Properties

Label 1.56.a.a.1.4
Level 1
Weight 56
Character 1.1
Self dual Yes
Analytic conductor 19.158
Analytic rank 0
Dimension 4
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 56 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(19.1581467685\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{20}\cdot 3^{9}\cdot 5^{2}\cdot 7\cdot 11 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.14055e7\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q+3.25888e8 q^{2} +5.98183e12 q^{3} +7.01743e16 q^{4} +2.73659e19 q^{5} +1.94941e21 q^{6} -1.10303e23 q^{7} +1.11276e25 q^{8} -1.38667e26 q^{9} +O(q^{10})\) \(q+3.25888e8 q^{2} +5.98183e12 q^{3} +7.01743e16 q^{4} +2.73659e19 q^{5} +1.94941e21 q^{6} -1.10303e23 q^{7} +1.11276e25 q^{8} -1.38667e26 q^{9} +8.91821e27 q^{10} +4.91412e28 q^{11} +4.19771e29 q^{12} -5.50498e30 q^{13} -3.59464e31 q^{14} +1.63698e32 q^{15} +1.09807e33 q^{16} +6.74131e33 q^{17} -4.51899e34 q^{18} +4.63069e34 q^{19} +1.92038e36 q^{20} -6.59813e35 q^{21} +1.60146e37 q^{22} -2.33537e37 q^{23} +6.65636e37 q^{24} +4.71335e38 q^{25} -1.79401e39 q^{26} -1.87301e39 q^{27} -7.74043e39 q^{28} +8.29368e39 q^{29} +5.33472e40 q^{30} -2.22670e40 q^{31} -4.30685e40 q^{32} +2.93955e41 q^{33} +2.19691e42 q^{34} -3.01853e42 q^{35} -9.73086e42 q^{36} -8.62039e42 q^{37} +1.50909e43 q^{38} -3.29298e43 q^{39} +3.04517e44 q^{40} -1.28503e44 q^{41} -2.15025e44 q^{42} -7.80265e44 q^{43} +3.44845e45 q^{44} -3.79474e45 q^{45} -7.61071e45 q^{46} +2.24956e45 q^{47} +6.56844e45 q^{48} -1.80601e46 q^{49} +1.53602e47 q^{50} +4.03254e46 q^{51} -3.86308e47 q^{52} +6.54418e46 q^{53} -6.10391e47 q^{54} +1.34479e48 q^{55} -1.22741e48 q^{56} +2.77000e47 q^{57} +2.70281e48 q^{58} -4.81860e48 q^{59} +1.14874e49 q^{60} -1.00856e48 q^{61} -7.25655e48 q^{62} +1.52954e49 q^{63} -5.35975e49 q^{64} -1.50648e50 q^{65} +9.57963e49 q^{66} +2.13547e50 q^{67} +4.73067e50 q^{68} -1.39698e50 q^{69} -9.83705e50 q^{70} +9.56825e50 q^{71} -1.54303e51 q^{72} +1.10863e51 q^{73} -2.80928e51 q^{74} +2.81945e51 q^{75} +3.24956e51 q^{76} -5.42042e51 q^{77} -1.07314e52 q^{78} +2.07492e52 q^{79} +3.00495e52 q^{80} +1.29863e52 q^{81} -4.18778e52 q^{82} -1.06353e53 q^{83} -4.63019e52 q^{84} +1.84482e53 q^{85} -2.54279e53 q^{86} +4.96114e52 q^{87} +5.46825e53 q^{88} +7.48693e53 q^{89} -1.23666e54 q^{90} +6.07215e53 q^{91} -1.63883e54 q^{92} -1.33197e53 q^{93} +7.33106e53 q^{94} +1.26723e54 q^{95} -2.57628e53 q^{96} -5.59692e53 q^{97} -5.88557e54 q^{98} -6.81426e54 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 208622520q^{2} - 6821470691280q^{3} + 38727758778743872q^{4} + 14396937963387167160q^{5} + \)\(20\!\cdots\!08\)\(q^{6} - \)\(20\!\cdots\!00\)\(q^{7} + \)\(45\!\cdots\!40\)\(q^{8} + \)\(47\!\cdots\!28\)\(q^{9} + O(q^{10}) \) \( 4q + 208622520q^{2} - 6821470691280q^{3} + 38727758778743872q^{4} + 14396937963387167160q^{5} + \)\(20\!\cdots\!08\)\(q^{6} - \)\(20\!\cdots\!00\)\(q^{7} + \)\(45\!\cdots\!40\)\(q^{8} + \)\(47\!\cdots\!28\)\(q^{9} + \)\(46\!\cdots\!60\)\(q^{10} + \)\(19\!\cdots\!08\)\(q^{11} + \)\(51\!\cdots\!40\)\(q^{12} - \)\(44\!\cdots\!60\)\(q^{13} - \)\(28\!\cdots\!56\)\(q^{14} + \)\(24\!\cdots\!20\)\(q^{15} + \)\(97\!\cdots\!04\)\(q^{16} + \)\(85\!\cdots\!60\)\(q^{17} + \)\(38\!\cdots\!20\)\(q^{18} + \)\(33\!\cdots\!00\)\(q^{19} + \)\(29\!\cdots\!80\)\(q^{20} + \)\(92\!\cdots\!08\)\(q^{21} + \)\(38\!\cdots\!40\)\(q^{22} + \)\(49\!\cdots\!60\)\(q^{23} + \)\(19\!\cdots\!00\)\(q^{24} + \)\(35\!\cdots\!00\)\(q^{25} - \)\(29\!\cdots\!92\)\(q^{26} - \)\(85\!\cdots\!40\)\(q^{27} - \)\(14\!\cdots\!60\)\(q^{28} - \)\(18\!\cdots\!00\)\(q^{29} + \)\(81\!\cdots\!20\)\(q^{30} + \)\(22\!\cdots\!08\)\(q^{31} + \)\(63\!\cdots\!20\)\(q^{32} + \)\(84\!\cdots\!40\)\(q^{33} + \)\(89\!\cdots\!44\)\(q^{34} - \)\(48\!\cdots\!40\)\(q^{35} - \)\(23\!\cdots\!96\)\(q^{36} - \)\(32\!\cdots\!20\)\(q^{37} - \)\(49\!\cdots\!40\)\(q^{38} + \)\(66\!\cdots\!56\)\(q^{39} + \)\(42\!\cdots\!00\)\(q^{40} + \)\(24\!\cdots\!08\)\(q^{41} + \)\(50\!\cdots\!60\)\(q^{42} - \)\(86\!\cdots\!00\)\(q^{43} - \)\(48\!\cdots\!56\)\(q^{44} - \)\(95\!\cdots\!80\)\(q^{45} - \)\(12\!\cdots\!92\)\(q^{46} + \)\(42\!\cdots\!40\)\(q^{47} + \)\(19\!\cdots\!60\)\(q^{48} + \)\(51\!\cdots\!72\)\(q^{49} + \)\(17\!\cdots\!00\)\(q^{50} + \)\(11\!\cdots\!08\)\(q^{51} - \)\(26\!\cdots\!00\)\(q^{52} - \)\(48\!\cdots\!80\)\(q^{53} - \)\(13\!\cdots\!00\)\(q^{54} - \)\(12\!\cdots\!80\)\(q^{55} - \)\(29\!\cdots\!00\)\(q^{56} + \)\(16\!\cdots\!20\)\(q^{57} + \)\(60\!\cdots\!40\)\(q^{58} + \)\(81\!\cdots\!00\)\(q^{59} + \)\(10\!\cdots\!60\)\(q^{60} + \)\(70\!\cdots\!08\)\(q^{61} - \)\(30\!\cdots\!60\)\(q^{62} - \)\(71\!\cdots\!20\)\(q^{63} - \)\(98\!\cdots\!28\)\(q^{64} - \)\(96\!\cdots\!80\)\(q^{65} + \)\(64\!\cdots\!16\)\(q^{66} + \)\(41\!\cdots\!60\)\(q^{67} + \)\(62\!\cdots\!20\)\(q^{68} + \)\(51\!\cdots\!56\)\(q^{69} - \)\(47\!\cdots\!40\)\(q^{70} + \)\(99\!\cdots\!08\)\(q^{71} - \)\(43\!\cdots\!20\)\(q^{72} - \)\(89\!\cdots\!40\)\(q^{73} - \)\(79\!\cdots\!56\)\(q^{74} + \)\(52\!\cdots\!00\)\(q^{75} - \)\(60\!\cdots\!00\)\(q^{76} + \)\(14\!\cdots\!00\)\(q^{77} + \)\(39\!\cdots\!00\)\(q^{78} + \)\(48\!\cdots\!00\)\(q^{79} - \)\(35\!\cdots\!40\)\(q^{80} + \)\(62\!\cdots\!04\)\(q^{81} - \)\(16\!\cdots\!60\)\(q^{82} - \)\(71\!\cdots\!20\)\(q^{83} - \)\(31\!\cdots\!56\)\(q^{84} + \)\(24\!\cdots\!60\)\(q^{85} - \)\(39\!\cdots\!92\)\(q^{86} + \)\(79\!\cdots\!80\)\(q^{87} + \)\(26\!\cdots\!80\)\(q^{88} + \)\(15\!\cdots\!00\)\(q^{89} - \)\(12\!\cdots\!80\)\(q^{90} + \)\(16\!\cdots\!08\)\(q^{91} - \)\(27\!\cdots\!40\)\(q^{92} - \)\(11\!\cdots\!60\)\(q^{93} - \)\(40\!\cdots\!56\)\(q^{94} + \)\(90\!\cdots\!00\)\(q^{95} - \)\(54\!\cdots\!92\)\(q^{96} + \)\(51\!\cdots\!40\)\(q^{97} + \)\(43\!\cdots\!60\)\(q^{98} + \)\(79\!\cdots\!56\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.25888e8 1.71690 0.858448 0.512901i \(-0.171429\pi\)
0.858448 + 0.512901i \(0.171429\pi\)
\(3\) 5.98183e12 0.452897 0.226449 0.974023i \(-0.427288\pi\)
0.226449 + 0.974023i \(0.427288\pi\)
\(4\) 7.01743e16 1.94773
\(5\) 2.73659e19 1.64261 0.821304 0.570490i \(-0.193247\pi\)
0.821304 + 0.570490i \(0.193247\pi\)
\(6\) 1.94941e21 0.777577
\(7\) −1.10303e23 −0.634440 −0.317220 0.948352i \(-0.602749\pi\)
−0.317220 + 0.948352i \(0.602749\pi\)
\(8\) 1.11276e25 1.62715
\(9\) −1.38667e26 −0.794884
\(10\) 8.91821e27 2.82019
\(11\) 4.91412e28 1.13018 0.565090 0.825030i \(-0.308842\pi\)
0.565090 + 0.825030i \(0.308842\pi\)
\(12\) 4.19771e29 0.882121
\(13\) −5.50498e30 −1.28030 −0.640152 0.768248i \(-0.721129\pi\)
−0.640152 + 0.768248i \(0.721129\pi\)
\(14\) −3.59464e31 −1.08927
\(15\) 1.63698e32 0.743933
\(16\) 1.09807e33 0.845919
\(17\) 6.74131e33 0.980390 0.490195 0.871613i \(-0.336926\pi\)
0.490195 + 0.871613i \(0.336926\pi\)
\(18\) −4.51899e34 −1.36473
\(19\) 4.63069e34 0.316171 0.158085 0.987425i \(-0.449468\pi\)
0.158085 + 0.987425i \(0.449468\pi\)
\(20\) 1.92038e36 3.19936
\(21\) −6.59813e35 −0.287336
\(22\) 1.60146e37 1.94040
\(23\) −2.33537e37 −0.833376 −0.416688 0.909050i \(-0.636809\pi\)
−0.416688 + 0.909050i \(0.636809\pi\)
\(24\) 6.65636e37 0.736932
\(25\) 4.71335e38 1.69816
\(26\) −1.79401e39 −2.19815
\(27\) −1.87301e39 −0.812898
\(28\) −7.74043e39 −1.23572
\(29\) 8.29368e39 0.504431 0.252216 0.967671i \(-0.418841\pi\)
0.252216 + 0.967671i \(0.418841\pi\)
\(30\) 5.33472e40 1.27725
\(31\) −2.22670e40 −0.216379 −0.108189 0.994130i \(-0.534505\pi\)
−0.108189 + 0.994130i \(0.534505\pi\)
\(32\) −4.30685e40 −0.174797
\(33\) 2.93955e41 0.511855
\(34\) 2.19691e42 1.68323
\(35\) −3.01853e42 −1.04214
\(36\) −9.73086e42 −1.54822
\(37\) −8.62039e42 −0.645624 −0.322812 0.946463i \(-0.604628\pi\)
−0.322812 + 0.946463i \(0.604628\pi\)
\(38\) 1.50909e43 0.542832
\(39\) −3.29298e43 −0.579846
\(40\) 3.04517e44 2.67277
\(41\) −1.28503e44 −0.571951 −0.285975 0.958237i \(-0.592318\pi\)
−0.285975 + 0.958237i \(0.592318\pi\)
\(42\) −2.15025e44 −0.493326
\(43\) −7.80265e44 −0.937259 −0.468629 0.883395i \(-0.655252\pi\)
−0.468629 + 0.883395i \(0.655252\pi\)
\(44\) 3.44845e45 2.20128
\(45\) −3.79474e45 −1.30568
\(46\) −7.61071e45 −1.43082
\(47\) 2.24956e45 0.234103 0.117052 0.993126i \(-0.462656\pi\)
0.117052 + 0.993126i \(0.462656\pi\)
\(48\) 6.56844e45 0.383114
\(49\) −1.80601e46 −0.597486
\(50\) 1.53602e47 2.91557
\(51\) 4.03254e46 0.444016
\(52\) −3.86308e47 −2.49369
\(53\) 6.54418e46 0.250189 0.125095 0.992145i \(-0.460077\pi\)
0.125095 + 0.992145i \(0.460077\pi\)
\(54\) −6.10391e47 −1.39566
\(55\) 1.34479e48 1.85644
\(56\) −1.22741e48 −1.03233
\(57\) 2.77000e47 0.143193
\(58\) 2.70281e48 0.866056
\(59\) −4.81860e48 −0.964918 −0.482459 0.875918i \(-0.660256\pi\)
−0.482459 + 0.875918i \(0.660256\pi\)
\(60\) 1.14874e49 1.44898
\(61\) −1.00856e48 −0.0807480 −0.0403740 0.999185i \(-0.512855\pi\)
−0.0403740 + 0.999185i \(0.512855\pi\)
\(62\) −7.25655e48 −0.371500
\(63\) 1.52954e49 0.504307
\(64\) −5.35975e49 −1.14603
\(65\) −1.50648e50 −2.10304
\(66\) 9.57963e49 0.878801
\(67\) 2.13547e50 1.29550 0.647749 0.761854i \(-0.275711\pi\)
0.647749 + 0.761854i \(0.275711\pi\)
\(68\) 4.73067e50 1.90953
\(69\) −1.39698e50 −0.377434
\(70\) −9.83705e50 −1.78924
\(71\) 9.56825e50 1.17822 0.589112 0.808051i \(-0.299478\pi\)
0.589112 + 0.808051i \(0.299478\pi\)
\(72\) −1.54303e51 −1.29340
\(73\) 1.10863e51 0.635926 0.317963 0.948103i \(-0.397001\pi\)
0.317963 + 0.948103i \(0.397001\pi\)
\(74\) −2.80928e51 −1.10847
\(75\) 2.81945e51 0.769093
\(76\) 3.24956e51 0.615815
\(77\) −5.42042e51 −0.717031
\(78\) −1.07314e52 −0.995535
\(79\) 2.07492e52 1.35599 0.677995 0.735067i \(-0.262849\pi\)
0.677995 + 0.735067i \(0.262849\pi\)
\(80\) 3.00495e52 1.38951
\(81\) 1.29863e52 0.426725
\(82\) −4.18778e52 −0.981980
\(83\) −1.06353e53 −1.78691 −0.893456 0.449150i \(-0.851727\pi\)
−0.893456 + 0.449150i \(0.851727\pi\)
\(84\) −4.63019e52 −0.559653
\(85\) 1.84482e53 1.61040
\(86\) −2.54279e53 −1.60917
\(87\) 4.96114e52 0.228456
\(88\) 5.46825e53 1.83897
\(89\) 7.48693e53 1.84535 0.922675 0.385578i \(-0.125998\pi\)
0.922675 + 0.385578i \(0.125998\pi\)
\(90\) −1.23666e54 −2.24172
\(91\) 6.07215e53 0.812277
\(92\) −1.63883e54 −1.62319
\(93\) −1.33197e53 −0.0979974
\(94\) 7.33106e53 0.401931
\(95\) 1.26723e54 0.519345
\(96\) −2.57628e53 −0.0791653
\(97\) −5.59692e53 −0.129338 −0.0646691 0.997907i \(-0.520599\pi\)
−0.0646691 + 0.997907i \(0.520599\pi\)
\(98\) −5.88557e54 −1.02582
\(99\) −6.81426e54 −0.898361
\(100\) 3.30756e55 3.30756
\(101\) −1.15529e55 −0.878729 −0.439364 0.898309i \(-0.644796\pi\)
−0.439364 + 0.898309i \(0.644796\pi\)
\(102\) 1.31416e55 0.762329
\(103\) 1.27447e55 0.565335 0.282667 0.959218i \(-0.408781\pi\)
0.282667 + 0.959218i \(0.408781\pi\)
\(104\) −6.12573e55 −2.08325
\(105\) −1.80564e55 −0.471981
\(106\) 2.13267e55 0.429549
\(107\) −3.18160e55 −0.494984 −0.247492 0.968890i \(-0.579606\pi\)
−0.247492 + 0.968890i \(0.579606\pi\)
\(108\) −1.31437e56 −1.58330
\(109\) 1.12821e56 1.05478 0.527388 0.849625i \(-0.323171\pi\)
0.527388 + 0.849625i \(0.323171\pi\)
\(110\) 4.38252e56 3.18732
\(111\) −5.15657e55 −0.292401
\(112\) −1.21120e56 −0.536685
\(113\) −2.75852e56 −0.957238 −0.478619 0.878023i \(-0.658862\pi\)
−0.478619 + 0.878023i \(0.658862\pi\)
\(114\) 9.02711e55 0.245847
\(115\) −6.39095e56 −1.36891
\(116\) 5.82003e56 0.982496
\(117\) 7.63358e56 1.01769
\(118\) −1.57033e57 −1.65666
\(119\) −7.43586e56 −0.621999
\(120\) 1.82157e57 1.21049
\(121\) 5.24270e56 0.277305
\(122\) −3.28678e56 −0.138636
\(123\) −7.68686e56 −0.259035
\(124\) −1.56257e57 −0.421448
\(125\) 5.30294e57 1.14681
\(126\) 4.98458e57 0.865841
\(127\) 7.27512e57 1.01680 0.508402 0.861120i \(-0.330236\pi\)
0.508402 + 0.861120i \(0.330236\pi\)
\(128\) −1.59151e58 −1.79281
\(129\) −4.66741e57 −0.424482
\(130\) −4.90946e58 −3.61070
\(131\) 3.20710e58 1.91052 0.955261 0.295764i \(-0.0955743\pi\)
0.955261 + 0.295764i \(0.0955743\pi\)
\(132\) 2.06281e58 0.996955
\(133\) −5.10779e57 −0.200592
\(134\) 6.95925e58 2.22423
\(135\) −5.12565e58 −1.33527
\(136\) 7.50148e58 1.59524
\(137\) −5.59686e58 −0.973036 −0.486518 0.873671i \(-0.661733\pi\)
−0.486518 + 0.873671i \(0.661733\pi\)
\(138\) −4.55260e58 −0.648014
\(139\) 6.10557e58 0.712556 0.356278 0.934380i \(-0.384046\pi\)
0.356278 + 0.934380i \(0.384046\pi\)
\(140\) −2.11824e59 −2.02980
\(141\) 1.34565e58 0.106025
\(142\) 3.11818e59 2.02289
\(143\) −2.70521e59 −1.44697
\(144\) −1.52265e59 −0.672407
\(145\) 2.26964e59 0.828584
\(146\) 3.61289e59 1.09182
\(147\) −1.08032e59 −0.270600
\(148\) −6.04930e59 −1.25750
\(149\) −1.00005e59 −0.172743 −0.0863713 0.996263i \(-0.527527\pi\)
−0.0863713 + 0.996263i \(0.527527\pi\)
\(150\) 9.18824e59 1.32045
\(151\) 8.74454e59 1.04682 0.523409 0.852082i \(-0.324660\pi\)
0.523409 + 0.852082i \(0.324660\pi\)
\(152\) 5.15286e59 0.514458
\(153\) −9.34796e59 −0.779296
\(154\) −1.76645e60 −1.23107
\(155\) −6.09356e59 −0.355426
\(156\) −2.31083e60 −1.12938
\(157\) −2.34355e60 −0.960802 −0.480401 0.877049i \(-0.659509\pi\)
−0.480401 + 0.877049i \(0.659509\pi\)
\(158\) 6.76192e60 2.32809
\(159\) 3.91462e59 0.113310
\(160\) −1.17861e60 −0.287124
\(161\) 2.57598e60 0.528727
\(162\) 4.23209e60 0.732642
\(163\) 9.54155e60 1.39463 0.697316 0.716763i \(-0.254377\pi\)
0.697316 + 0.716763i \(0.254377\pi\)
\(164\) −9.01764e60 −1.11401
\(165\) 8.04432e60 0.840777
\(166\) −3.46593e61 −3.06794
\(167\) −6.27360e60 −0.470776 −0.235388 0.971902i \(-0.575636\pi\)
−0.235388 + 0.971902i \(0.575636\pi\)
\(168\) −7.34215e60 −0.467539
\(169\) 1.18170e61 0.639179
\(170\) 6.01204e61 2.76488
\(171\) −6.42124e60 −0.251319
\(172\) −5.47546e61 −1.82553
\(173\) 1.23980e61 0.352439 0.176219 0.984351i \(-0.443613\pi\)
0.176219 + 0.984351i \(0.443613\pi\)
\(174\) 1.61678e61 0.392234
\(175\) −5.19896e61 −1.07738
\(176\) 5.39603e61 0.956040
\(177\) −2.88241e61 −0.437009
\(178\) 2.43990e62 3.16827
\(179\) −6.84198e61 −0.761594 −0.380797 0.924659i \(-0.624350\pi\)
−0.380797 + 0.924659i \(0.624350\pi\)
\(180\) −2.66293e62 −2.54312
\(181\) −1.10035e61 −0.0902340 −0.0451170 0.998982i \(-0.514366\pi\)
−0.0451170 + 0.998982i \(0.514366\pi\)
\(182\) 1.97884e62 1.39459
\(183\) −6.03304e60 −0.0365706
\(184\) −2.59872e62 −1.35603
\(185\) −2.35905e62 −1.06051
\(186\) −4.34075e61 −0.168251
\(187\) 3.31276e62 1.10802
\(188\) 1.57862e62 0.455969
\(189\) 2.06598e62 0.515735
\(190\) 4.12975e62 0.891661
\(191\) 7.90077e62 1.47656 0.738281 0.674493i \(-0.235638\pi\)
0.738281 + 0.674493i \(0.235638\pi\)
\(192\) −3.20611e62 −0.519033
\(193\) −9.51922e62 −1.33590 −0.667952 0.744204i \(-0.732829\pi\)
−0.667952 + 0.744204i \(0.732829\pi\)
\(194\) −1.82397e62 −0.222060
\(195\) −9.01154e62 −0.952461
\(196\) −1.26735e63 −1.16374
\(197\) 1.86380e63 1.48791 0.743956 0.668229i \(-0.232947\pi\)
0.743956 + 0.668229i \(0.232947\pi\)
\(198\) −2.22069e63 −1.54239
\(199\) −2.70172e62 −0.163373 −0.0816866 0.996658i \(-0.526031\pi\)
−0.0816866 + 0.996658i \(0.526031\pi\)
\(200\) 5.24484e63 2.76317
\(201\) 1.27740e63 0.586728
\(202\) −3.76497e63 −1.50869
\(203\) −9.14817e62 −0.320032
\(204\) 2.82981e63 0.864823
\(205\) −3.51661e63 −0.939491
\(206\) 4.15335e63 0.970621
\(207\) 3.23839e63 0.662437
\(208\) −6.04482e63 −1.08303
\(209\) 2.27558e63 0.357330
\(210\) −5.88436e63 −0.810342
\(211\) 3.39112e63 0.409804 0.204902 0.978783i \(-0.434312\pi\)
0.204902 + 0.978783i \(0.434312\pi\)
\(212\) 4.59233e63 0.487301
\(213\) 5.72357e63 0.533614
\(214\) −1.03685e64 −0.849836
\(215\) −2.13526e64 −1.53955
\(216\) −2.08421e64 −1.32271
\(217\) 2.45611e63 0.137280
\(218\) 3.67669e64 1.81094
\(219\) 6.63162e63 0.288009
\(220\) 9.43699e64 3.61585
\(221\) −3.71107e64 −1.25520
\(222\) −1.68047e64 −0.502022
\(223\) −1.50393e64 −0.397049 −0.198524 0.980096i \(-0.563615\pi\)
−0.198524 + 0.980096i \(0.563615\pi\)
\(224\) 4.75058e63 0.110899
\(225\) −6.53586e64 −1.34984
\(226\) −8.98971e64 −1.64348
\(227\) 6.25379e64 1.01259 0.506293 0.862361i \(-0.331015\pi\)
0.506293 + 0.862361i \(0.331015\pi\)
\(228\) 1.94383e64 0.278901
\(229\) 9.72208e64 1.23675 0.618377 0.785882i \(-0.287791\pi\)
0.618377 + 0.785882i \(0.287791\pi\)
\(230\) −2.08274e65 −2.35028
\(231\) −3.24240e64 −0.324741
\(232\) 9.22889e64 0.820786
\(233\) 1.58206e65 1.25007 0.625037 0.780595i \(-0.285084\pi\)
0.625037 + 0.780595i \(0.285084\pi\)
\(234\) 2.48769e65 1.74727
\(235\) 6.15613e64 0.384540
\(236\) −3.38142e65 −1.87940
\(237\) 1.24118e65 0.614124
\(238\) −2.42326e65 −1.06791
\(239\) −1.73759e65 −0.682346 −0.341173 0.940000i \(-0.610824\pi\)
−0.341173 + 0.940000i \(0.610824\pi\)
\(240\) 1.79751e65 0.629307
\(241\) −8.77618e64 −0.274054 −0.137027 0.990567i \(-0.543755\pi\)
−0.137027 + 0.990567i \(0.543755\pi\)
\(242\) 1.70854e65 0.476103
\(243\) 4.04427e65 1.00616
\(244\) −7.07751e64 −0.157275
\(245\) −4.94230e65 −0.981435
\(246\) −2.50506e65 −0.444736
\(247\) −2.54918e65 −0.404795
\(248\) −2.47779e65 −0.352081
\(249\) −6.36187e65 −0.809288
\(250\) 1.72816e66 1.96895
\(251\) 6.61756e63 0.00675570 0.00337785 0.999994i \(-0.498925\pi\)
0.00337785 + 0.999994i \(0.498925\pi\)
\(252\) 1.07334e66 0.982252
\(253\) −1.14763e66 −0.941864
\(254\) 2.37087e66 1.74575
\(255\) 1.10354e66 0.729344
\(256\) −3.25548e66 −1.93204
\(257\) 2.05584e66 1.09605 0.548024 0.836463i \(-0.315380\pi\)
0.548024 + 0.836463i \(0.315380\pi\)
\(258\) −1.52105e66 −0.728791
\(259\) 9.50854e65 0.409610
\(260\) −1.05717e67 −4.09615
\(261\) −1.15006e66 −0.400965
\(262\) 1.04516e67 3.28017
\(263\) −5.76788e66 −1.63017 −0.815086 0.579340i \(-0.803310\pi\)
−0.815086 + 0.579340i \(0.803310\pi\)
\(264\) 3.27102e66 0.832865
\(265\) 1.79087e66 0.410963
\(266\) −1.66457e66 −0.344395
\(267\) 4.47856e66 0.835754
\(268\) 1.49855e67 2.52328
\(269\) 3.84467e66 0.584348 0.292174 0.956365i \(-0.405621\pi\)
0.292174 + 0.956365i \(0.405621\pi\)
\(270\) −1.67039e67 −2.29252
\(271\) −1.55611e67 −1.92923 −0.964615 0.263662i \(-0.915070\pi\)
−0.964615 + 0.263662i \(0.915070\pi\)
\(272\) 7.40240e66 0.829330
\(273\) 3.63226e66 0.367878
\(274\) −1.82395e67 −1.67060
\(275\) 2.31620e67 1.91923
\(276\) −9.80322e66 −0.735138
\(277\) 1.29112e65 0.00876541 0.00438271 0.999990i \(-0.498605\pi\)
0.00438271 + 0.999990i \(0.498605\pi\)
\(278\) 1.98973e67 1.22338
\(279\) 3.08770e66 0.171996
\(280\) −3.35891e67 −1.69571
\(281\) −4.05496e67 −1.85594 −0.927968 0.372661i \(-0.878446\pi\)
−0.927968 + 0.372661i \(0.878446\pi\)
\(282\) 4.38532e66 0.182033
\(283\) 4.16122e67 1.56709 0.783545 0.621335i \(-0.213409\pi\)
0.783545 + 0.621335i \(0.213409\pi\)
\(284\) 6.71445e67 2.29486
\(285\) 7.58035e66 0.235210
\(286\) −8.81597e67 −2.48430
\(287\) 1.41743e67 0.362869
\(288\) 5.97217e66 0.138944
\(289\) −1.83619e66 −0.0388353
\(290\) 7.39648e67 1.42259
\(291\) −3.34798e66 −0.0585769
\(292\) 7.77972e67 1.23861
\(293\) −7.89264e67 −1.14383 −0.571917 0.820312i \(-0.693800\pi\)
−0.571917 + 0.820312i \(0.693800\pi\)
\(294\) −3.52065e67 −0.464591
\(295\) −1.31865e68 −1.58498
\(296\) −9.59245e67 −1.05053
\(297\) −9.20419e67 −0.918720
\(298\) −3.25905e67 −0.296581
\(299\) 1.28562e68 1.06697
\(300\) 1.97853e68 1.49799
\(301\) 8.60655e67 0.594635
\(302\) 2.84974e68 1.79728
\(303\) −6.91078e67 −0.397974
\(304\) 5.08480e67 0.267455
\(305\) −2.76002e67 −0.132637
\(306\) −3.04639e68 −1.33797
\(307\) 1.91003e68 0.766893 0.383446 0.923563i \(-0.374737\pi\)
0.383446 + 0.923563i \(0.374737\pi\)
\(308\) −3.80374e68 −1.39658
\(309\) 7.62366e67 0.256039
\(310\) −1.98582e68 −0.610229
\(311\) 3.42073e68 0.962074 0.481037 0.876700i \(-0.340260\pi\)
0.481037 + 0.876700i \(0.340260\pi\)
\(312\) −3.66431e68 −0.943497
\(313\) 7.31342e66 0.0172445 0.00862227 0.999963i \(-0.497255\pi\)
0.00862227 + 0.999963i \(0.497255\pi\)
\(314\) −7.63735e68 −1.64960
\(315\) 4.18571e68 0.828378
\(316\) 1.45606e69 2.64110
\(317\) −5.41902e68 −0.901137 −0.450569 0.892742i \(-0.648779\pi\)
−0.450569 + 0.892742i \(0.648779\pi\)
\(318\) 1.27573e68 0.194541
\(319\) 4.07562e68 0.570098
\(320\) −1.46674e69 −1.88247
\(321\) −1.90318e68 −0.224177
\(322\) 8.39483e68 0.907769
\(323\) 3.12169e68 0.309971
\(324\) 9.11306e68 0.831144
\(325\) −2.59469e69 −2.17417
\(326\) 3.10948e69 2.39444
\(327\) 6.74875e68 0.477705
\(328\) −1.42994e69 −0.930650
\(329\) −2.48133e68 −0.148524
\(330\) 2.62155e69 1.44353
\(331\) −1.74335e69 −0.883315 −0.441658 0.897184i \(-0.645609\pi\)
−0.441658 + 0.897184i \(0.645609\pi\)
\(332\) −7.46327e69 −3.48042
\(333\) 1.19536e69 0.513196
\(334\) −2.04449e69 −0.808273
\(335\) 5.84390e69 2.12800
\(336\) −7.24518e68 −0.243063
\(337\) −3.48749e69 −1.07818 −0.539090 0.842248i \(-0.681232\pi\)
−0.539090 + 0.842248i \(0.681232\pi\)
\(338\) 3.85102e69 1.09740
\(339\) −1.65010e69 −0.433530
\(340\) 1.29459e70 3.13662
\(341\) −1.09423e69 −0.244547
\(342\) −2.09261e69 −0.431489
\(343\) 5.32618e69 1.01351
\(344\) −8.68249e69 −1.52506
\(345\) −3.82296e69 −0.619976
\(346\) 4.04036e69 0.605101
\(347\) −3.19386e69 −0.441830 −0.220915 0.975293i \(-0.570904\pi\)
−0.220915 + 0.975293i \(0.570904\pi\)
\(348\) 3.48145e69 0.444970
\(349\) −1.03259e70 −1.21963 −0.609813 0.792545i \(-0.708755\pi\)
−0.609813 + 0.792545i \(0.708755\pi\)
\(350\) −1.69428e70 −1.84975
\(351\) 1.03109e70 1.04076
\(352\) −2.11644e69 −0.197552
\(353\) −6.47303e69 −0.558860 −0.279430 0.960166i \(-0.590145\pi\)
−0.279430 + 0.960166i \(0.590145\pi\)
\(354\) −9.39342e69 −0.750298
\(355\) 2.61843e70 1.93536
\(356\) 5.25391e70 3.59424
\(357\) −4.44801e69 −0.281702
\(358\) −2.22972e70 −1.30758
\(359\) 1.06064e70 0.576063 0.288031 0.957621i \(-0.406999\pi\)
0.288031 + 0.957621i \(0.406999\pi\)
\(360\) −4.22264e70 −2.12454
\(361\) −1.93067e70 −0.900036
\(362\) −3.58591e69 −0.154922
\(363\) 3.13610e69 0.125591
\(364\) 4.26109e70 1.58209
\(365\) 3.03385e70 1.04458
\(366\) −1.96610e69 −0.0627878
\(367\) 5.03481e69 0.149165 0.0745824 0.997215i \(-0.476238\pi\)
0.0745824 + 0.997215i \(0.476238\pi\)
\(368\) −2.56439e70 −0.704968
\(369\) 1.78192e70 0.454635
\(370\) −7.68785e70 −1.82078
\(371\) −7.21842e69 −0.158730
\(372\) −9.34704e69 −0.190872
\(373\) −9.67049e70 −1.83424 −0.917119 0.398613i \(-0.869492\pi\)
−0.917119 + 0.398613i \(0.869492\pi\)
\(374\) 1.07959e71 1.90235
\(375\) 3.17213e70 0.519386
\(376\) 2.50323e70 0.380921
\(377\) −4.56565e70 −0.645826
\(378\) 6.73279e70 0.885463
\(379\) −1.49089e71 −1.82333 −0.911667 0.410930i \(-0.865204\pi\)
−0.911667 + 0.410930i \(0.865204\pi\)
\(380\) 8.89269e70 1.01154
\(381\) 4.35185e70 0.460508
\(382\) 2.57477e71 2.53510
\(383\) 1.32996e71 1.21863 0.609317 0.792927i \(-0.291444\pi\)
0.609317 + 0.792927i \(0.291444\pi\)
\(384\) −9.52013e70 −0.811959
\(385\) −1.48335e71 −1.17780
\(386\) −3.10220e71 −2.29361
\(387\) 1.08197e71 0.745012
\(388\) −3.92760e70 −0.251916
\(389\) 1.84119e70 0.110023 0.0550115 0.998486i \(-0.482480\pi\)
0.0550115 + 0.998486i \(0.482480\pi\)
\(390\) −2.93675e71 −1.63527
\(391\) −1.57435e71 −0.817033
\(392\) −2.00966e71 −0.972199
\(393\) 1.91843e71 0.865270
\(394\) 6.07389e71 2.55459
\(395\) 5.67820e71 2.22736
\(396\) −4.78186e71 −1.74976
\(397\) 2.35772e70 0.0804922 0.0402461 0.999190i \(-0.487186\pi\)
0.0402461 + 0.999190i \(0.487186\pi\)
\(398\) −8.80459e70 −0.280495
\(399\) −3.05539e70 −0.0908473
\(400\) 5.17556e71 1.43651
\(401\) −5.55389e71 −1.43922 −0.719610 0.694378i \(-0.755679\pi\)
−0.719610 + 0.694378i \(0.755679\pi\)
\(402\) 4.16291e71 1.00735
\(403\) 1.22579e71 0.277031
\(404\) −8.10720e71 −1.71153
\(405\) 3.55382e71 0.700942
\(406\) −2.98128e71 −0.549461
\(407\) −4.23617e71 −0.729671
\(408\) 4.48726e71 0.722481
\(409\) 5.98705e71 0.901201 0.450600 0.892726i \(-0.351210\pi\)
0.450600 + 0.892726i \(0.351210\pi\)
\(410\) −1.14602e72 −1.61301
\(411\) −3.34795e71 −0.440685
\(412\) 8.94350e71 1.10112
\(413\) 5.31506e71 0.612183
\(414\) 1.05535e72 1.13734
\(415\) −2.91045e72 −2.93520
\(416\) 2.37091e71 0.223794
\(417\) 3.65225e71 0.322715
\(418\) 7.41584e71 0.613498
\(419\) 1.73387e71 0.134317 0.0671585 0.997742i \(-0.478607\pi\)
0.0671585 + 0.997742i \(0.478607\pi\)
\(420\) −1.26709e72 −0.919291
\(421\) 6.27129e71 0.426186 0.213093 0.977032i \(-0.431646\pi\)
0.213093 + 0.977032i \(0.431646\pi\)
\(422\) 1.10513e72 0.703590
\(423\) −3.11940e71 −0.186085
\(424\) 7.28212e71 0.407096
\(425\) 3.17741e72 1.66486
\(426\) 1.86524e72 0.916160
\(427\) 1.11247e71 0.0512298
\(428\) −2.23267e72 −0.964095
\(429\) −1.61821e72 −0.655330
\(430\) −6.95857e72 −2.64324
\(431\) 3.86872e71 0.137861 0.0689306 0.997621i \(-0.478041\pi\)
0.0689306 + 0.997621i \(0.478041\pi\)
\(432\) −2.05668e72 −0.687646
\(433\) −3.85260e72 −1.20875 −0.604376 0.796699i \(-0.706578\pi\)
−0.604376 + 0.796699i \(0.706578\pi\)
\(434\) 8.00419e71 0.235695
\(435\) 1.35766e72 0.375263
\(436\) 7.91712e72 2.05442
\(437\) −1.08144e72 −0.263489
\(438\) 2.16117e72 0.494482
\(439\) −7.04112e71 −0.151310 −0.0756550 0.997134i \(-0.524105\pi\)
−0.0756550 + 0.997134i \(0.524105\pi\)
\(440\) 1.49643e73 3.02071
\(441\) 2.50433e72 0.474932
\(442\) −1.20940e73 −2.15504
\(443\) −1.05429e73 −1.76545 −0.882727 0.469887i \(-0.844295\pi\)
−0.882727 + 0.469887i \(0.844295\pi\)
\(444\) −3.61859e72 −0.569518
\(445\) 2.04886e73 3.03119
\(446\) −4.90113e72 −0.681691
\(447\) −5.98213e71 −0.0782347
\(448\) 5.91196e72 0.727086
\(449\) −5.83745e71 −0.0675226 −0.0337613 0.999430i \(-0.510749\pi\)
−0.0337613 + 0.999430i \(0.510749\pi\)
\(450\) −2.12996e73 −2.31754
\(451\) −6.31482e72 −0.646407
\(452\) −1.93578e73 −1.86444
\(453\) 5.23084e72 0.474101
\(454\) 2.03804e73 1.73850
\(455\) 1.66170e73 1.33425
\(456\) 3.08235e72 0.232996
\(457\) −9.08985e72 −0.646936 −0.323468 0.946239i \(-0.604849\pi\)
−0.323468 + 0.946239i \(0.604849\pi\)
\(458\) 3.16831e73 2.12338
\(459\) −1.26265e73 −0.796957
\(460\) −4.48481e73 −2.66627
\(461\) 1.94861e73 1.09131 0.545656 0.838009i \(-0.316281\pi\)
0.545656 + 0.838009i \(0.316281\pi\)
\(462\) −1.05666e73 −0.557547
\(463\) −5.72642e72 −0.284712 −0.142356 0.989816i \(-0.545468\pi\)
−0.142356 + 0.989816i \(0.545468\pi\)
\(464\) 9.10700e72 0.426708
\(465\) −3.64506e72 −0.160971
\(466\) 5.15575e73 2.14624
\(467\) −2.64935e73 −1.03974 −0.519871 0.854245i \(-0.674020\pi\)
−0.519871 + 0.854245i \(0.674020\pi\)
\(468\) 5.35681e73 1.98219
\(469\) −2.35549e73 −0.821916
\(470\) 2.00621e73 0.660215
\(471\) −1.40187e73 −0.435144
\(472\) −5.36196e73 −1.57007
\(473\) −3.83432e73 −1.05927
\(474\) 4.04487e73 1.05439
\(475\) 2.18261e73 0.536910
\(476\) −5.21806e73 −1.21149
\(477\) −9.07461e72 −0.198871
\(478\) −5.66260e73 −1.17152
\(479\) 2.29697e73 0.448672 0.224336 0.974512i \(-0.427979\pi\)
0.224336 + 0.974512i \(0.427979\pi\)
\(480\) −7.05022e72 −0.130038
\(481\) 4.74551e73 0.826595
\(482\) −2.86005e73 −0.470523
\(483\) 1.54091e73 0.239459
\(484\) 3.67903e73 0.540115
\(485\) −1.53165e73 −0.212452
\(486\) 1.31798e74 1.72747
\(487\) 1.57576e74 1.95184 0.975920 0.218128i \(-0.0699951\pi\)
0.975920 + 0.218128i \(0.0699951\pi\)
\(488\) −1.12229e73 −0.131389
\(489\) 5.70760e73 0.631625
\(490\) −1.61064e74 −1.68502
\(491\) −9.33302e73 −0.923168 −0.461584 0.887096i \(-0.652719\pi\)
−0.461584 + 0.887096i \(0.652719\pi\)
\(492\) −5.39420e73 −0.504530
\(493\) 5.59102e73 0.494540
\(494\) −8.30749e73 −0.694990
\(495\) −1.86478e74 −1.47566
\(496\) −2.44506e73 −0.183039
\(497\) −1.05541e74 −0.747513
\(498\) −2.07326e74 −1.38946
\(499\) 2.92720e74 1.85647 0.928235 0.371994i \(-0.121326\pi\)
0.928235 + 0.371994i \(0.121326\pi\)
\(500\) 3.72130e74 2.23367
\(501\) −3.75276e73 −0.213213
\(502\) 2.15658e72 0.0115988
\(503\) 1.72201e74 0.876833 0.438417 0.898772i \(-0.355539\pi\)
0.438417 + 0.898772i \(0.355539\pi\)
\(504\) 1.70201e74 0.820583
\(505\) −3.16156e74 −1.44341
\(506\) −3.74000e74 −1.61708
\(507\) 7.06873e73 0.289483
\(508\) 5.10526e74 1.98046
\(509\) −3.58739e74 −1.31838 −0.659188 0.751978i \(-0.729100\pi\)
−0.659188 + 0.751978i \(0.729100\pi\)
\(510\) 3.59630e74 1.25221
\(511\) −1.22285e74 −0.403457
\(512\) −4.87523e74 −1.52430
\(513\) −8.67332e73 −0.257015
\(514\) 6.69975e74 1.88180
\(515\) 3.48770e74 0.928624
\(516\) −3.27533e74 −0.826776
\(517\) 1.10546e74 0.264578
\(518\) 3.09872e74 0.703257
\(519\) 7.41628e73 0.159619
\(520\) −1.67636e75 −3.42196
\(521\) −2.44717e74 −0.473834 −0.236917 0.971530i \(-0.576137\pi\)
−0.236917 + 0.971530i \(0.576137\pi\)
\(522\) −3.74791e74 −0.688414
\(523\) 4.08574e74 0.711990 0.355995 0.934488i \(-0.384142\pi\)
0.355995 + 0.934488i \(0.384142\pi\)
\(524\) 2.25056e75 3.72118
\(525\) −3.10993e74 −0.487944
\(526\) −1.87969e75 −2.79883
\(527\) −1.50109e74 −0.212136
\(528\) 3.22781e74 0.432988
\(529\) −2.39895e74 −0.305485
\(530\) 5.83624e74 0.705580
\(531\) 6.68180e74 0.766998
\(532\) −3.58435e74 −0.390698
\(533\) 7.07408e74 0.732271
\(534\) 1.45951e75 1.43490
\(535\) −8.70672e74 −0.813066
\(536\) 2.37627e75 2.10797
\(537\) −4.09276e74 −0.344924
\(538\) 1.25293e75 1.00326
\(539\) −8.87495e74 −0.675266
\(540\) −3.59689e75 −2.60075
\(541\) −1.21945e74 −0.0837988 −0.0418994 0.999122i \(-0.513341\pi\)
−0.0418994 + 0.999122i \(0.513341\pi\)
\(542\) −5.07117e75 −3.31229
\(543\) −6.58211e73 −0.0408667
\(544\) −2.90338e74 −0.171370
\(545\) 3.08744e75 1.73258
\(546\) 1.18371e75 0.631608
\(547\) 1.44748e75 0.734446 0.367223 0.930133i \(-0.380309\pi\)
0.367223 + 0.930133i \(0.380309\pi\)
\(548\) −3.92756e75 −1.89521
\(549\) 1.39854e74 0.0641853
\(550\) 7.54822e75 3.29511
\(551\) 3.84055e74 0.159487
\(552\) −1.55451e75 −0.614141
\(553\) −2.28870e75 −0.860295
\(554\) 4.20760e73 0.0150493
\(555\) −1.41114e75 −0.480301
\(556\) 4.28454e75 1.38787
\(557\) 2.32271e74 0.0716104 0.0358052 0.999359i \(-0.488600\pi\)
0.0358052 + 0.999359i \(0.488600\pi\)
\(558\) 1.00624e75 0.295299
\(559\) 4.29534e75 1.19998
\(560\) −3.31455e75 −0.881563
\(561\) 1.98164e75 0.501818
\(562\) −1.32146e76 −3.18645
\(563\) −2.67933e75 −0.615242 −0.307621 0.951509i \(-0.599533\pi\)
−0.307621 + 0.951509i \(0.599533\pi\)
\(564\) 9.44302e74 0.206507
\(565\) −7.54894e75 −1.57237
\(566\) 1.35609e76 2.69053
\(567\) −1.43243e75 −0.270731
\(568\) 1.06472e76 1.91715
\(569\) 1.95670e75 0.335688 0.167844 0.985814i \(-0.446319\pi\)
0.167844 + 0.985814i \(0.446319\pi\)
\(570\) 2.47035e75 0.403831
\(571\) −6.00217e75 −0.935008 −0.467504 0.883991i \(-0.654847\pi\)
−0.467504 + 0.883991i \(0.654847\pi\)
\(572\) −1.89837e76 −2.81831
\(573\) 4.72611e75 0.668731
\(574\) 4.61924e75 0.623007
\(575\) −1.10074e76 −1.41521
\(576\) 7.43219e75 0.910959
\(577\) −1.73805e75 −0.203108 −0.101554 0.994830i \(-0.532382\pi\)
−0.101554 + 0.994830i \(0.532382\pi\)
\(578\) −5.98393e74 −0.0666762
\(579\) −5.69424e75 −0.605027
\(580\) 1.59270e76 1.61386
\(581\) 1.17311e76 1.13369
\(582\) −1.09107e75 −0.100570
\(583\) 3.21589e75 0.282759
\(584\) 1.23364e76 1.03475
\(585\) 2.08900e76 1.67167
\(586\) −2.57212e76 −1.96384
\(587\) −2.45150e75 −0.178601 −0.0893006 0.996005i \(-0.528463\pi\)
−0.0893006 + 0.996005i \(0.528463\pi\)
\(588\) −7.58110e75 −0.527054
\(589\) −1.03112e75 −0.0684127
\(590\) −4.29733e76 −2.72125
\(591\) 1.11489e76 0.673871
\(592\) −9.46575e75 −0.546145
\(593\) 3.41502e76 1.88100 0.940500 0.339794i \(-0.110357\pi\)
0.940500 + 0.339794i \(0.110357\pi\)
\(594\) −2.99954e76 −1.57735
\(595\) −2.03489e76 −1.02170
\(596\) −7.01779e75 −0.336456
\(597\) −1.61612e75 −0.0739913
\(598\) 4.18968e76 1.83188
\(599\) 4.74508e75 0.198155 0.0990777 0.995080i \(-0.468411\pi\)
0.0990777 + 0.995080i \(0.468411\pi\)
\(600\) 3.13737e76 1.25143
\(601\) −3.25978e76 −1.24205 −0.621027 0.783789i \(-0.713284\pi\)
−0.621027 + 0.783789i \(0.713284\pi\)
\(602\) 2.80477e76 1.02093
\(603\) −2.96119e76 −1.02977
\(604\) 6.13642e76 2.03892
\(605\) 1.43471e76 0.455503
\(606\) −2.25214e76 −0.683279
\(607\) 2.76963e76 0.803031 0.401515 0.915852i \(-0.368484\pi\)
0.401515 + 0.915852i \(0.368484\pi\)
\(608\) −1.99437e75 −0.0552658
\(609\) −5.47228e75 −0.144941
\(610\) −8.99457e75 −0.227724
\(611\) −1.23838e76 −0.299723
\(612\) −6.55987e76 −1.51786
\(613\) −7.08667e76 −1.56776 −0.783879 0.620913i \(-0.786762\pi\)
−0.783879 + 0.620913i \(0.786762\pi\)
\(614\) 6.22456e76 1.31667
\(615\) −2.10358e76 −0.425493
\(616\) −6.03164e76 −1.16672
\(617\) −5.00063e75 −0.0925087 −0.0462543 0.998930i \(-0.514728\pi\)
−0.0462543 + 0.998930i \(0.514728\pi\)
\(618\) 2.48446e76 0.439591
\(619\) 1.09383e77 1.85121 0.925604 0.378494i \(-0.123558\pi\)
0.925604 + 0.378494i \(0.123558\pi\)
\(620\) −4.27611e76 −0.692273
\(621\) 4.37417e76 0.677450
\(622\) 1.11478e77 1.65178
\(623\) −8.25830e76 −1.17076
\(624\) −3.61591e76 −0.490503
\(625\) 1.42977e76 0.185595
\(626\) 2.38336e75 0.0296070
\(627\) 1.36121e76 0.161834
\(628\) −1.64457e77 −1.87138
\(629\) −5.81127e76 −0.632963
\(630\) 1.36407e77 1.42224
\(631\) −6.03396e76 −0.602276 −0.301138 0.953581i \(-0.597366\pi\)
−0.301138 + 0.953581i \(0.597366\pi\)
\(632\) 2.30889e77 2.20640
\(633\) 2.02851e76 0.185599
\(634\) −1.76599e77 −1.54716
\(635\) 1.99090e77 1.67021
\(636\) 2.74706e76 0.220697
\(637\) 9.94203e76 0.764963
\(638\) 1.32820e77 0.978798
\(639\) −1.32680e77 −0.936552
\(640\) −4.35530e77 −2.94489
\(641\) −1.24358e77 −0.805522 −0.402761 0.915305i \(-0.631949\pi\)
−0.402761 + 0.915305i \(0.631949\pi\)
\(642\) −6.20224e76 −0.384889
\(643\) 1.52782e77 0.908385 0.454192 0.890904i \(-0.349928\pi\)
0.454192 + 0.890904i \(0.349928\pi\)
\(644\) 1.80768e77 1.02982
\(645\) −1.27728e77 −0.697258
\(646\) 1.01732e77 0.532187
\(647\) −8.10455e76 −0.406313 −0.203157 0.979146i \(-0.565120\pi\)
−0.203157 + 0.979146i \(0.565120\pi\)
\(648\) 1.44507e77 0.694346
\(649\) −2.36792e77 −1.09053
\(650\) −8.45578e77 −3.73281
\(651\) 1.46921e76 0.0621735
\(652\) 6.69572e77 2.71637
\(653\) 2.22340e77 0.864778 0.432389 0.901687i \(-0.357671\pi\)
0.432389 + 0.901687i \(0.357671\pi\)
\(654\) 2.19934e77 0.820170
\(655\) 8.77651e77 3.13824
\(656\) −1.41105e77 −0.483824
\(657\) −1.53730e77 −0.505488
\(658\) −8.08637e76 −0.255001
\(659\) 1.77062e77 0.535520 0.267760 0.963486i \(-0.413717\pi\)
0.267760 + 0.963486i \(0.413717\pi\)
\(660\) 5.64505e77 1.63761
\(661\) −3.47431e77 −0.966782 −0.483391 0.875405i \(-0.660595\pi\)
−0.483391 + 0.875405i \(0.660595\pi\)
\(662\) −5.68138e77 −1.51656
\(663\) −2.21990e77 −0.568476
\(664\) −1.18346e78 −2.90758
\(665\) −1.39779e77 −0.329493
\(666\) 3.89555e77 0.881104
\(667\) −1.93688e77 −0.420381
\(668\) −4.40246e77 −0.916943
\(669\) −8.99625e76 −0.179822
\(670\) 1.90446e78 3.65355
\(671\) −4.95620e76 −0.0912597
\(672\) 2.84171e76 0.0502256
\(673\) 3.53476e77 0.599716 0.299858 0.953984i \(-0.403061\pi\)
0.299858 + 0.953984i \(0.403061\pi\)
\(674\) −1.13653e78 −1.85112
\(675\) −8.82814e77 −1.38043
\(676\) 8.29250e77 1.24495
\(677\) 3.06962e77 0.442482 0.221241 0.975219i \(-0.428989\pi\)
0.221241 + 0.975219i \(0.428989\pi\)
\(678\) −5.37749e77 −0.744326
\(679\) 6.17357e76 0.0820573
\(680\) 2.05284e78 2.62036
\(681\) 3.74091e77 0.458598
\(682\) −3.56596e77 −0.419862
\(683\) −6.23098e77 −0.704672 −0.352336 0.935874i \(-0.614612\pi\)
−0.352336 + 0.935874i \(0.614612\pi\)
\(684\) −4.50606e77 −0.489502
\(685\) −1.53163e78 −1.59832
\(686\) 1.73574e78 1.74009
\(687\) 5.81558e77 0.560122
\(688\) −8.56782e77 −0.792845
\(689\) −3.60255e77 −0.320318
\(690\) −1.24586e78 −1.06443
\(691\) 5.11269e77 0.419762 0.209881 0.977727i \(-0.432692\pi\)
0.209881 + 0.977727i \(0.432692\pi\)
\(692\) 8.70021e77 0.686455
\(693\) 7.51633e77 0.569957
\(694\) −1.04084e78 −0.758575
\(695\) 1.67084e78 1.17045
\(696\) 5.52057e77 0.371732
\(697\) −8.66282e77 −0.560735
\(698\) −3.36507e78 −2.09397
\(699\) 9.46362e77 0.566155
\(700\) −3.64834e78 −2.09845
\(701\) 1.90874e78 1.05561 0.527804 0.849366i \(-0.323016\pi\)
0.527804 + 0.849366i \(0.323016\pi\)
\(702\) 3.36019e78 1.78687
\(703\) −3.99184e77 −0.204127
\(704\) −2.63385e78 −1.29522
\(705\) 3.68249e77 0.174157
\(706\) −2.10948e78 −0.959504
\(707\) 1.27432e78 0.557501
\(708\) −2.02271e78 −0.851175
\(709\) 3.69220e78 1.49456 0.747280 0.664509i \(-0.231359\pi\)
0.747280 + 0.664509i \(0.231359\pi\)
\(710\) 8.53317e78 3.32281
\(711\) −2.87723e78 −1.07785
\(712\) 8.33118e78 3.00266
\(713\) 5.20018e77 0.180325
\(714\) −1.44955e78 −0.483652
\(715\) −7.40305e78 −2.37681
\(716\) −4.80131e78 −1.48338
\(717\) −1.03940e78 −0.309033
\(718\) 3.45649e78 0.989039
\(719\) −8.48236e77 −0.233600 −0.116800 0.993155i \(-0.537264\pi\)
−0.116800 + 0.993155i \(0.537264\pi\)
\(720\) −4.16687e78 −1.10450
\(721\) −1.40578e78 −0.358671
\(722\) −6.29182e78 −1.54527
\(723\) −5.24976e77 −0.124118
\(724\) −7.72163e77 −0.175751
\(725\) 3.90910e78 0.856607
\(726\) 1.02202e78 0.215626
\(727\) −1.05653e78 −0.214628 −0.107314 0.994225i \(-0.534225\pi\)
−0.107314 + 0.994225i \(0.534225\pi\)
\(728\) 6.75686e78 1.32170
\(729\) 1.53760e77 0.0289625
\(730\) 9.88697e78 1.79343
\(731\) −5.26001e78 −0.918879
\(732\) −4.23365e77 −0.0712295
\(733\) 7.22141e77 0.117021 0.0585104 0.998287i \(-0.481365\pi\)
0.0585104 + 0.998287i \(0.481365\pi\)
\(734\) 1.64079e78 0.256100
\(735\) −2.95640e78 −0.444489
\(736\) 1.00581e78 0.145672
\(737\) 1.04940e79 1.46415
\(738\) 5.80706e78 0.780560
\(739\) −6.27071e76 −0.00812073 −0.00406036 0.999992i \(-0.501292\pi\)
−0.00406036 + 0.999992i \(0.501292\pi\)
\(740\) −1.65544e79 −2.06558
\(741\) −1.52488e78 −0.183330
\(742\) −2.35240e78 −0.272523
\(743\) 2.11611e77 0.0236236 0.0118118 0.999930i \(-0.496240\pi\)
0.0118118 + 0.999930i \(0.496240\pi\)
\(744\) −1.48217e78 −0.159457
\(745\) −2.73673e78 −0.283749
\(746\) −3.15150e79 −3.14919
\(747\) 1.47477e79 1.42039
\(748\) 2.32471e79 2.15812
\(749\) 3.50940e78 0.314038
\(750\) 1.03376e79 0.891732
\(751\) −1.43216e79 −1.19095 −0.595474 0.803374i \(-0.703036\pi\)
−0.595474 + 0.803374i \(0.703036\pi\)
\(752\) 2.47017e78 0.198032
\(753\) 3.95851e76 0.00305964
\(754\) −1.48789e79 −1.10882
\(755\) 2.39302e79 1.71951
\(756\) 1.44979e79 1.00451
\(757\) −2.38175e79 −1.59132 −0.795662 0.605741i \(-0.792877\pi\)
−0.795662 + 0.605741i \(0.792877\pi\)
\(758\) −4.85862e79 −3.13047
\(759\) −6.86494e78 −0.426568
\(760\) 1.41012e79 0.845053
\(761\) 1.24548e79 0.719879 0.359940 0.932976i \(-0.382797\pi\)
0.359940 + 0.932976i \(0.382797\pi\)
\(762\) 1.41822e79 0.790644
\(763\) −1.24445e79 −0.669192
\(764\) 5.54431e79 2.87594
\(765\) −2.55815e79 −1.28008
\(766\) 4.33419e79 2.09227
\(767\) 2.65263e79 1.23539
\(768\) −1.94738e79 −0.875016
\(769\) 1.10483e79 0.478984 0.239492 0.970898i \(-0.423019\pi\)
0.239492 + 0.970898i \(0.423019\pi\)
\(770\) −4.83405e79 −2.02216
\(771\) 1.22977e79 0.496397
\(772\) −6.68005e79 −2.60198
\(773\) 1.34251e79 0.504640 0.252320 0.967644i \(-0.418806\pi\)
0.252320 + 0.967644i \(0.418806\pi\)
\(774\) 3.52601e79 1.27911
\(775\) −1.04952e79 −0.367447
\(776\) −6.22804e78 −0.210453
\(777\) 5.68785e78 0.185511
\(778\) 6.00021e78 0.188898
\(779\) −5.95060e78 −0.180834
\(780\) −6.32378e79 −1.85513
\(781\) 4.70196e79 1.33160
\(782\) −5.13061e79 −1.40276
\(783\) −1.55341e79 −0.410051
\(784\) −1.98311e79 −0.505424
\(785\) −6.41333e79 −1.57822
\(786\) 6.25195e79 1.48558
\(787\) −9.76349e78 −0.224027 −0.112013 0.993707i \(-0.535730\pi\)
−0.112013 + 0.993707i \(0.535730\pi\)
\(788\) 1.30791e80 2.89805
\(789\) −3.45025e79 −0.738300
\(790\) 1.85046e80 3.82414
\(791\) 3.04273e79 0.607310
\(792\) −7.58266e79 −1.46177
\(793\) 5.55211e78 0.103382
\(794\) 7.68354e78 0.138197
\(795\) 1.07127e79 0.186124
\(796\) −1.89591e79 −0.318207
\(797\) −9.76352e79 −1.58308 −0.791539 0.611118i \(-0.790720\pi\)
−0.791539 + 0.611118i \(0.790720\pi\)
\(798\) −9.95716e78 −0.155975
\(799\) 1.51650e79 0.229512
\(800\) −2.02997e79 −0.296834
\(801\) −1.03819e80 −1.46684
\(802\) −1.80995e80 −2.47099
\(803\) 5.44793e79 0.718711
\(804\) 8.96409e79 1.14279
\(805\) 7.04941e79 0.868492
\(806\) 3.99471e79 0.475633
\(807\) 2.29982e79 0.264650
\(808\) −1.28557e80 −1.42982
\(809\) 1.16511e80 1.25252 0.626259 0.779615i \(-0.284585\pi\)
0.626259 + 0.779615i \(0.284585\pi\)
\(810\) 1.15815e80 1.20344
\(811\) −4.92243e79 −0.494432 −0.247216 0.968960i \(-0.579516\pi\)
−0.247216 + 0.968960i \(0.579516\pi\)
\(812\) −6.41966e79 −0.623335
\(813\) −9.30837e79 −0.873743
\(814\) −1.38052e80 −1.25277
\(815\) 2.61113e80 2.29084
\(816\) 4.42799e79 0.375601
\(817\) −3.61317e79 −0.296334
\(818\) 1.95111e80 1.54727
\(819\) −8.42006e79 −0.645666
\(820\) −2.46776e80 −1.82987
\(821\) −6.21015e79 −0.445313 −0.222656 0.974897i \(-0.571473\pi\)
−0.222656 + 0.974897i \(0.571473\pi\)
\(822\) −1.09106e80 −0.756610
\(823\) 1.15377e80 0.773789 0.386894 0.922124i \(-0.373548\pi\)
0.386894 + 0.922124i \(0.373548\pi\)
\(824\) 1.41818e80 0.919885
\(825\) 1.38551e80 0.869213
\(826\) 1.73211e80 1.05105
\(827\) 3.20884e79 0.188342 0.0941708 0.995556i \(-0.469980\pi\)
0.0941708 + 0.995556i \(0.469980\pi\)
\(828\) 2.27252e80 1.29025
\(829\) 1.48156e80 0.813711 0.406855 0.913493i \(-0.366625\pi\)
0.406855 + 0.913493i \(0.366625\pi\)
\(830\) −9.48481e80 −5.03943
\(831\) 7.72325e77 0.00396983
\(832\) 2.95053e80 1.46726
\(833\) −1.21749e80 −0.585769
\(834\) 1.19022e80 0.554067
\(835\) −1.71683e80 −0.773300
\(836\) 1.59687e80 0.695981
\(837\) 4.17063e79 0.175894
\(838\) 5.65048e79 0.230608
\(839\) −4.75921e80 −1.87967 −0.939835 0.341630i \(-0.889021\pi\)
−0.939835 + 0.341630i \(0.889021\pi\)
\(840\) −2.00924e80 −0.767984
\(841\) −2.01542e80 −0.745549
\(842\) 2.04374e80 0.731717
\(843\) −2.42561e80 −0.840548
\(844\) 2.37970e80 0.798187
\(845\) 3.23382e80 1.04992
\(846\) −1.01658e80 −0.319488
\(847\) −5.78285e79 −0.175933
\(848\) 7.18593e79 0.211640
\(849\) 2.48917e80 0.709731
\(850\) 1.03548e81 2.85839
\(851\) 2.01318e80 0.538047
\(852\) 4.01647e80 1.03934
\(853\) −4.08457e80 −1.02341 −0.511703 0.859162i \(-0.670985\pi\)
−0.511703 + 0.859162i \(0.670985\pi\)
\(854\) 3.62542e79 0.0879562
\(855\) −1.75723e80 −0.412819
\(856\) −3.54036e80 −0.805414
\(857\) −1.70584e80 −0.375807 −0.187904 0.982187i \(-0.560169\pi\)
−0.187904 + 0.982187i \(0.560169\pi\)
\(858\) −5.27357e80 −1.12513
\(859\) 3.33842e80 0.689809 0.344905 0.938638i \(-0.387911\pi\)
0.344905 + 0.938638i \(0.387911\pi\)
\(860\) −1.49841e81 −2.99862
\(861\) 8.47883e79 0.164342
\(862\) 1.26077e80 0.236693
\(863\) 4.33083e80 0.787543 0.393771 0.919208i \(-0.371170\pi\)
0.393771 + 0.919208i \(0.371170\pi\)
\(864\) 8.06676e79 0.142092
\(865\) 3.39282e80 0.578919
\(866\) −1.25552e81 −2.07530
\(867\) −1.09838e79 −0.0175884
\(868\) 1.72356e80 0.267383
\(869\) 1.01964e81 1.53251
\(870\) 4.42445e80 0.644288
\(871\) −1.17557e81 −1.65863
\(872\) 1.25543e81 1.71628
\(873\) 7.76108e79 0.102809
\(874\) −3.52428e80 −0.452383
\(875\) −5.84929e80 −0.727582
\(876\) 4.65370e80 0.560964
\(877\) 6.55585e80 0.765844 0.382922 0.923781i \(-0.374918\pi\)
0.382922 + 0.923781i \(0.374918\pi\)
\(878\) −2.29462e80 −0.259783
\(879\) −4.72125e80 −0.518039
\(880\) 1.47667e81 1.57040
\(881\) 9.94877e80 1.02549 0.512746 0.858541i \(-0.328628\pi\)
0.512746 + 0.858541i \(0.328628\pi\)
\(882\) 8.16133e80 0.815408
\(883\) 7.57548e80 0.733653 0.366827 0.930289i \(-0.380444\pi\)
0.366827 + 0.930289i \(0.380444\pi\)
\(884\) −2.60422e81 −2.44478
\(885\) −7.88795e80 −0.717835
\(886\) −3.43580e81 −3.03110
\(887\) −4.64982e80 −0.397683 −0.198841 0.980032i \(-0.563718\pi\)
−0.198841 + 0.980032i \(0.563718\pi\)
\(888\) −5.73804e80 −0.475781
\(889\) −8.02466e80 −0.645102
\(890\) 6.67701e81 5.20423
\(891\) 6.38164e80 0.482276
\(892\) −1.05537e81 −0.773343
\(893\) 1.04170e80 0.0740166
\(894\) −1.94951e80 −0.134321
\(895\) −1.87237e81 −1.25100
\(896\) 1.75548e81 1.13743
\(897\) 7.69035e80 0.483230
\(898\) −1.90236e80 −0.115929
\(899\) −1.84675e80 −0.109148
\(900\) −4.58649e81 −2.62913
\(901\) 4.41163e80 0.245283
\(902\) −2.05793e81 −1.10981
\(903\) 5.14829e80 0.269308
\(904\) −3.06958e81 −1.55757
\(905\) −3.01120e80 −0.148219
\(906\) 1.70467e81 0.813981
\(907\) 1.49725e81 0.693577 0.346788 0.937943i \(-0.387272\pi\)
0.346788 + 0.937943i \(0.387272\pi\)
\(908\) 4.38855e81 1.97224
\(909\) 1.60201e81 0.698488
\(910\) 5.41527e81 2.29077
\(911\) 2.12167e81 0.870807 0.435404 0.900235i \(-0.356606\pi\)
0.435404 + 0.900235i \(0.356606\pi\)
\(912\) 3.04164e80 0.121130
\(913\) −5.22633e81 −2.01953
\(914\) −2.96227e81 −1.11072
\(915\) −1.65099e80 −0.0600711
\(916\) 6.82240e81 2.40886
\(917\) −3.53753e81 −1.21211
\(918\) −4.11484e81 −1.36829
\(919\) 4.79467e81 1.54733 0.773664 0.633596i \(-0.218422\pi\)
0.773664 + 0.633596i \(0.218422\pi\)
\(920\) −7.11161e81 −2.22742
\(921\) 1.14255e81 0.347324
\(922\) 6.35028e81 1.87367
\(923\) −5.26730e81 −1.50849
\(924\) −2.27534e81 −0.632508
\(925\) −4.06309e81 −1.09637
\(926\) −1.86617e81 −0.488821
\(927\) −1.76727e81 −0.449376
\(928\) −3.57196e80 −0.0881733
\(929\) −8.73325e80 −0.209288 −0.104644 0.994510i \(-0.533370\pi\)
−0.104644 + 0.994510i \(0.533370\pi\)
\(930\) −1.18788e81 −0.276371
\(931\) −8.36306e80 −0.188907
\(932\) 1.11020e82 2.43480
\(933\) 2.04623e81 0.435721
\(934\) −8.63393e81 −1.78513
\(935\) 9.06566e81 1.82004
\(936\) 8.49436e81 1.65594
\(937\) 2.20940e81 0.418250 0.209125 0.977889i \(-0.432938\pi\)
0.209125 + 0.977889i \(0.432938\pi\)
\(938\) −7.67626e81 −1.41114
\(939\) 4.37477e79 0.00781000
\(940\) 4.32002e81 0.748979
\(941\) 7.24578e81 1.22003 0.610015 0.792390i \(-0.291163\pi\)
0.610015 + 0.792390i \(0.291163\pi\)
\(942\) −4.56853e81 −0.747097
\(943\) 3.00104e81 0.476650
\(944\) −5.29114e81 −0.816242
\(945\) 5.65374e81 0.847151
\(946\) −1.24956e82 −1.81866
\(947\) −1.07373e82 −1.51800 −0.759000 0.651090i \(-0.774312\pi\)
−0.759000 + 0.651090i \(0.774312\pi\)
\(948\) 8.70991e81 1.19615
\(949\) −6.10297e81 −0.814179
\(950\) 7.11286e81 0.921817
\(951\) −3.24157e81 −0.408123
\(952\) −8.27434e81 −1.01209
\(953\) −2.80192e81 −0.332966 −0.166483 0.986044i \(-0.553241\pi\)
−0.166483 + 0.986044i \(0.553241\pi\)
\(954\) −2.95731e81 −0.341441
\(955\) 2.16211e82 2.42541
\(956\) −1.21934e82 −1.32903
\(957\) 2.43796e81 0.258196
\(958\) 7.48556e81 0.770322
\(959\) 6.17350e81 0.617333
\(960\) −8.77380e81 −0.852567
\(961\) −1.00941e82 −0.953180
\(962\) 1.54650e82 1.41918
\(963\) 4.41182e81 0.393455
\(964\) −6.15862e81 −0.533784
\(965\) −2.60502e82 −2.19437
\(966\) 5.02165e81 0.411126
\(967\) 6.52535e81 0.519249 0.259624 0.965710i \(-0.416401\pi\)
0.259624 + 0.965710i \(0.416401\pi\)
\(968\) 5.83388e81 0.451217
\(969\) 1.86734e81 0.140385
\(970\) −4.99145e81 −0.364758
\(971\) −2.42379e82 −1.72173 −0.860866 0.508833i \(-0.830077\pi\)
−0.860866 + 0.508833i \(0.830077\pi\)
\(972\) 2.83804e82 1.95973
\(973\) −6.73462e81 −0.452074
\(974\) 5.13522e82 3.35110
\(975\) −1.55210e82 −0.984674
\(976\) −1.10747e81 −0.0683063
\(977\) −1.29199e82 −0.774744 −0.387372 0.921923i \(-0.626617\pi\)
−0.387372 + 0.921923i \(0.626617\pi\)
\(978\) 1.86004e82 1.08443
\(979\) 3.67917e82 2.08558
\(980\) −3.46822e82 −1.91157
\(981\) −1.56445e82 −0.838425
\(982\) −3.04152e82 −1.58498
\(983\) −1.06339e82 −0.538854 −0.269427 0.963021i \(-0.586834\pi\)
−0.269427 + 0.963021i \(0.586834\pi\)
\(984\) −8.55365e81 −0.421489
\(985\) 5.10044e82 2.44406
\(986\) 1.82205e82 0.849073
\(987\) −1.48429e81 −0.0672663
\(988\) −1.78887e82 −0.788431
\(989\) 1.82221e82 0.781089
\(990\) −6.07711e82 −2.53355
\(991\) −2.78037e82 −1.12740 −0.563699 0.825980i \(-0.690622\pi\)
−0.563699 + 0.825980i \(0.690622\pi\)
\(992\) 9.59005e80 0.0378225
\(993\) −1.04284e82 −0.400051
\(994\) −3.43944e82 −1.28340
\(995\) −7.39349e81 −0.268358
\(996\) −4.46440e82 −1.57627
\(997\) 4.12474e82 1.41671 0.708353 0.705858i \(-0.249438\pi\)
0.708353 + 0.705858i \(0.249438\pi\)
\(998\) 9.53941e82 3.18736
\(999\) 1.61461e82 0.524826
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))