\(615\) −1.06142e82 −0.567639
\(616\) −1.44448e81 −0.0736342
\(617\) −2.20328e80 −0.0107068 −0.00535338 0.999986i \(-0.501704\pi\)
−0.00535338 + 0.999986i \(0.501704\pi\)
\(618\) 2.20262e82 1.02042
\(619\) −1.34870e82 −0.595719 −0.297859 0.954610i \(-0.596273\pi\)
−0.297859 + 0.954610i \(0.596273\pi\)
\(620\) −5.19972e82 −2.18990
\(621\) −3.70274e81 −0.148703
\(622\) −6.75717e80 −0.0258791
\(623\) −2.42986e82 −0.887531
\(624\) 1.42215e83 4.95450
\(625\) 2.25774e81 0.0750264
\(626\) −6.90258e82 −2.18811
\(627\) 8.92684e80 0.0269964
\(628\) 2.53358e82 0.731014
\(629\) 4.33431e82 1.19323
\(630\) 2.83336e82 0.744312
\(631\) 7.15154e82 1.79281 0.896403 0.443239i \(-0.146171\pi\)
0.896403 + 0.443239i \(0.146171\pi\)
\(632\) −6.15168e81 −0.147177
\(633\) −3.08605e81 −0.0704683
\(634\) −8.09765e82 −1.76492
\(635\) 4.92261e82 1.02417
\(636\) −2.91137e83 −5.78247
\(637\) 3.07018e82 0.582171
\(638\) 7.63621e79 0.00138251
\(639\) −1.85242e82 −0.320232
\(640\) −2.75132e82 −0.454184
\(641\) −2.99840e82 −0.472692 −0.236346 0.971669i \(-0.575950\pi\)
−0.236346 + 0.971669i \(0.575950\pi\)
\(642\) 1.11968e83 1.68582
\(643\) 5.90345e81 0.0848951 0.0424475 0.999099i \(-0.486484\pi\)
0.0424475 + 0.999099i \(0.486484\pi\)
\(644\) 1.58663e83 2.17942
\(645\) −3.60758e82 −0.473374
\(646\) 8.87652e82 1.11271
\(647\) −3.93898e82 −0.471746 −0.235873 0.971784i \(-0.575795\pi\)
−0.235873 + 0.971784i \(0.575795\pi\)
\(648\) 2.67274e83 3.05840
\(649\) −1.08425e80 −0.00118552
\(650\) −1.50575e83 −1.57329
\(651\) −1.51531e83 −1.51308
\(652\) −4.52853e83 −4.32169
\(653\) 6.47496e82 0.590607 0.295303 0.955404i \(-0.404579\pi\)
0.295303 + 0.955404i \(0.404579\pi\)
\(654\) 2.01298e83 1.75507
\(655\) 2.75018e82 0.229215
\(656\) 2.42705e83 1.93382
\(657\) −3.10978e82 −0.236893
\(658\) 2.27869e83 1.65967
\(659\) −1.27657e83 −0.889044 −0.444522 0.895768i \(-0.646627\pi\)
−0.444522 + 0.895768i \(0.646627\pi\)
\(660\) 1.08166e82 0.0720350
\(661\) 2.81059e83 1.79000 0.895002 0.446062i \(-0.147174\pi\)
0.895002 + 0.446062i \(0.147174\pi\)
\(662\) −1.91644e83 −1.16730
\(663\) −3.27477e83 −1.90780
\(664\) −4.25629e83 −2.37177
\(665\) −4.55654e82 −0.242883
\(666\) 3.71853e83 1.89619
\(667\) −5.04256e81 −0.0246002
\(668\) 2.71700e83 1.26819
\(669\) 1.50954e83 0.674179
\(670\) −2.26177e83 −0.966590
\(671\) 1.18135e82 0.0483129
\(672\) −6.23044e83 −2.43851
\(673\) −2.82753e83 −1.05916 −0.529581 0.848260i \(-0.677651\pi\)
−0.529581 + 0.848260i \(0.677651\pi\)
\(674\) 2.87451e83 1.03062
\(675\) −2.40446e82 −0.0825195
\(676\) 5.07326e83 1.66671
\(677\) 5.84082e83 1.83700 0.918498 0.395425i \(-0.129403\pi\)
0.918498 + 0.395425i \(0.129403\pi\)
\(678\) −9.03384e83 −2.72017
\(679\) 1.86499e83 0.537672
\(680\) 6.46612e83 1.78497
\(681\) 6.02805e83 1.59344
\(682\) −3.85142e82 −0.0974950
\(683\) −4.16662e83 −1.01012 −0.505060 0.863084i \(-0.668530\pi\)
−0.505060 + 0.863084i \(0.668530\pi\)
\(684\) 5.44421e83 1.26410
\(685\) 6.86241e82 0.152618
\(686\) −9.45125e83 −2.01339
\(687\) −8.20991e82 −0.167538
\(688\) 8.24910e83 1.61268
\(689\) −1.15001e84 −2.15394
\(690\) −9.99132e83 −1.79298
\(691\) 6.93132e83 1.19183 0.595914 0.803048i \(-0.296790\pi\)
0.595914 + 0.803048i \(0.296790\pi\)
\(692\) −2.21371e83 −0.364747
\(693\) 1.50032e82 0.0236893
\(694\) −1.49216e84 −2.25793
\(695\) 5.62638e83 0.815976
\(696\) 5.88238e82 0.0817675
\(697\) −5.58875e83 −0.744643
\(698\) 1.06859e84 1.36482
\(699\) 1.02561e84 1.25575
\(700\) 1.03032e84 1.20942
\(701\) −6.90202e82 −0.0776774 −0.0388387 0.999245i \(-0.512366\pi\)
−0.0388387 + 0.999245i \(0.512366\pi\)
\(702\) 2.83804e83 0.306249
\(703\) −5.98006e83 −0.618762
\(704\) −5.97178e82 −0.0592530
\(705\) −1.02582e84 −0.976099
\(706\) 3.15954e84 2.88327
\(707\) −4.39210e82 −0.0384414
\(708\) −1.38929e83 −0.116631
\(709\) −1.62009e84 −1.30460 −0.652299 0.757962i \(-0.726195\pi\)
−0.652299 + 0.757962i \(0.726195\pi\)
\(710\) 5.04924e83 0.390036
\(711\) 6.38949e82 0.0473492
\(712\) −4.75746e84 −3.38232
\(713\) 2.54328e84 1.73482
\(714\) 3.13442e84 2.05145
\(715\) 4.27261e82 0.0268327
\(716\) −7.07266e84 −4.26235
\(717\) −1.27438e84 −0.737028
\(718\) 4.48517e83 0.248948
\(719\) 2.70431e84 1.44064 0.720319 0.693643i \(-0.243996\pi\)
0.720319 + 0.693643i \(0.243996\pi\)
\(720\) 2.91662e84 1.49132
\(721\) −5.95330e83 −0.292192
\(722\) 2.75035e84 1.29581
\(723\) 2.07521e84 0.938606
\(724\) 3.60332e84 1.56464
\(725\) −3.27451e82 −0.0136513
\(726\) −6.45512e84 −2.58389
\(727\) −3.36956e84 −1.29511 −0.647557 0.762017i \(-0.724209\pi\)
−0.647557 + 0.762017i \(0.724209\pi\)
\(728\) −7.31105e84 −2.69839
\(729\) −2.28211e84 −0.808861
\(730\) 8.47648e83 0.288530
\(731\) −1.89951e84 −0.620983
\(732\) 1.51371e85 4.75298
\(733\) −4.13834e84 −1.24813 −0.624063 0.781374i \(-0.714519\pi\)
−0.624063 + 0.781374i \(0.714519\pi\)
\(734\) 3.42764e84 0.993028
\(735\) 1.32290e84 0.368173
\(736\) 1.04571e85 2.79586
\(737\) −1.19765e83 −0.0307638
\(738\) −4.79476e84 −1.18333
\(739\) −1.38714e82 −0.00328934 −0.00164467 0.999999i \(-0.500524\pi\)
−0.00164467 + 0.999999i \(0.500524\pi\)
\(740\) −7.24599e84 −1.65106
\(741\) 4.51822e84 0.989305
\(742\) 1.10072e85 2.31613
\(743\) 1.47222e84 0.297716 0.148858 0.988859i \(-0.452440\pi\)
0.148858 + 0.988859i \(0.452440\pi\)
\(744\) −2.96686e85 −5.76627
\(745\) 4.80463e84 0.897531
\(746\) −9.20917e84 −1.65358
\(747\) 4.42083e84 0.763038
\(748\) 5.69530e83 0.0944973
\(749\) −3.02632e84 −0.482727
\(750\) −1.64530e85 −2.52312
\(751\) 2.68915e84 0.396494 0.198247 0.980152i \(-0.436475\pi\)
0.198247 + 0.980152i \(0.436475\pi\)
\(752\) 2.34565e85 3.32535
\(753\) 1.10244e85 1.50281
\(754\) 3.86498e83 0.0506632
\(755\) 7.95286e84 1.00251
\(756\) −1.94194e84 −0.235419
\(757\) −1.64478e85 −1.91770 −0.958850 0.283915i \(-0.908367\pi\)
−0.958850 + 0.283915i \(0.908367\pi\)
\(758\) −4.73495e84 −0.530975
\(759\) −5.29060e83 −0.0570653
\(760\) −8.92133e84 −0.925611
\(761\) 7.57979e84 0.756502 0.378251 0.925703i \(-0.376526\pi\)
0.378251 + 0.925703i \(0.376526\pi\)
\(762\) 4.67200e85 4.48571
\(763\) −5.44074e84 −0.502555
\(764\) 1.32816e85 1.18031
\(765\) −6.71609e84 −0.574254
\(766\) −3.16142e85 −2.60096
\(767\) −5.48779e83 −0.0434444
\(768\) 4.40434e84 0.335525
\(769\) −2.70374e84 −0.198216 −0.0991078 0.995077i \(-0.531599\pi\)
−0.0991078 + 0.995077i \(0.531599\pi\)
\(770\) −4.08949e83 −0.0288531
\(771\) −3.27111e85 −2.22122
\(772\) −9.91868e84 −0.648252
\(773\) −6.61906e84 −0.416391 −0.208195 0.978087i \(-0.566759\pi\)
−0.208195 + 0.978087i \(0.566759\pi\)
\(774\) −1.62965e85 −0.986816
\(775\) 1.65154e85 0.962697
\(776\) 3.65149e85 2.04903
\(777\) −2.11164e85 −1.14078
\(778\) 1.97556e85 1.02753
\(779\) 7.71083e84 0.386141
\(780\) 5.47468e85 2.63978
\(781\) 2.67367e83 0.0124137
\(782\) −5.26077e85 −2.35207
\(783\) 6.17179e82 0.00265729
\(784\) −3.02495e85 −1.25428
\(785\) 4.31223e84 0.172206
\(786\) 2.61017e85 1.00393
\(787\) 3.14052e84 0.116345 0.0581724 0.998307i \(-0.481473\pi\)
0.0581724 + 0.998307i \(0.481473\pi\)
\(788\) −3.83519e85 −1.36856
\(789\) 1.60209e85 0.550700
\(790\) −1.74161e84 −0.0576704
\(791\) 2.44170e85 0.778907
\(792\) 2.93750e84 0.0902786
\(793\) 5.97924e85 1.77046
\(794\) 3.09426e85 0.882778
\(795\) −4.95525e85 −1.36218
\(796\) −7.01144e85 −1.85726
\(797\) 2.74800e85 0.701449 0.350725 0.936479i \(-0.385935\pi\)
0.350725 + 0.936479i \(0.385935\pi\)
\(798\) −4.32457e85 −1.06379
\(799\) −5.40131e85 −1.28047
\(800\) 6.79057e85 1.55150
\(801\) 4.94137e85 1.08815
\(802\) 1.65263e86 3.50778
\(803\) 4.48846e83 0.00918309
\(804\) −1.53461e86 −3.02652
\(805\) 2.70049e85 0.513409
\(806\) −1.94935e86 −3.57279
\(807\) −8.99728e85 −1.58980
\(808\) −8.59936e84 −0.146498
\(809\) 1.02903e85 0.169024 0.0845119 0.996422i \(-0.473067\pi\)
0.0845119 + 0.996422i \(0.473067\pi\)
\(810\) 7.56685e85 1.19841
\(811\) 9.82250e85 1.50005 0.750027 0.661407i \(-0.230041\pi\)
0.750027 + 0.661407i \(0.230041\pi\)
\(812\) −2.64462e84 −0.0389458
\(813\) −7.29228e85 −1.03560
\(814\) −5.36710e84 −0.0735054
\(815\) −7.70770e85 −1.01806
\(816\) 3.22653e86 4.11033
\(817\) 2.62077e85 0.322016
\(818\) −5.71781e85 −0.677652
\(819\) 7.59368e85 0.868115
\(820\) 9.34314e85 1.03035
\(821\) 1.25320e86 1.33321 0.666603 0.745413i \(-0.267748\pi\)
0.666603 + 0.745413i \(0.267748\pi\)
\(822\) 6.51305e85 0.668445
\(823\) −1.58233e86 −1.56676 −0.783378 0.621546i \(-0.786505\pi\)
−0.783378 + 0.621546i \(0.786505\pi\)
\(824\) −1.16561e86 −1.11352
\(825\) −3.43558e84 −0.0316671
\(826\) 5.25259e84 0.0467156
\(827\) −2.03076e86 −1.74280 −0.871398 0.490576i \(-0.836786\pi\)
−0.871398 + 0.490576i \(0.836786\pi\)
\(828\) −3.22657e86 −2.67206
\(829\) −6.59368e85 −0.526950 −0.263475 0.964666i \(-0.584869\pi\)
−0.263475 + 0.964666i \(0.584869\pi\)
\(830\) −1.20501e86 −0.929364
\(831\) 2.68480e86 1.99840
\(832\) −3.02255e86 −2.17138
\(833\) 6.96554e85 0.482978
\(834\) 5.33995e86 3.57387
\(835\) 4.62442e85 0.298749
\(836\) −7.85783e84 −0.0490024
\(837\) −3.11282e85 −0.187393
\(838\) 2.82148e86 1.63976
\(839\) 3.14600e85 0.176515 0.0882573 0.996098i \(-0.471870\pi\)
0.0882573 + 0.996098i \(0.471870\pi\)
\(840\) −3.15024e86 −1.70650
\(841\) −1.91113e86 −0.999560
\(842\) 2.23968e86 1.13104
\(843\) −2.24350e86 −1.09399
\(844\) 2.71649e85 0.127910
\(845\) 8.63484e85 0.392628
\(846\) −4.63395e86 −2.03482
\(847\) 1.74471e86 0.739883
\(848\) 1.13307e87 4.64065
\(849\) −3.86695e86 −1.52965
\(850\) −3.41621e86 −1.30523
\(851\) 3.54415e86 1.30795
\(852\) 3.42589e86 1.22125
\(853\) −8.87150e85 −0.305492 −0.152746 0.988265i \(-0.548812\pi\)
−0.152746 + 0.988265i \(0.548812\pi\)
\(854\) −5.72298e86 −1.90377
\(855\) 9.26621e85 0.297784
\(856\) −5.92528e86 −1.83964
\(857\) −3.27258e86 −0.981648 −0.490824 0.871259i \(-0.663304\pi\)
−0.490824 + 0.871259i \(0.663304\pi\)
\(858\) 4.05509e85 0.117524
\(859\) 1.26296e86 0.353664 0.176832 0.984241i \(-0.443415\pi\)
0.176832 + 0.984241i \(0.443415\pi\)
\(860\) 3.17556e86 0.859244
\(861\) 2.72280e86 0.711906
\(862\) 2.21330e86 0.559211
\(863\) 4.16687e86 1.01740 0.508700 0.860944i \(-0.330126\pi\)
0.508700 + 0.860944i \(0.330126\pi\)
\(864\) −1.27989e86 −0.302006
\(865\) −3.76781e85 −0.0859238
\(866\) −1.58887e87 −3.50196
\(867\) −9.45139e85 −0.201341
\(868\) 1.33385e87 2.74647
\(869\) −9.22219e83 −0.00183548
\(870\) 1.66537e85 0.0320401
\(871\) −6.06178e86 −1.12737
\(872\) −1.06525e87 −1.91521
\(873\) −3.79265e86 −0.659207
\(874\) 7.25831e86 1.21969
\(875\) 4.44697e86 0.722481
\(876\) 5.75127e86 0.903425
\(877\) 1.19187e87 1.81026 0.905128 0.425139i \(-0.139775\pi\)
0.905128 + 0.425139i \(0.139775\pi\)
\(878\) −4.66191e86 −0.684660
\(879\) −5.31302e85 −0.0754517
\(880\) −4.20967e85 −0.0578108
\(881\) 5.33978e86 0.709143 0.354572 0.935029i \(-0.384627\pi\)
0.354572 + 0.935029i \(0.384627\pi\)
\(882\) 5.97595e86 0.767509
\(883\) −3.28934e85 −0.0408571 −0.0204286 0.999791i \(-0.506503\pi\)
−0.0204286 + 0.999791i \(0.506503\pi\)
\(884\) 2.88261e87 3.46293
\(885\) −2.36462e85 −0.0274748
\(886\) −2.19194e87 −2.46340
\(887\) 6.82023e86 0.741400 0.370700 0.928753i \(-0.379118\pi\)
0.370700 + 0.928753i \(0.379118\pi\)
\(888\) −4.13442e87 −4.34742
\(889\) −1.26276e87 −1.28446
\(890\) −1.34689e87 −1.32534
\(891\) 4.00680e85 0.0381421
\(892\) −1.32877e87 −1.22373
\(893\) 7.45221e86 0.663999
\(894\) 4.56003e87 3.93107
\(895\) −1.20379e87 −1.00409
\(896\) 7.05778e86 0.569616
\(897\) −2.67778e87 −2.09121
\(898\) 3.97214e87 3.00174
\(899\) −4.23919e85 −0.0310007
\(900\) −2.09526e87 −1.48280
\(901\) −2.60911e87 −1.78694
\(902\) 6.92045e85 0.0458714
\(903\) 9.25429e86 0.593683
\(904\) 4.78064e87 2.96837
\(905\) 6.13297e86 0.368585
\(906\) 7.54799e87 4.39086
\(907\) −1.50909e87 −0.849767 −0.424883 0.905248i \(-0.639685\pi\)
−0.424883 + 0.905248i \(0.639685\pi\)
\(908\) −5.30617e87 −2.89234
\(909\) 8.93179e85 0.0471307
\(910\) −2.06985e87 −1.05735
\(911\) 3.87850e87 1.91810 0.959051 0.283234i \(-0.0914073\pi\)
0.959051 + 0.283234i \(0.0914073\pi\)
\(912\) −4.45166e87 −2.13145
\(913\) −6.38075e85 −0.0295790
\(914\) −7.75513e87 −3.48078
\(915\) 2.57638e87 1.11967
\(916\) 7.22674e86 0.304107
\(917\) −7.05485e86 −0.287470
\(918\) 6.43887e86 0.254068
\(919\) −2.15450e87 −0.823263 −0.411632 0.911350i \(-0.635041\pi\)
−0.411632 + 0.911350i \(0.635041\pi\)
\(920\) 5.28733e87 1.95657
\(921\) 1.24124e87 0.444833
\(922\) 2.44123e87 0.847319
\(923\) 1.35325e87 0.454911
\(924\) −2.77471e86 −0.0903429
\(925\) 2.30148e87 0.725816
\(926\) −8.31282e87 −2.53936
\(927\) 1.21067e87 0.358239
\(928\) −1.74301e86 −0.0499614
\(929\) 5.54912e87 1.54085 0.770426 0.637530i \(-0.220044\pi\)
0.770426 + 0.637530i \(0.220044\pi\)
\(930\) −8.39953e87 −2.25948
\(931\) −9.61038e86 −0.250452
\(932\) −9.02786e87 −2.27937
\(933\) −7.80334e85 −0.0190885
\(934\) 3.13819e87 0.743784
\(935\) 9.69357e85 0.0222608
\(936\) 1.48678e88 3.30833
\(937\) 3.57990e86 0.0771885 0.0385942 0.999255i \(-0.487712\pi\)
0.0385942 + 0.999255i \(0.487712\pi\)
\(938\) 5.80198e87 1.21225
\(939\) −7.97125e87 −1.61396
\(940\) 9.02978e87 1.77176
\(941\) −4.47034e87 −0.850054 −0.425027 0.905181i \(-0.639735\pi\)
−0.425027 + 0.905181i \(0.639735\pi\)
\(942\) 4.09270e87 0.754238
\(943\) −4.56991e87 −0.816231
\(944\) 5.40695e86 0.0936006
\(945\) −3.30523e86 −0.0554580
\(946\) 2.35214e86 0.0382537
\(947\) −9.93580e86 −0.156631 −0.0783156 0.996929i \(-0.524954\pi\)
−0.0783156 + 0.996929i \(0.524954\pi\)
\(948\) −1.18168e87 −0.180573
\(949\) 2.27178e87 0.336522
\(950\) 4.71336e87 0.676837
\(951\) −9.35135e87 −1.30181
\(952\) −1.65871e88 −2.23862
\(953\) 1.00705e88 1.31768 0.658842 0.752281i \(-0.271047\pi\)
0.658842 + 0.752281i \(0.271047\pi\)
\(954\) −2.23843e88 −2.83967
\(955\) 2.26057e87 0.278047
\(956\) 1.12177e88 1.33782
\(957\) 8.81847e84 0.00101974
\(958\) 2.00203e88 2.24485
\(959\) −1.76037e87 −0.191406
\(960\) −1.30238e88 −1.37321
\(961\) 1.16009e88 1.18618
\(962\) −2.71649e88 −2.69367
\(963\) 6.15434e87 0.591843
\(964\) −1.82670e88 −1.70371
\(965\) −1.68819e87 −0.152709
\(966\) 2.56301e88 2.24867
\(967\) −3.35222e87 −0.285267 −0.142633 0.989776i \(-0.545557\pi\)
−0.142633 + 0.989776i \(0.545557\pi\)
\(968\) 3.41600e88 2.81965
\(969\) 1.02508e88 0.820742
\(970\) 1.03378e88 0.802901
\(971\) −1.60573e88 −1.20978 −0.604889 0.796309i \(-0.706783\pi\)
−0.604889 + 0.796309i \(0.706783\pi\)
\(972\) 4.69928e88 3.43460
\(973\) −1.44330e88 −1.02336
\(974\) 3.21711e88 2.21298
\(975\) −1.73888e88 −1.16047
\(976\) −5.89117e88 −3.81445
\(977\) 6.18037e87 0.388262 0.194131 0.980976i \(-0.437811\pi\)
0.194131 + 0.980976i \(0.437811\pi\)
\(978\) −7.31530e88 −4.45899
\(979\) −7.13206e86 −0.0421819
\(980\) −1.16448e88 −0.668288
\(981\) 1.10643e88 0.616154
\(982\) −3.72355e87 −0.201219
\(983\) 4.68900e87 0.245896 0.122948 0.992413i \(-0.460765\pi\)
0.122948 + 0.992413i \(0.460765\pi\)
\(984\) 5.33101e88 2.71303
\(985\) −6.52761e87 −0.322393
\(986\) 8.76876e86 0.0420309
\(987\) 2.63148e88 1.22418
\(988\) −3.97715e88 −1.79573
\(989\) −1.55323e88 −0.680683
\(990\) 8.31641e86 0.0353751
\(991\) 3.12613e88 1.29073 0.645363 0.763876i \(-0.276706\pi\)
0.645363 + 0.763876i \(0.276706\pi\)
\(992\) 8.79110e88 3.52329
\(993\) −2.21314e88 −0.861007
\(994\) −1.29525e88 −0.489164
\(995\) −1.19337e88 −0.437516
\(996\) −8.17594e88 −2.90996
\(997\) 2.03910e88 0.704581 0.352290 0.935891i \(-0.385403\pi\)
0.352290 + 0.935891i \(0.385403\pi\)
\(998\) −3.72638e88 −1.25008
\(999\) −4.33783e87 −0.141283
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))