Properties

Label 1.56.a.a.1.3
Level 1
Weight 56
Character 1.1
Self dual Yes
Analytic conductor 19.158
Analytic rank 0
Dimension 4
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 56 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(19.1581467685\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{20}\cdot 3^{9}\cdot 5^{2}\cdot 7\cdot 11 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.30346e6\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.07439e8 q^{2} -2.35279e13 q^{3} -2.44858e16 q^{4} -1.10426e19 q^{5} -2.52780e21 q^{6} -2.64783e23 q^{7} -6.50160e24 q^{8} +3.79111e26 q^{9} +O(q^{10})\) \(q+1.07439e8 q^{2} -2.35279e13 q^{3} -2.44858e16 q^{4} -1.10426e19 q^{5} -2.52780e21 q^{6} -2.64783e23 q^{7} -6.50160e24 q^{8} +3.79111e26 q^{9} -1.18640e27 q^{10} +5.45205e27 q^{11} +5.76098e29 q^{12} -3.65457e30 q^{13} -2.84479e31 q^{14} +2.59808e32 q^{15} +1.83670e32 q^{16} -2.98408e33 q^{17} +4.07312e34 q^{18} +2.14136e34 q^{19} +2.70386e35 q^{20} +6.22979e36 q^{21} +5.85760e35 q^{22} -2.26299e36 q^{23} +1.52969e38 q^{24} -1.55617e38 q^{25} -3.92642e38 q^{26} -4.81527e39 q^{27} +6.48342e39 q^{28} -2.17585e40 q^{29} +2.79134e40 q^{30} +6.52623e40 q^{31} +2.53978e41 q^{32} -1.28275e41 q^{33} -3.20606e41 q^{34} +2.92389e42 q^{35} -9.28283e42 q^{36} -1.90603e43 q^{37} +2.30065e42 q^{38} +8.59842e43 q^{39} +7.17944e43 q^{40} -2.69989e44 q^{41} +6.69319e44 q^{42} -2.28222e44 q^{43} -1.33497e44 q^{44} -4.18637e45 q^{45} -2.43132e44 q^{46} +1.80339e45 q^{47} -4.32137e45 q^{48} +3.98834e46 q^{49} -1.67193e46 q^{50} +7.02091e46 q^{51} +8.94849e46 q^{52} -3.76672e47 q^{53} -5.17345e47 q^{54} -6.02047e46 q^{55} +1.72151e48 q^{56} -5.03816e47 q^{57} -2.33771e48 q^{58} +6.96714e48 q^{59} -6.36160e48 q^{60} +2.06681e49 q^{61} +7.01168e48 q^{62} -1.00382e50 q^{63} +2.06696e49 q^{64} +4.03559e49 q^{65} -1.37817e49 q^{66} +8.05018e49 q^{67} +7.30675e49 q^{68} +5.32433e49 q^{69} +3.14139e50 q^{70} +5.14800e50 q^{71} -2.46483e51 q^{72} +2.88066e50 q^{73} -2.04781e51 q^{74} +3.66134e51 q^{75} -5.24328e50 q^{76} -1.44361e51 q^{77} +9.23802e51 q^{78} -3.83306e51 q^{79} -2.02819e51 q^{80} +4.71573e52 q^{81} -2.90072e52 q^{82} -4.00025e52 q^{83} -1.52541e53 q^{84} +3.29520e52 q^{85} -2.45198e52 q^{86} +5.11932e53 q^{87} -3.54470e52 q^{88} -1.38274e53 q^{89} -4.49777e53 q^{90} +9.67669e53 q^{91} +5.54110e52 q^{92} -1.53548e54 q^{93} +1.93754e53 q^{94} -2.36461e53 q^{95} -5.97556e54 q^{96} +6.05498e54 q^{97} +4.28501e54 q^{98} +2.06693e54 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 208622520q^{2} - 6821470691280q^{3} + 38727758778743872q^{4} + 14396937963387167160q^{5} + \)\(20\!\cdots\!08\)\(q^{6} - \)\(20\!\cdots\!00\)\(q^{7} + \)\(45\!\cdots\!40\)\(q^{8} + \)\(47\!\cdots\!28\)\(q^{9} + O(q^{10}) \) \( 4q + 208622520q^{2} - 6821470691280q^{3} + 38727758778743872q^{4} + 14396937963387167160q^{5} + \)\(20\!\cdots\!08\)\(q^{6} - \)\(20\!\cdots\!00\)\(q^{7} + \)\(45\!\cdots\!40\)\(q^{8} + \)\(47\!\cdots\!28\)\(q^{9} + \)\(46\!\cdots\!60\)\(q^{10} + \)\(19\!\cdots\!08\)\(q^{11} + \)\(51\!\cdots\!40\)\(q^{12} - \)\(44\!\cdots\!60\)\(q^{13} - \)\(28\!\cdots\!56\)\(q^{14} + \)\(24\!\cdots\!20\)\(q^{15} + \)\(97\!\cdots\!04\)\(q^{16} + \)\(85\!\cdots\!60\)\(q^{17} + \)\(38\!\cdots\!20\)\(q^{18} + \)\(33\!\cdots\!00\)\(q^{19} + \)\(29\!\cdots\!80\)\(q^{20} + \)\(92\!\cdots\!08\)\(q^{21} + \)\(38\!\cdots\!40\)\(q^{22} + \)\(49\!\cdots\!60\)\(q^{23} + \)\(19\!\cdots\!00\)\(q^{24} + \)\(35\!\cdots\!00\)\(q^{25} - \)\(29\!\cdots\!92\)\(q^{26} - \)\(85\!\cdots\!40\)\(q^{27} - \)\(14\!\cdots\!60\)\(q^{28} - \)\(18\!\cdots\!00\)\(q^{29} + \)\(81\!\cdots\!20\)\(q^{30} + \)\(22\!\cdots\!08\)\(q^{31} + \)\(63\!\cdots\!20\)\(q^{32} + \)\(84\!\cdots\!40\)\(q^{33} + \)\(89\!\cdots\!44\)\(q^{34} - \)\(48\!\cdots\!40\)\(q^{35} - \)\(23\!\cdots\!96\)\(q^{36} - \)\(32\!\cdots\!20\)\(q^{37} - \)\(49\!\cdots\!40\)\(q^{38} + \)\(66\!\cdots\!56\)\(q^{39} + \)\(42\!\cdots\!00\)\(q^{40} + \)\(24\!\cdots\!08\)\(q^{41} + \)\(50\!\cdots\!60\)\(q^{42} - \)\(86\!\cdots\!00\)\(q^{43} - \)\(48\!\cdots\!56\)\(q^{44} - \)\(95\!\cdots\!80\)\(q^{45} - \)\(12\!\cdots\!92\)\(q^{46} + \)\(42\!\cdots\!40\)\(q^{47} + \)\(19\!\cdots\!60\)\(q^{48} + \)\(51\!\cdots\!72\)\(q^{49} + \)\(17\!\cdots\!00\)\(q^{50} + \)\(11\!\cdots\!08\)\(q^{51} - \)\(26\!\cdots\!00\)\(q^{52} - \)\(48\!\cdots\!80\)\(q^{53} - \)\(13\!\cdots\!00\)\(q^{54} - \)\(12\!\cdots\!80\)\(q^{55} - \)\(29\!\cdots\!00\)\(q^{56} + \)\(16\!\cdots\!20\)\(q^{57} + \)\(60\!\cdots\!40\)\(q^{58} + \)\(81\!\cdots\!00\)\(q^{59} + \)\(10\!\cdots\!60\)\(q^{60} + \)\(70\!\cdots\!08\)\(q^{61} - \)\(30\!\cdots\!60\)\(q^{62} - \)\(71\!\cdots\!20\)\(q^{63} - \)\(98\!\cdots\!28\)\(q^{64} - \)\(96\!\cdots\!80\)\(q^{65} + \)\(64\!\cdots\!16\)\(q^{66} + \)\(41\!\cdots\!60\)\(q^{67} + \)\(62\!\cdots\!20\)\(q^{68} + \)\(51\!\cdots\!56\)\(q^{69} - \)\(47\!\cdots\!40\)\(q^{70} + \)\(99\!\cdots\!08\)\(q^{71} - \)\(43\!\cdots\!20\)\(q^{72} - \)\(89\!\cdots\!40\)\(q^{73} - \)\(79\!\cdots\!56\)\(q^{74} + \)\(52\!\cdots\!00\)\(q^{75} - \)\(60\!\cdots\!00\)\(q^{76} + \)\(14\!\cdots\!00\)\(q^{77} + \)\(39\!\cdots\!00\)\(q^{78} + \)\(48\!\cdots\!00\)\(q^{79} - \)\(35\!\cdots\!40\)\(q^{80} + \)\(62\!\cdots\!04\)\(q^{81} - \)\(16\!\cdots\!60\)\(q^{82} - \)\(71\!\cdots\!20\)\(q^{83} - \)\(31\!\cdots\!56\)\(q^{84} + \)\(24\!\cdots\!60\)\(q^{85} - \)\(39\!\cdots\!92\)\(q^{86} + \)\(79\!\cdots\!80\)\(q^{87} + \)\(26\!\cdots\!80\)\(q^{88} + \)\(15\!\cdots\!00\)\(q^{89} - \)\(12\!\cdots\!80\)\(q^{90} + \)\(16\!\cdots\!08\)\(q^{91} - \)\(27\!\cdots\!40\)\(q^{92} - \)\(11\!\cdots\!60\)\(q^{93} - \)\(40\!\cdots\!56\)\(q^{94} + \)\(90\!\cdots\!00\)\(q^{95} - \)\(54\!\cdots\!92\)\(q^{96} + \)\(51\!\cdots\!40\)\(q^{97} + \)\(43\!\cdots\!60\)\(q^{98} + \)\(79\!\cdots\!56\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.07439e8 0.566025 0.283012 0.959116i \(-0.408666\pi\)
0.283012 + 0.959116i \(0.408666\pi\)
\(3\) −2.35279e13 −1.78135 −0.890673 0.454645i \(-0.849766\pi\)
−0.890673 + 0.454645i \(0.849766\pi\)
\(4\) −2.44858e16 −0.679616
\(5\) −1.10426e19 −0.662820 −0.331410 0.943487i \(-0.607524\pi\)
−0.331410 + 0.943487i \(0.607524\pi\)
\(6\) −2.52780e21 −1.00829
\(7\) −2.64783e23 −1.52298 −0.761491 0.648176i \(-0.775532\pi\)
−0.761491 + 0.648176i \(0.775532\pi\)
\(8\) −6.50160e24 −0.950704
\(9\) 3.79111e26 2.17319
\(10\) −1.18640e27 −0.375172
\(11\) 5.45205e27 0.125389 0.0626947 0.998033i \(-0.480031\pi\)
0.0626947 + 0.998033i \(0.480031\pi\)
\(12\) 5.76098e29 1.21063
\(13\) −3.65457e30 −0.849951 −0.424976 0.905205i \(-0.639717\pi\)
−0.424976 + 0.905205i \(0.639717\pi\)
\(14\) −2.84479e31 −0.862045
\(15\) 2.59808e32 1.18071
\(16\) 1.83670e32 0.141494
\(17\) −2.98408e33 −0.433976 −0.216988 0.976174i \(-0.569623\pi\)
−0.216988 + 0.976174i \(0.569623\pi\)
\(18\) 4.07312e34 1.23008
\(19\) 2.14136e34 0.146206 0.0731030 0.997324i \(-0.476710\pi\)
0.0731030 + 0.997324i \(0.476710\pi\)
\(20\) 2.70386e35 0.450463
\(21\) 6.22979e36 2.71296
\(22\) 5.85760e35 0.0709735
\(23\) −2.26299e36 −0.0807545 −0.0403773 0.999185i \(-0.512856\pi\)
−0.0403773 + 0.999185i \(0.512856\pi\)
\(24\) 1.52969e38 1.69353
\(25\) −1.55617e38 −0.560670
\(26\) −3.92642e38 −0.481093
\(27\) −4.81527e39 −2.08986
\(28\) 6.48342e39 1.03504
\(29\) −2.17585e40 −1.32338 −0.661690 0.749777i \(-0.730161\pi\)
−0.661690 + 0.749777i \(0.730161\pi\)
\(30\) 2.79134e40 0.668311
\(31\) 6.52623e40 0.634184 0.317092 0.948395i \(-0.397294\pi\)
0.317092 + 0.948395i \(0.397294\pi\)
\(32\) 2.53978e41 1.03079
\(33\) −1.28275e41 −0.223362
\(34\) −3.20606e41 −0.245641
\(35\) 2.92389e42 1.00946
\(36\) −9.28283e42 −1.47694
\(37\) −1.90603e43 −1.42752 −0.713761 0.700389i \(-0.753010\pi\)
−0.713761 + 0.700389i \(0.753010\pi\)
\(38\) 2.30065e42 0.0827562
\(39\) 8.59842e43 1.51406
\(40\) 7.17944e43 0.630145
\(41\) −2.69989e44 −1.20168 −0.600842 0.799368i \(-0.705168\pi\)
−0.600842 + 0.799368i \(0.705168\pi\)
\(42\) 6.69319e44 1.53560
\(43\) −2.28222e44 −0.274141 −0.137071 0.990561i \(-0.543769\pi\)
−0.137071 + 0.990561i \(0.543769\pi\)
\(44\) −1.33497e44 −0.0852166
\(45\) −4.18637e45 −1.44043
\(46\) −2.43132e44 −0.0457090
\(47\) 1.80339e45 0.187672 0.0938359 0.995588i \(-0.470087\pi\)
0.0938359 + 0.995588i \(0.470087\pi\)
\(48\) −4.32137e45 −0.252050
\(49\) 3.98834e46 1.31947
\(50\) −1.67193e46 −0.317353
\(51\) 7.02091e46 0.773061
\(52\) 8.94849e46 0.577640
\(53\) −3.76672e47 −1.44005 −0.720023 0.693950i \(-0.755869\pi\)
−0.720023 + 0.693950i \(0.755869\pi\)
\(54\) −5.17345e47 −1.18291
\(55\) −6.02047e46 −0.0831105
\(56\) 1.72151e48 1.44790
\(57\) −5.03816e47 −0.260444
\(58\) −2.33771e48 −0.749066
\(59\) 6.96714e48 1.39516 0.697581 0.716506i \(-0.254260\pi\)
0.697581 + 0.716506i \(0.254260\pi\)
\(60\) −6.36160e48 −0.802430
\(61\) 2.06681e49 1.65474 0.827370 0.561657i \(-0.189836\pi\)
0.827370 + 0.561657i \(0.189836\pi\)
\(62\) 7.01168e48 0.358964
\(63\) −1.00382e50 −3.30973
\(64\) 2.06696e49 0.441960
\(65\) 4.03559e49 0.563364
\(66\) −1.37817e49 −0.126428
\(67\) 8.05018e49 0.488369 0.244185 0.969729i \(-0.421480\pi\)
0.244185 + 0.969729i \(0.421480\pi\)
\(68\) 7.30675e49 0.294937
\(69\) 5.32433e49 0.143852
\(70\) 3.14139e50 0.571380
\(71\) 5.14800e50 0.633920 0.316960 0.948439i \(-0.397338\pi\)
0.316960 + 0.948439i \(0.397338\pi\)
\(72\) −2.46483e51 −2.06606
\(73\) 2.88066e50 0.165239 0.0826195 0.996581i \(-0.473671\pi\)
0.0826195 + 0.996581i \(0.473671\pi\)
\(74\) −2.04781e51 −0.808013
\(75\) 3.66134e51 0.998747
\(76\) −5.24328e50 −0.0993640
\(77\) −1.44361e51 −0.190966
\(78\) 9.23802e51 0.856993
\(79\) −3.83306e51 −0.250496 −0.125248 0.992125i \(-0.539973\pi\)
−0.125248 + 0.992125i \(0.539973\pi\)
\(80\) −2.02819e51 −0.0937852
\(81\) 4.71573e52 1.54957
\(82\) −2.90072e52 −0.680183
\(83\) −4.00025e52 −0.672109 −0.336054 0.941843i \(-0.609093\pi\)
−0.336054 + 0.941843i \(0.609093\pi\)
\(84\) −1.52541e53 −1.84377
\(85\) 3.29520e52 0.287648
\(86\) −2.45198e52 −0.155171
\(87\) 5.11932e53 2.35740
\(88\) −3.54470e52 −0.119208
\(89\) −1.38274e53 −0.340811 −0.170406 0.985374i \(-0.554508\pi\)
−0.170406 + 0.985374i \(0.554508\pi\)
\(90\) −4.49777e53 −0.815321
\(91\) 9.67669e53 1.29446
\(92\) 5.54110e52 0.0548821
\(93\) −1.53548e54 −1.12970
\(94\) 1.93754e53 0.106227
\(95\) −2.36461e53 −0.0969083
\(96\) −5.97556e54 −1.83620
\(97\) 6.05498e54 1.39923 0.699616 0.714519i \(-0.253354\pi\)
0.699616 + 0.714519i \(0.253354\pi\)
\(98\) 4.28501e54 0.746853
\(99\) 2.06693e54 0.272495
\(100\) 3.81040e54 0.381040
\(101\) −1.24705e55 −0.948520 −0.474260 0.880385i \(-0.657284\pi\)
−0.474260 + 0.880385i \(0.657284\pi\)
\(102\) 7.54317e54 0.437571
\(103\) 9.88765e54 0.438601 0.219300 0.975657i \(-0.429623\pi\)
0.219300 + 0.975657i \(0.429623\pi\)
\(104\) 2.37605e55 0.808052
\(105\) −6.87929e55 −1.79820
\(106\) −4.04691e55 −0.815102
\(107\) −4.92735e55 −0.766584 −0.383292 0.923627i \(-0.625210\pi\)
−0.383292 + 0.923627i \(0.625210\pi\)
\(108\) 1.17905e56 1.42030
\(109\) −2.00261e55 −0.187227 −0.0936133 0.995609i \(-0.529842\pi\)
−0.0936133 + 0.995609i \(0.529842\pi\)
\(110\) −6.46830e54 −0.0470426
\(111\) 4.48449e56 2.54291
\(112\) −4.86328e55 −0.215493
\(113\) −4.91726e56 −1.70634 −0.853172 0.521630i \(-0.825324\pi\)
−0.853172 + 0.521630i \(0.825324\pi\)
\(114\) −5.41293e55 −0.147417
\(115\) 2.49892e55 0.0535257
\(116\) 5.32774e56 0.899391
\(117\) −1.38549e57 −1.84711
\(118\) 7.48540e56 0.789696
\(119\) 7.90135e56 0.660937
\(120\) −1.68917e57 −1.12251
\(121\) −1.86087e57 −0.984278
\(122\) 2.22055e57 0.936624
\(123\) 6.35227e57 2.14061
\(124\) −1.59800e57 −0.431002
\(125\) 4.78335e57 1.03444
\(126\) −1.07849e58 −1.87339
\(127\) 6.15401e55 0.00860113 0.00430057 0.999991i \(-0.498631\pi\)
0.00430057 + 0.999991i \(0.498631\pi\)
\(128\) −6.92981e57 −0.780633
\(129\) 5.36957e57 0.488340
\(130\) 4.33578e57 0.318878
\(131\) −1.75176e58 −1.04355 −0.521777 0.853082i \(-0.674731\pi\)
−0.521777 + 0.853082i \(0.674731\pi\)
\(132\) 3.14091e57 0.151800
\(133\) −5.66996e57 −0.222669
\(134\) 8.64900e57 0.276429
\(135\) 5.31730e58 1.38520
\(136\) 1.94013e58 0.412583
\(137\) 2.02798e58 0.352572 0.176286 0.984339i \(-0.443592\pi\)
0.176286 + 0.984339i \(0.443592\pi\)
\(138\) 5.72038e57 0.0814236
\(139\) −1.22210e59 −1.42627 −0.713133 0.701029i \(-0.752724\pi\)
−0.713133 + 0.701029i \(0.752724\pi\)
\(140\) −7.15937e58 −0.686047
\(141\) −4.24300e58 −0.334308
\(142\) 5.53094e58 0.358814
\(143\) −1.99249e58 −0.106575
\(144\) 6.96314e58 0.307494
\(145\) 2.40270e59 0.877163
\(146\) 3.09493e58 0.0935293
\(147\) −9.38371e59 −2.35043
\(148\) 4.66707e59 0.970168
\(149\) 9.42873e59 1.62866 0.814331 0.580401i \(-0.197104\pi\)
0.814331 + 0.580401i \(0.197104\pi\)
\(150\) 3.93369e59 0.565315
\(151\) −1.91758e59 −0.229555 −0.114778 0.993391i \(-0.536616\pi\)
−0.114778 + 0.993391i \(0.536616\pi\)
\(152\) −1.39223e59 −0.138999
\(153\) −1.13130e60 −0.943112
\(154\) −1.55099e59 −0.108091
\(155\) −7.20664e59 −0.420350
\(156\) −2.10539e60 −1.02898
\(157\) −2.17665e58 −0.00892376 −0.00446188 0.999990i \(-0.501420\pi\)
−0.00446188 + 0.999990i \(0.501420\pi\)
\(158\) −4.11818e59 −0.141787
\(159\) 8.86228e60 2.56522
\(160\) −2.80457e60 −0.683230
\(161\) 5.99202e59 0.122988
\(162\) 5.06651e60 0.877094
\(163\) −1.04585e61 −1.52865 −0.764326 0.644830i \(-0.776928\pi\)
−0.764326 + 0.644830i \(0.776928\pi\)
\(164\) 6.61089e60 0.816684
\(165\) 1.41649e60 0.148049
\(166\) −4.29781e60 −0.380430
\(167\) 1.63128e61 1.22412 0.612061 0.790810i \(-0.290341\pi\)
0.612061 + 0.790810i \(0.290341\pi\)
\(168\) −4.05036e61 −2.57922
\(169\) −5.13189e60 −0.277583
\(170\) 3.54031e60 0.162816
\(171\) 8.11814e60 0.317734
\(172\) 5.58818e60 0.186311
\(173\) 3.39989e59 0.00966488 0.00483244 0.999988i \(-0.498462\pi\)
0.00483244 + 0.999988i \(0.498462\pi\)
\(174\) 5.50012e61 1.33435
\(175\) 4.12048e61 0.853890
\(176\) 1.00138e60 0.0177419
\(177\) −1.63922e62 −2.48526
\(178\) −1.48559e61 −0.192907
\(179\) 1.51621e62 1.68772 0.843862 0.536561i \(-0.180277\pi\)
0.843862 + 0.536561i \(0.180277\pi\)
\(180\) 1.02506e62 0.978942
\(181\) −1.15311e62 −0.945602 −0.472801 0.881169i \(-0.656757\pi\)
−0.472801 + 0.881169i \(0.656757\pi\)
\(182\) 1.03965e62 0.732696
\(183\) −4.86276e62 −2.94766
\(184\) 1.47130e61 0.0767737
\(185\) 2.10475e62 0.946190
\(186\) −1.64970e62 −0.639439
\(187\) −1.62694e61 −0.0544159
\(188\) −4.41574e61 −0.127545
\(189\) 1.27500e63 3.18281
\(190\) −2.54051e61 −0.0548525
\(191\) −2.55869e61 −0.0478190 −0.0239095 0.999714i \(-0.507611\pi\)
−0.0239095 + 0.999714i \(0.507611\pi\)
\(192\) −4.86312e62 −0.787284
\(193\) −7.62065e62 −1.06946 −0.534732 0.845022i \(-0.679587\pi\)
−0.534732 + 0.845022i \(0.679587\pi\)
\(194\) 6.50538e62 0.792000
\(195\) −9.49488e62 −1.00355
\(196\) −9.76575e62 −0.896734
\(197\) 1.31795e63 1.05215 0.526074 0.850439i \(-0.323664\pi\)
0.526074 + 0.850439i \(0.323664\pi\)
\(198\) 2.22068e62 0.154239
\(199\) −8.34279e62 −0.504489 −0.252245 0.967664i \(-0.581169\pi\)
−0.252245 + 0.967664i \(0.581169\pi\)
\(200\) 1.01176e63 0.533031
\(201\) −1.89404e63 −0.869955
\(202\) −1.33981e63 −0.536886
\(203\) 5.76130e63 2.01548
\(204\) −1.71912e63 −0.525385
\(205\) 2.98138e63 0.796500
\(206\) 1.06231e63 0.248259
\(207\) −8.57925e62 −0.175495
\(208\) −6.71235e62 −0.120263
\(209\) 1.16748e62 0.0183327
\(210\) −7.39101e63 −1.01783
\(211\) −4.59539e63 −0.555335 −0.277667 0.960677i \(-0.589561\pi\)
−0.277667 + 0.960677i \(0.589561\pi\)
\(212\) 9.22309e63 0.978679
\(213\) −1.21122e64 −1.12923
\(214\) −5.29388e63 −0.433905
\(215\) 2.52015e63 0.181706
\(216\) 3.13069e64 1.98684
\(217\) −1.72804e64 −0.965851
\(218\) −2.15157e63 −0.105975
\(219\) −6.77757e63 −0.294348
\(220\) 1.47416e63 0.0564833
\(221\) 1.09055e64 0.368858
\(222\) 4.81807e64 1.43935
\(223\) 7.21276e64 1.90422 0.952111 0.305751i \(-0.0989076\pi\)
0.952111 + 0.305751i \(0.0989076\pi\)
\(224\) −6.72491e64 −1.56988
\(225\) −5.89963e64 −1.21844
\(226\) −5.28304e64 −0.965832
\(227\) −6.18308e64 −1.00114 −0.500569 0.865697i \(-0.666876\pi\)
−0.500569 + 0.865697i \(0.666876\pi\)
\(228\) 1.23363e64 0.177002
\(229\) −2.15042e63 −0.0273557 −0.0136778 0.999906i \(-0.504354\pi\)
−0.0136778 + 0.999906i \(0.504354\pi\)
\(230\) 2.68481e63 0.0302969
\(231\) 3.39651e64 0.340176
\(232\) 1.41465e65 1.25814
\(233\) 1.79196e65 1.41593 0.707964 0.706249i \(-0.249614\pi\)
0.707964 + 0.706249i \(0.249614\pi\)
\(234\) −1.48855e65 −1.04551
\(235\) −1.99141e64 −0.124393
\(236\) −1.70596e65 −0.948174
\(237\) 9.01837e64 0.446220
\(238\) 8.48910e64 0.374107
\(239\) 6.51100e63 0.0255685 0.0127843 0.999918i \(-0.495931\pi\)
0.0127843 + 0.999918i \(0.495931\pi\)
\(240\) 4.77190e64 0.167064
\(241\) 2.62747e65 0.820482 0.410241 0.911977i \(-0.365445\pi\)
0.410241 + 0.911977i \(0.365445\pi\)
\(242\) −1.99929e65 −0.557125
\(243\) −2.69491e65 −0.670458
\(244\) −5.06074e65 −1.12459
\(245\) −4.40416e65 −0.874572
\(246\) 6.82479e65 1.21164
\(247\) −7.82574e64 −0.124268
\(248\) −4.24309e65 −0.602922
\(249\) 9.41173e65 1.19726
\(250\) 5.13916e65 0.585520
\(251\) −1.22355e66 −1.24909 −0.624547 0.780987i \(-0.714716\pi\)
−0.624547 + 0.780987i \(0.714716\pi\)
\(252\) 2.45794e66 2.24935
\(253\) −1.23379e64 −0.0101258
\(254\) 6.61178e63 0.00486845
\(255\) −7.75290e65 −0.512400
\(256\) −1.48923e66 −0.883818
\(257\) −1.43953e66 −0.767466 −0.383733 0.923444i \(-0.625362\pi\)
−0.383733 + 0.923444i \(0.625362\pi\)
\(258\) 5.76898e65 0.276412
\(259\) 5.04686e66 2.17409
\(260\) −9.88144e65 −0.382872
\(261\) −8.24891e66 −2.87596
\(262\) −1.88207e66 −0.590678
\(263\) 2.64942e66 0.748802 0.374401 0.927267i \(-0.377848\pi\)
0.374401 + 0.927267i \(0.377848\pi\)
\(264\) 8.33992e65 0.212351
\(265\) 4.15943e66 0.954491
\(266\) −6.09172e65 −0.126036
\(267\) 3.25328e66 0.607102
\(268\) −1.97115e66 −0.331904
\(269\) 8.58601e66 1.30498 0.652489 0.757798i \(-0.273725\pi\)
0.652489 + 0.757798i \(0.273725\pi\)
\(270\) 5.71283e66 0.784057
\(271\) −2.93209e66 −0.363515 −0.181757 0.983343i \(-0.558179\pi\)
−0.181757 + 0.983343i \(0.558179\pi\)
\(272\) −5.48087e65 −0.0614051
\(273\) −2.27672e67 −2.30588
\(274\) 2.17883e66 0.199565
\(275\) −8.48432e65 −0.0703020
\(276\) −1.30370e66 −0.0977639
\(277\) 6.84430e66 0.464660 0.232330 0.972637i \(-0.425365\pi\)
0.232330 + 0.972637i \(0.425365\pi\)
\(278\) −1.31301e67 −0.807301
\(279\) 2.47417e67 1.37820
\(280\) −1.90100e67 −0.959700
\(281\) 2.46187e67 1.12679 0.563394 0.826188i \(-0.309495\pi\)
0.563394 + 0.826188i \(0.309495\pi\)
\(282\) −4.55862e66 −0.189227
\(283\) −3.17569e67 −1.19594 −0.597972 0.801517i \(-0.704027\pi\)
−0.597972 + 0.801517i \(0.704027\pi\)
\(284\) −1.26053e67 −0.430822
\(285\) 5.56343e66 0.172627
\(286\) −2.14070e66 −0.0603240
\(287\) 7.14886e67 1.83014
\(288\) 9.62859e67 2.24011
\(289\) −3.83767e67 −0.811665
\(290\) 2.58143e67 0.496496
\(291\) −1.42461e68 −2.49252
\(292\) −7.05350e66 −0.112299
\(293\) 1.03218e67 0.149588 0.0747942 0.997199i \(-0.476170\pi\)
0.0747942 + 0.997199i \(0.476170\pi\)
\(294\) −1.00817e68 −1.33040
\(295\) −7.69352e67 −0.924740
\(296\) 1.23923e68 1.35715
\(297\) −2.62531e67 −0.262046
\(298\) 1.01301e68 0.921863
\(299\) 8.27025e66 0.0686374
\(300\) −8.96507e67 −0.678764
\(301\) 6.04292e67 0.417512
\(302\) −2.06022e67 −0.129934
\(303\) 2.93405e68 1.68964
\(304\) 3.93304e66 0.0206873
\(305\) −2.28229e68 −1.09679
\(306\) −1.21545e68 −0.533825
\(307\) 4.49594e68 1.80516 0.902578 0.430526i \(-0.141672\pi\)
0.902578 + 0.430526i \(0.141672\pi\)
\(308\) 3.53479e67 0.129783
\(309\) −2.32635e68 −0.781299
\(310\) −7.74271e67 −0.237928
\(311\) 6.93880e67 0.195152 0.0975761 0.995228i \(-0.468891\pi\)
0.0975761 + 0.995228i \(0.468891\pi\)
\(312\) −5.59035e68 −1.43942
\(313\) −6.69159e68 −1.57783 −0.788915 0.614502i \(-0.789357\pi\)
−0.788915 + 0.614502i \(0.789357\pi\)
\(314\) −2.33856e66 −0.00505107
\(315\) 1.10848e69 2.19375
\(316\) 9.38554e67 0.170241
\(317\) −8.49155e68 −1.41207 −0.706036 0.708175i \(-0.749519\pi\)
−0.706036 + 0.708175i \(0.749519\pi\)
\(318\) 9.52151e68 1.45198
\(319\) −1.18629e68 −0.165938
\(320\) −2.28246e68 −0.292940
\(321\) 1.15930e69 1.36555
\(322\) 6.43774e67 0.0696140
\(323\) −6.38999e67 −0.0634499
\(324\) −1.15468e69 −1.05311
\(325\) 5.68714e68 0.476542
\(326\) −1.12364e69 −0.865255
\(327\) 4.71171e68 0.333515
\(328\) 1.75536e69 1.14245
\(329\) −4.77508e68 −0.285821
\(330\) 1.52185e68 0.0837991
\(331\) −8.62291e68 −0.436902 −0.218451 0.975848i \(-0.570100\pi\)
−0.218451 + 0.975848i \(0.570100\pi\)
\(332\) 9.79491e68 0.456776
\(333\) −7.22599e69 −3.10228
\(334\) 1.75262e69 0.692884
\(335\) −8.88947e68 −0.323701
\(336\) 1.14423e69 0.383868
\(337\) 2.28691e68 0.0707011 0.0353505 0.999375i \(-0.488745\pi\)
0.0353505 + 0.999375i \(0.488745\pi\)
\(338\) −5.51363e68 −0.157119
\(339\) 1.15693e70 3.03959
\(340\) −8.06854e68 −0.195490
\(341\) 3.55813e68 0.0795200
\(342\) 8.72201e68 0.179845
\(343\) −2.55690e69 −0.486549
\(344\) 1.48380e69 0.260627
\(345\) −5.87943e68 −0.0953477
\(346\) 3.65279e67 0.00547056
\(347\) −1.15563e70 −1.59866 −0.799331 0.600892i \(-0.794812\pi\)
−0.799331 + 0.600892i \(0.794812\pi\)
\(348\) −1.25350e70 −1.60213
\(349\) 1.19367e69 0.140989 0.0704945 0.997512i \(-0.477542\pi\)
0.0704945 + 0.997512i \(0.477542\pi\)
\(350\) 4.42699e69 0.483323
\(351\) 1.75977e70 1.77628
\(352\) 1.38470e69 0.129250
\(353\) 2.65110e69 0.228887 0.114444 0.993430i \(-0.463491\pi\)
0.114444 + 0.993430i \(0.463491\pi\)
\(354\) −1.76115e70 −1.40672
\(355\) −5.68472e69 −0.420175
\(356\) 3.38573e69 0.231621
\(357\) −1.85902e70 −1.17736
\(358\) 1.62899e70 0.955293
\(359\) 2.86651e70 1.55688 0.778442 0.627717i \(-0.216010\pi\)
0.778442 + 0.627717i \(0.216010\pi\)
\(360\) 2.72181e70 1.36943
\(361\) −2.09925e70 −0.978624
\(362\) −1.23888e70 −0.535234
\(363\) 4.37822e70 1.75334
\(364\) −2.36941e70 −0.879735
\(365\) −3.18099e69 −0.109524
\(366\) −5.22448e70 −1.66845
\(367\) 2.41501e70 0.715487 0.357744 0.933820i \(-0.383546\pi\)
0.357744 + 0.933820i \(0.383546\pi\)
\(368\) −4.15643e68 −0.0114263
\(369\) −1.02356e71 −2.61149
\(370\) 2.26132e70 0.535567
\(371\) 9.97364e70 2.19316
\(372\) 3.75974e70 0.767763
\(373\) −5.43612e70 −1.03109 −0.515545 0.856863i \(-0.672410\pi\)
−0.515545 + 0.856863i \(0.672410\pi\)
\(374\) −1.74796e69 −0.0308008
\(375\) −1.12542e71 −1.84270
\(376\) −1.17249e70 −0.178420
\(377\) 7.95181e70 1.12481
\(378\) 1.36984e71 1.80155
\(379\) −4.17308e70 −0.510362 −0.255181 0.966893i \(-0.582135\pi\)
−0.255181 + 0.966893i \(0.582135\pi\)
\(380\) 5.78993e69 0.0658604
\(381\) −1.44791e69 −0.0153216
\(382\) −2.74902e69 −0.0270667
\(383\) 1.52608e70 0.139834 0.0699169 0.997553i \(-0.477727\pi\)
0.0699169 + 0.997553i \(0.477727\pi\)
\(384\) 1.63044e71 1.39058
\(385\) 1.59412e70 0.126576
\(386\) −8.18752e70 −0.605343
\(387\) −8.65214e70 −0.595761
\(388\) −1.48261e71 −0.950941
\(389\) −1.77410e71 −1.06014 −0.530072 0.847953i \(-0.677835\pi\)
−0.530072 + 0.847953i \(0.677835\pi\)
\(390\) −1.02012e71 −0.568032
\(391\) 6.75295e69 0.0350455
\(392\) −2.59306e71 −1.25443
\(393\) 4.12153e71 1.85893
\(394\) 1.41598e71 0.595541
\(395\) 4.23269e70 0.166034
\(396\) −5.06104e70 −0.185192
\(397\) 4.48439e71 1.53096 0.765481 0.643459i \(-0.222501\pi\)
0.765481 + 0.643459i \(0.222501\pi\)
\(398\) −8.96337e70 −0.285553
\(399\) 1.33402e71 0.396651
\(400\) −2.85822e70 −0.0793316
\(401\) −8.03931e70 −0.208328 −0.104164 0.994560i \(-0.533217\pi\)
−0.104164 + 0.994560i \(0.533217\pi\)
\(402\) −2.03492e71 −0.492416
\(403\) −2.38505e71 −0.539026
\(404\) 3.05350e71 0.644630
\(405\) −5.20738e71 −1.02708
\(406\) 6.18986e71 1.14081
\(407\) −1.03918e71 −0.178996
\(408\) −4.56471e71 −0.734952
\(409\) 5.95183e71 0.895899 0.447950 0.894059i \(-0.352154\pi\)
0.447950 + 0.894059i \(0.352154\pi\)
\(410\) 3.20315e71 0.450838
\(411\) −4.77141e71 −0.628053
\(412\) −2.42107e71 −0.298080
\(413\) −1.84478e72 −2.12480
\(414\) −9.21742e70 −0.0993345
\(415\) 4.41731e71 0.445487
\(416\) −9.28180e71 −0.876124
\(417\) 2.87535e72 2.54067
\(418\) 1.25432e70 0.0103768
\(419\) 1.13892e72 0.882284 0.441142 0.897437i \(-0.354573\pi\)
0.441142 + 0.897437i \(0.354573\pi\)
\(420\) 1.68445e72 1.22209
\(421\) −2.57179e72 −1.74774 −0.873872 0.486156i \(-0.838399\pi\)
−0.873872 + 0.486156i \(0.838399\pi\)
\(422\) −4.93722e71 −0.314333
\(423\) 6.83687e71 0.407847
\(424\) 2.44897e72 1.36906
\(425\) 4.64375e71 0.243317
\(426\) −1.30131e72 −0.639172
\(427\) −5.47256e72 −2.52014
\(428\) 1.20650e72 0.520983
\(429\) 4.68790e71 0.189847
\(430\) 2.70762e71 0.102850
\(431\) 4.28568e71 0.152720 0.0763598 0.997080i \(-0.475670\pi\)
0.0763598 + 0.997080i \(0.475670\pi\)
\(432\) −8.84420e71 −0.295703
\(433\) 3.13840e72 0.984671 0.492336 0.870405i \(-0.336143\pi\)
0.492336 + 0.870405i \(0.336143\pi\)
\(434\) −1.85658e72 −0.546695
\(435\) −5.65305e72 −1.56253
\(436\) 4.90354e71 0.127242
\(437\) −4.84587e70 −0.0118068
\(438\) −7.28172e71 −0.166608
\(439\) 2.41918e71 0.0519870 0.0259935 0.999662i \(-0.491725\pi\)
0.0259935 + 0.999662i \(0.491725\pi\)
\(440\) 3.91426e71 0.0790135
\(441\) 1.51203e73 2.86746
\(442\) 1.17168e72 0.208783
\(443\) 9.52901e72 1.59568 0.797839 0.602870i \(-0.205976\pi\)
0.797839 + 0.602870i \(0.205976\pi\)
\(444\) −1.09806e73 −1.72820
\(445\) 1.52690e72 0.225896
\(446\) 7.74929e72 1.07784
\(447\) −2.21838e73 −2.90121
\(448\) −5.47297e72 −0.673097
\(449\) 2.43402e72 0.281546 0.140773 0.990042i \(-0.455041\pi\)
0.140773 + 0.990042i \(0.455041\pi\)
\(450\) −6.33847e72 −0.689669
\(451\) −1.47199e72 −0.150678
\(452\) 1.20403e73 1.15966
\(453\) 4.51165e72 0.408917
\(454\) −6.64301e72 −0.566669
\(455\) −1.06856e73 −0.857993
\(456\) 3.27561e72 0.247605
\(457\) 8.39456e72 0.597451 0.298725 0.954339i \(-0.403439\pi\)
0.298725 + 0.954339i \(0.403439\pi\)
\(458\) −2.31038e71 −0.0154840
\(459\) 1.43692e73 0.906948
\(460\) −6.11880e71 −0.0363769
\(461\) −1.74289e73 −0.976099 −0.488050 0.872816i \(-0.662292\pi\)
−0.488050 + 0.872816i \(0.662292\pi\)
\(462\) 3.64916e72 0.192548
\(463\) −5.33236e72 −0.265120 −0.132560 0.991175i \(-0.542320\pi\)
−0.132560 + 0.991175i \(0.542320\pi\)
\(464\) −3.99639e72 −0.187251
\(465\) 1.69557e73 0.748788
\(466\) 1.92526e73 0.801450
\(467\) 1.41386e72 0.0554872 0.0277436 0.999615i \(-0.491168\pi\)
0.0277436 + 0.999615i \(0.491168\pi\)
\(468\) 3.39247e73 1.25532
\(469\) −2.13155e73 −0.743777
\(470\) −2.13954e72 −0.0704093
\(471\) 5.12119e71 0.0158963
\(472\) −4.52975e73 −1.32639
\(473\) −1.24427e72 −0.0343744
\(474\) 9.68921e72 0.252571
\(475\) −3.33232e72 −0.0819734
\(476\) −1.93471e73 −0.449183
\(477\) −1.42801e74 −3.12950
\(478\) 6.99532e71 0.0144724
\(479\) 7.08367e73 1.38367 0.691834 0.722057i \(-0.256803\pi\)
0.691834 + 0.722057i \(0.256803\pi\)
\(480\) 6.59856e73 1.21707
\(481\) 6.96573e73 1.21332
\(482\) 2.82292e73 0.464413
\(483\) −1.40979e73 −0.219083
\(484\) 4.55647e73 0.668931
\(485\) −6.68626e73 −0.927439
\(486\) −2.89537e73 −0.379495
\(487\) 6.76804e73 0.838332 0.419166 0.907910i \(-0.362322\pi\)
0.419166 + 0.907910i \(0.362322\pi\)
\(488\) −1.34376e74 −1.57317
\(489\) 2.46065e74 2.72306
\(490\) −4.73176e73 −0.495029
\(491\) −2.25567e73 −0.223118 −0.111559 0.993758i \(-0.535584\pi\)
−0.111559 + 0.993758i \(0.535584\pi\)
\(492\) −1.55540e74 −1.45480
\(493\) 6.49293e73 0.574315
\(494\) −8.40787e72 −0.0703388
\(495\) −2.28243e73 −0.180615
\(496\) 1.19867e73 0.0897334
\(497\) −1.36311e74 −0.965448
\(498\) 1.01118e74 0.677677
\(499\) 2.77240e73 0.175829 0.0879146 0.996128i \(-0.471980\pi\)
0.0879146 + 0.996128i \(0.471980\pi\)
\(500\) −1.17124e74 −0.703024
\(501\) −3.83805e74 −2.18059
\(502\) −1.31457e74 −0.707018
\(503\) 1.41541e74 0.720714 0.360357 0.932814i \(-0.382655\pi\)
0.360357 + 0.932814i \(0.382655\pi\)
\(504\) 6.52646e74 3.14657
\(505\) 1.37707e74 0.628698
\(506\) −1.32557e72 −0.00573143
\(507\) 1.20743e74 0.494472
\(508\) −1.50686e72 −0.00584547
\(509\) −1.19940e74 −0.440783 −0.220391 0.975412i \(-0.570733\pi\)
−0.220391 + 0.975412i \(0.570733\pi\)
\(510\) −8.32960e73 −0.290031
\(511\) −7.62749e73 −0.251656
\(512\) 8.96719e73 0.280371
\(513\) −1.03112e74 −0.305550
\(514\) −1.54661e74 −0.434405
\(515\) −1.09185e74 −0.290713
\(516\) −1.31478e74 −0.331884
\(517\) 9.83218e72 0.0235321
\(518\) 5.42227e74 1.23059
\(519\) −7.99921e72 −0.0172165
\(520\) −2.62378e74 −0.535593
\(521\) 4.86790e74 0.942550 0.471275 0.881986i \(-0.343794\pi\)
0.471275 + 0.881986i \(0.343794\pi\)
\(522\) −8.86251e74 −1.62786
\(523\) −1.33750e74 −0.233076 −0.116538 0.993186i \(-0.537180\pi\)
−0.116538 + 0.993186i \(0.537180\pi\)
\(524\) 4.28933e74 0.709217
\(525\) −9.69462e74 −1.52107
\(526\) 2.84649e74 0.423840
\(527\) −1.94748e74 −0.275221
\(528\) −2.35603e73 −0.0316044
\(529\) −7.80171e74 −0.993479
\(530\) 4.46883e74 0.540266
\(531\) 2.64132e75 3.03195
\(532\) 1.38833e74 0.151330
\(533\) 9.86694e74 1.02137
\(534\) 3.49528e74 0.343635
\(535\) 5.44107e74 0.508107
\(536\) −5.23390e74 −0.464295
\(537\) −3.56732e75 −3.00642
\(538\) 9.22468e74 0.738650
\(539\) 2.17446e74 0.165448
\(540\) −1.30198e75 −0.941404
\(541\) −1.15355e75 −0.792708 −0.396354 0.918098i \(-0.629725\pi\)
−0.396354 + 0.918098i \(0.629725\pi\)
\(542\) −3.15020e74 −0.205758
\(543\) 2.71301e75 1.68444
\(544\) −7.57891e74 −0.447339
\(545\) 2.21140e74 0.124097
\(546\) −2.44607e75 −1.30518
\(547\) −2.83801e75 −1.44000 −0.720001 0.693973i \(-0.755859\pi\)
−0.720001 + 0.693973i \(0.755859\pi\)
\(548\) −4.96566e74 −0.239614
\(549\) 7.83551e75 3.59607
\(550\) −9.11543e73 −0.0397927
\(551\) −4.65928e74 −0.193486
\(552\) −3.46166e74 −0.136760
\(553\) 1.01493e75 0.381501
\(554\) 7.35342e74 0.263009
\(555\) −4.95203e75 −1.68549
\(556\) 2.99241e75 0.969313
\(557\) −6.93639e74 −0.213853 −0.106927 0.994267i \(-0.534101\pi\)
−0.106927 + 0.994267i \(0.534101\pi\)
\(558\) 2.65821e75 0.780097
\(559\) 8.34051e74 0.233006
\(560\) 5.37031e74 0.142833
\(561\) 3.82783e74 0.0969336
\(562\) 2.64500e75 0.637790
\(563\) −7.00271e75 −1.60800 −0.803998 0.594632i \(-0.797298\pi\)
−0.803998 + 0.594632i \(0.797298\pi\)
\(564\) 1.03893e75 0.227201
\(565\) 5.42993e75 1.13100
\(566\) −3.41191e75 −0.676934
\(567\) −1.24865e76 −2.35996
\(568\) −3.34702e75 −0.602670
\(569\) 9.40697e74 0.161385 0.0806924 0.996739i \(-0.474287\pi\)
0.0806924 + 0.996739i \(0.474287\pi\)
\(570\) 5.97727e74 0.0977112
\(571\) 5.09860e75 0.794251 0.397126 0.917764i \(-0.370008\pi\)
0.397126 + 0.917764i \(0.370008\pi\)
\(572\) 4.87876e74 0.0724300
\(573\) 6.02006e74 0.0851822
\(574\) 7.68063e75 1.03591
\(575\) 3.52160e74 0.0452766
\(576\) 7.83609e75 0.960464
\(577\) −1.41868e76 −1.65786 −0.828932 0.559350i \(-0.811051\pi\)
−0.828932 + 0.559350i \(0.811051\pi\)
\(578\) −4.12314e75 −0.459422
\(579\) 1.79298e76 1.90508
\(580\) −5.88320e75 −0.596134
\(581\) 1.05920e76 1.02361
\(582\) −1.53058e76 −1.41083
\(583\) −2.05363e75 −0.180566
\(584\) −1.87289e75 −0.157093
\(585\) 1.52994e76 1.22430
\(586\) 1.10896e75 0.0846707
\(587\) −5.82950e75 −0.424701 −0.212351 0.977194i \(-0.568112\pi\)
−0.212351 + 0.977194i \(0.568112\pi\)
\(588\) 2.29767e76 1.59739
\(589\) 1.39750e75 0.0927216
\(590\) −8.26581e75 −0.523426
\(591\) −3.10085e76 −1.87424
\(592\) −3.50081e75 −0.201986
\(593\) −1.70790e76 −0.940716 −0.470358 0.882476i \(-0.655875\pi\)
−0.470358 + 0.882476i \(0.655875\pi\)
\(594\) −2.82059e75 −0.148324
\(595\) −8.72513e75 −0.438082
\(596\) −2.30870e76 −1.10687
\(597\) 1.96288e76 0.898669
\(598\) 8.88543e74 0.0388505
\(599\) 4.35777e76 1.81981 0.909907 0.414813i \(-0.136153\pi\)
0.909907 + 0.414813i \(0.136153\pi\)
\(600\) −2.38046e76 −0.949513
\(601\) 2.93965e76 1.12008 0.560038 0.828467i \(-0.310787\pi\)
0.560038 + 0.828467i \(0.310787\pi\)
\(602\) 6.49243e75 0.236322
\(603\) 3.05191e76 1.06132
\(604\) 4.69534e75 0.156009
\(605\) 2.05488e76 0.652399
\(606\) 3.15230e76 0.956379
\(607\) −1.42466e76 −0.413068 −0.206534 0.978439i \(-0.566218\pi\)
−0.206534 + 0.978439i \(0.566218\pi\)
\(608\) 5.43858e75 0.150708
\(609\) −1.35551e77 −3.59027
\(610\) −2.45206e76 −0.620813
\(611\) −6.59062e75 −0.159512
\(612\) 2.77007e76 0.640954
\(613\) 5.74254e76 1.27040 0.635200 0.772347i \(-0.280918\pi\)
0.635200 + 0.772347i \(0.280918\pi\)
\(614\) 4.83037e76 1.02176
\(615\) −7.01454e76 −1.41884
\(616\) 9.38577e75 0.181552
\(617\) 3.81555e76 0.705854 0.352927 0.935651i \(-0.385186\pi\)
0.352927 + 0.935651i \(0.385186\pi\)
\(618\) −2.49940e76 −0.442235
\(619\) −1.04928e77 −1.77581 −0.887907 0.460023i \(-0.847841\pi\)
−0.887907 + 0.460023i \(0.847841\pi\)
\(620\) 1.76460e76 0.285677
\(621\) 1.08969e76 0.168766
\(622\) 7.45494e75 0.110461
\(623\) 3.66125e76 0.519049
\(624\) 1.57927e76 0.214230
\(625\) −9.62805e75 −0.124979
\(626\) −7.18935e76 −0.893091
\(627\) −2.74683e75 −0.0326568
\(628\) 5.32969e74 0.00606473
\(629\) 5.68776e76 0.619510
\(630\) 1.19094e77 1.24172
\(631\) 9.40566e76 0.938819 0.469410 0.882981i \(-0.344467\pi\)
0.469410 + 0.882981i \(0.344467\pi\)
\(632\) 2.49210e76 0.238147
\(633\) 1.08120e77 0.989243
\(634\) −9.12320e76 −0.799268
\(635\) −6.79561e74 −0.00570100
\(636\) −2.17000e77 −1.74337
\(637\) −1.45757e77 −1.12149
\(638\) −1.27453e76 −0.0939249
\(639\) 1.95167e77 1.37763
\(640\) 7.65229e76 0.517419
\(641\) −2.34992e77 −1.52215 −0.761074 0.648665i \(-0.775328\pi\)
−0.761074 + 0.648665i \(0.775328\pi\)
\(642\) 1.24554e77 0.772935
\(643\) −1.44401e77 −0.858553 −0.429277 0.903173i \(-0.641231\pi\)
−0.429277 + 0.903173i \(0.641231\pi\)
\(644\) −1.46719e76 −0.0835844
\(645\) −5.92939e76 −0.323681
\(646\) −6.86532e75 −0.0359142
\(647\) 1.44528e77 0.724576 0.362288 0.932066i \(-0.381996\pi\)
0.362288 + 0.932066i \(0.381996\pi\)
\(648\) −3.06598e77 −1.47318
\(649\) 3.79852e76 0.174938
\(650\) 6.11018e76 0.269735
\(651\) 4.06570e77 1.72051
\(652\) 2.56083e77 1.03890
\(653\) −4.83816e77 −1.88178 −0.940888 0.338718i \(-0.890007\pi\)
−0.940888 + 0.338718i \(0.890007\pi\)
\(654\) 5.06219e76 0.188778
\(655\) 1.93440e77 0.691689
\(656\) −4.95889e76 −0.170031
\(657\) 1.09209e77 0.359096
\(658\) −5.13028e76 −0.161782
\(659\) 2.76660e77 0.836753 0.418377 0.908274i \(-0.362599\pi\)
0.418377 + 0.908274i \(0.362599\pi\)
\(660\) −3.46838e76 −0.100616
\(661\) 3.38137e77 0.940920 0.470460 0.882421i \(-0.344088\pi\)
0.470460 + 0.882421i \(0.344088\pi\)
\(662\) −9.26433e76 −0.247297
\(663\) −2.56584e77 −0.657064
\(664\) 2.60080e77 0.638976
\(665\) 6.26110e76 0.147589
\(666\) −7.76350e77 −1.75597
\(667\) 4.92393e76 0.106869
\(668\) −3.99431e77 −0.831934
\(669\) −1.69701e78 −3.39208
\(670\) −9.55072e76 −0.183223
\(671\) 1.12683e77 0.207487
\(672\) 1.58223e78 2.79650
\(673\) 4.83817e77 0.820856 0.410428 0.911893i \(-0.365379\pi\)
0.410428 + 0.911893i \(0.365379\pi\)
\(674\) 2.45702e76 0.0400185
\(675\) 7.49338e77 1.17172
\(676\) 1.25658e77 0.188650
\(677\) −7.28985e77 −1.05082 −0.525412 0.850848i \(-0.676089\pi\)
−0.525412 + 0.850848i \(0.676089\pi\)
\(678\) 1.24299e78 1.72048
\(679\) −1.60326e78 −2.13100
\(680\) −2.14240e77 −0.273468
\(681\) 1.45475e78 1.78337
\(682\) 3.82280e76 0.0450103
\(683\) −6.73597e77 −0.761782 −0.380891 0.924620i \(-0.624383\pi\)
−0.380891 + 0.924620i \(0.624383\pi\)
\(684\) −1.98779e77 −0.215937
\(685\) −2.23941e77 −0.233692
\(686\) −2.74710e77 −0.275398
\(687\) 5.05948e76 0.0487299
\(688\) −4.19175e76 −0.0387894
\(689\) 1.37657e78 1.22397
\(690\) −6.31678e76 −0.0539692
\(691\) 7.85818e77 0.645172 0.322586 0.946540i \(-0.395448\pi\)
0.322586 + 0.946540i \(0.395448\pi\)
\(692\) −8.32488e75 −0.00656841
\(693\) −5.47289e77 −0.415005
\(694\) −1.24159e78 −0.904882
\(695\) 1.34952e78 0.945357
\(696\) −3.32838e78 −2.24119
\(697\) 8.05670e77 0.521502
\(698\) 1.28246e77 0.0798033
\(699\) −4.21611e78 −2.52226
\(700\) −1.00893e78 −0.580317
\(701\) 3.34618e78 1.85056 0.925281 0.379282i \(-0.123829\pi\)
0.925281 + 0.379282i \(0.123829\pi\)
\(702\) 1.89067e78 1.00542
\(703\) −4.08150e77 −0.208713
\(704\) 1.12692e77 0.0554171
\(705\) 4.68537e77 0.221586
\(706\) 2.84830e77 0.129556
\(707\) 3.30198e78 1.44458
\(708\) 4.01375e78 1.68903
\(709\) −1.99911e78 −0.809217 −0.404609 0.914490i \(-0.632592\pi\)
−0.404609 + 0.914490i \(0.632592\pi\)
\(710\) −6.10759e77 −0.237829
\(711\) −1.45316e78 −0.544375
\(712\) 8.98998e77 0.324011
\(713\) −1.47688e77 −0.0512133
\(714\) −1.99730e78 −0.666413
\(715\) 2.20022e77 0.0706399
\(716\) −3.71256e78 −1.14700
\(717\) −1.53190e77 −0.0455463
\(718\) 3.07974e78 0.881235
\(719\) 2.03054e78 0.559201 0.279600 0.960116i \(-0.409798\pi\)
0.279600 + 0.960116i \(0.409798\pi\)
\(720\) −7.68911e77 −0.203813
\(721\) −2.61808e78 −0.667981
\(722\) −2.25540e78 −0.553925
\(723\) −6.18188e78 −1.46156
\(724\) 2.82347e78 0.642646
\(725\) 3.38600e78 0.741980
\(726\) 4.70390e78 0.992432
\(727\) −4.59794e78 −0.934044 −0.467022 0.884246i \(-0.654673\pi\)
−0.467022 + 0.884246i \(0.654673\pi\)
\(728\) −6.29139e78 −1.23065
\(729\) −1.88601e78 −0.355252
\(730\) −3.41761e77 −0.0619931
\(731\) 6.81032e77 0.118971
\(732\) 1.19068e79 2.00328
\(733\) 8.70471e77 0.141057 0.0705286 0.997510i \(-0.477531\pi\)
0.0705286 + 0.997510i \(0.477531\pi\)
\(734\) 2.59465e78 0.404983
\(735\) 1.03620e79 1.55791
\(736\) −5.74749e77 −0.0832412
\(737\) 4.38899e77 0.0612363
\(738\) −1.09970e79 −1.47817
\(739\) 5.00046e78 0.647571 0.323786 0.946130i \(-0.395044\pi\)
0.323786 + 0.946130i \(0.395044\pi\)
\(740\) −5.15364e78 −0.643046
\(741\) 1.84123e78 0.221364
\(742\) 1.07155e79 1.24138
\(743\) −1.50661e79 −1.68194 −0.840969 0.541084i \(-0.818014\pi\)
−0.840969 + 0.541084i \(0.818014\pi\)
\(744\) 9.98308e78 1.07401
\(745\) −1.04118e79 −1.07951
\(746\) −5.84049e78 −0.583622
\(747\) −1.51654e79 −1.46062
\(748\) 3.98367e77 0.0369820
\(749\) 1.30468e79 1.16749
\(750\) −1.20913e79 −1.04301
\(751\) −1.15635e78 −0.0961595 −0.0480797 0.998844i \(-0.515310\pi\)
−0.0480797 + 0.998844i \(0.515310\pi\)
\(752\) 3.31229e77 0.0265545
\(753\) 2.87876e79 2.22507
\(754\) 8.54331e78 0.636669
\(755\) 2.11750e78 0.152154
\(756\) −3.12194e79 −2.16309
\(757\) −4.56395e77 −0.0304933 −0.0152466 0.999884i \(-0.504853\pi\)
−0.0152466 + 0.999884i \(0.504853\pi\)
\(758\) −4.48350e78 −0.288878
\(759\) 2.90285e77 0.0180375
\(760\) 1.53738e78 0.0921311
\(761\) 1.25753e79 0.726845 0.363423 0.931624i \(-0.381608\pi\)
0.363423 + 0.931624i \(0.381608\pi\)
\(762\) −1.55561e77 −0.00867240
\(763\) 5.30257e78 0.285142
\(764\) 6.26515e77 0.0324986
\(765\) 1.24925e79 0.625114
\(766\) 1.63960e78 0.0791494
\(767\) −2.54619e79 −1.18582
\(768\) 3.50384e79 1.57438
\(769\) −1.37097e79 −0.594367 −0.297183 0.954820i \(-0.596047\pi\)
−0.297183 + 0.954820i \(0.596047\pi\)
\(770\) 1.71270e78 0.0716450
\(771\) 3.38690e79 1.36712
\(772\) 1.86597e79 0.726825
\(773\) 6.53835e78 0.245772 0.122886 0.992421i \(-0.460785\pi\)
0.122886 + 0.992421i \(0.460785\pi\)
\(774\) −9.29573e78 −0.337215
\(775\) −1.01559e79 −0.355568
\(776\) −3.93670e79 −1.33026
\(777\) −1.18742e80 −3.87281
\(778\) −1.90607e79 −0.600067
\(779\) −5.78144e78 −0.175693
\(780\) 2.32489e79 0.682026
\(781\) 2.80672e78 0.0794868
\(782\) 7.25527e77 0.0198366
\(783\) 1.04773e80 2.76568
\(784\) 7.32539e78 0.186698
\(785\) 2.40358e77 0.00591484
\(786\) 4.42811e79 1.05220
\(787\) 8.33760e78 0.191309 0.0956546 0.995415i \(-0.469506\pi\)
0.0956546 + 0.995415i \(0.469506\pi\)
\(788\) −3.22709e79 −0.715056
\(789\) −6.23351e79 −1.33387
\(790\) 4.54754e78 0.0939791
\(791\) 1.30201e80 2.59873
\(792\) −1.34384e79 −0.259062
\(793\) −7.55329e79 −1.40645
\(794\) 4.81796e79 0.866562
\(795\) −9.78625e79 −1.70028
\(796\) 2.04280e79 0.342859
\(797\) 9.29356e79 1.50688 0.753439 0.657517i \(-0.228393\pi\)
0.753439 + 0.657517i \(0.228393\pi\)
\(798\) 1.43325e79 0.224514
\(799\) −5.38147e78 −0.0814451
\(800\) −3.95233e79 −0.577935
\(801\) −5.24211e79 −0.740648
\(802\) −8.63732e78 −0.117919
\(803\) 1.57055e78 0.0207192
\(804\) 4.63769e79 0.591235
\(805\) −6.61673e78 −0.0815186
\(806\) −2.56247e79 −0.305102
\(807\) −2.02010e80 −2.32462
\(808\) 8.10782e79 0.901762
\(809\) 3.86382e79 0.415367 0.207684 0.978196i \(-0.433408\pi\)
0.207684 + 0.978196i \(0.433408\pi\)
\(810\) −5.59473e79 −0.581355
\(811\) 5.61301e79 0.563796 0.281898 0.959444i \(-0.409036\pi\)
0.281898 + 0.959444i \(0.409036\pi\)
\(812\) −1.41070e80 −1.36976
\(813\) 6.89859e79 0.647546
\(814\) −1.11648e79 −0.101316
\(815\) 1.15488e80 1.01322
\(816\) 1.28953e79 0.109384
\(817\) −4.88704e78 −0.0400811
\(818\) 6.39456e79 0.507101
\(819\) 3.66854e80 2.81311
\(820\) −7.30012e79 −0.541314
\(821\) −2.48490e79 −0.178185 −0.0890926 0.996023i \(-0.528397\pi\)
−0.0890926 + 0.996023i \(0.528397\pi\)
\(822\) −5.12633e79 −0.355493
\(823\) −1.71342e80 −1.14913 −0.574563 0.818460i \(-0.694828\pi\)
−0.574563 + 0.818460i \(0.694828\pi\)
\(824\) −6.42855e79 −0.416979
\(825\) 1.99618e79 0.125232
\(826\) −1.98201e80 −1.20269
\(827\) 1.35237e80 0.793767 0.396883 0.917869i \(-0.370092\pi\)
0.396883 + 0.917869i \(0.370092\pi\)
\(828\) 2.10069e79 0.119269
\(829\) 2.08682e80 1.14613 0.573066 0.819509i \(-0.305754\pi\)
0.573066 + 0.819509i \(0.305754\pi\)
\(830\) 4.74589e79 0.252157
\(831\) −1.61032e80 −0.827720
\(832\) −7.55385e79 −0.375644
\(833\) −1.19015e80 −0.572619
\(834\) 3.08923e80 1.43808
\(835\) −1.80135e80 −0.811373
\(836\) −2.85866e78 −0.0124592
\(837\) −3.14255e80 −1.32536
\(838\) 1.22364e80 0.499395
\(839\) −3.88689e80 −1.53514 −0.767572 0.640963i \(-0.778535\pi\)
−0.767572 + 0.640963i \(0.778535\pi\)
\(840\) 4.47264e80 1.70956
\(841\) 2.03107e80 0.751336
\(842\) −2.76309e80 −0.989266
\(843\) −5.79227e80 −2.00720
\(844\) 1.12522e80 0.377415
\(845\) 5.66693e79 0.183988
\(846\) 7.34543e79 0.230851
\(847\) 4.92726e80 1.49904
\(848\) −6.91833e79 −0.203758
\(849\) 7.47172e80 2.13039
\(850\) 4.98917e79 0.137724
\(851\) 4.31333e79 0.115279
\(852\) 2.96575e80 0.767443
\(853\) 2.51355e79 0.0629780 0.0314890 0.999504i \(-0.489975\pi\)
0.0314890 + 0.999504i \(0.489975\pi\)
\(854\) −5.87964e80 −1.42646
\(855\) −8.96452e79 −0.210600
\(856\) 3.20356e80 0.728794
\(857\) 5.37005e77 0.00118306 0.000591529 1.00000i \(-0.499812\pi\)
0.000591529 1.00000i \(0.499812\pi\)
\(858\) 5.03661e79 0.107458
\(859\) −1.77605e80 −0.366980 −0.183490 0.983022i \(-0.558739\pi\)
−0.183490 + 0.983022i \(0.558739\pi\)
\(860\) −6.17079e79 −0.123490
\(861\) −1.68197e81 −3.26011
\(862\) 4.60447e79 0.0864431
\(863\) 7.23414e80 1.31550 0.657749 0.753237i \(-0.271509\pi\)
0.657749 + 0.753237i \(0.271509\pi\)
\(864\) −1.22297e81 −2.15421
\(865\) −3.75435e78 −0.00640608
\(866\) 3.37185e80 0.557348
\(867\) 9.02922e80 1.44586
\(868\) 4.23123e80 0.656408
\(869\) −2.08980e79 −0.0314095
\(870\) −6.07356e80 −0.884430
\(871\) −2.94199e80 −0.415090
\(872\) 1.30202e80 0.177997
\(873\) 2.29551e81 3.04080
\(874\) −5.20633e78 −0.00668294
\(875\) −1.26655e81 −1.57544
\(876\) 1.65954e80 0.200043
\(877\) −7.57306e80 −0.884672 −0.442336 0.896849i \(-0.645850\pi\)
−0.442336 + 0.896849i \(0.645850\pi\)
\(878\) 2.59914e79 0.0294259
\(879\) −2.42851e80 −0.266468
\(880\) −1.10578e79 −0.0117597
\(881\) 5.18485e80 0.534440 0.267220 0.963636i \(-0.413895\pi\)
0.267220 + 0.963636i \(0.413895\pi\)
\(882\) 1.62450e81 1.62305
\(883\) −1.85801e81 −1.79940 −0.899700 0.436509i \(-0.856215\pi\)
−0.899700 + 0.436509i \(0.856215\pi\)
\(884\) −2.67030e80 −0.250682
\(885\) 1.81012e81 1.64728
\(886\) 1.02378e81 0.903193
\(887\) 1.81133e81 1.54917 0.774584 0.632471i \(-0.217959\pi\)
0.774584 + 0.632471i \(0.217959\pi\)
\(888\) −2.91563e81 −2.41756
\(889\) −1.62948e79 −0.0130994
\(890\) 1.64048e80 0.127863
\(891\) 2.57104e80 0.194299
\(892\) −1.76610e81 −1.29414
\(893\) 3.86171e79 0.0274388
\(894\) −2.38340e81 −1.64216
\(895\) −1.67429e81 −1.11866
\(896\) 1.83490e81 1.18889
\(897\) −1.94581e80 −0.122267
\(898\) 2.61507e80 0.159362
\(899\) −1.42001e81 −0.839267
\(900\) 1.44457e81 0.828073
\(901\) 1.12402e81 0.624945
\(902\) −1.58149e80 −0.0852876
\(903\) −1.42177e81 −0.743732
\(904\) 3.19701e81 1.62223
\(905\) 1.27333e81 0.626763
\(906\) 4.84726e80 0.231457
\(907\) 1.77437e81 0.821948 0.410974 0.911647i \(-0.365189\pi\)
0.410974 + 0.911647i \(0.365189\pi\)
\(908\) 1.51397e81 0.680390
\(909\) −4.72771e81 −2.06132
\(910\) −1.14804e81 −0.485645
\(911\) −1.97996e81 −0.812645 −0.406323 0.913730i \(-0.633189\pi\)
−0.406323 + 0.913730i \(0.633189\pi\)
\(912\) −9.25359e79 −0.0368513
\(913\) −2.18095e80 −0.0842753
\(914\) 9.01899e80 0.338172
\(915\) 5.36974e81 1.95377
\(916\) 5.26546e79 0.0185914
\(917\) 4.63838e81 1.58931
\(918\) 1.54380e81 0.513355
\(919\) −9.32344e80 −0.300884 −0.150442 0.988619i \(-0.548070\pi\)
−0.150442 + 0.988619i \(0.548070\pi\)
\(920\) −1.62470e80 −0.0508871
\(921\) −1.05780e82 −3.21561
\(922\) −1.87253e81 −0.552496
\(923\) −1.88137e81 −0.538801
\(924\) −8.31661e80 −0.231189
\(925\) 2.96612e81 0.800369
\(926\) −5.72901e80 −0.150064
\(927\) 3.74852e81 0.953163
\(928\) −5.52619e81 −1.36413
\(929\) −1.80841e81 −0.433375 −0.216688 0.976241i \(-0.569525\pi\)
−0.216688 + 0.976241i \(0.569525\pi\)
\(930\) 1.82169e81 0.423833
\(931\) 8.54047e80 0.192915
\(932\) −4.38776e81 −0.962287
\(933\) −1.63255e81 −0.347634
\(934\) 1.51903e80 0.0314071
\(935\) 1.79656e80 0.0360680
\(936\) 9.00789e81 1.75605
\(937\) 7.97369e81 1.50946 0.754728 0.656038i \(-0.227769\pi\)
0.754728 + 0.656038i \(0.227769\pi\)
\(938\) −2.29011e81 −0.420996
\(939\) 1.57439e82 2.81066
\(940\) 4.87612e80 0.0845392
\(941\) −7.79087e81 −1.31181 −0.655906 0.754843i \(-0.727713\pi\)
−0.655906 + 0.754843i \(0.727713\pi\)
\(942\) 5.50213e79 0.00899769
\(943\) 6.10982e80 0.0970414
\(944\) 1.27966e81 0.197407
\(945\) −1.40793e82 −2.10963
\(946\) −1.33683e80 −0.0194567
\(947\) −6.44542e81 −0.911227 −0.455614 0.890178i \(-0.650580\pi\)
−0.455614 + 0.890178i \(0.650580\pi\)
\(948\) −2.20822e81 −0.303258
\(949\) −1.05276e81 −0.140445
\(950\) −3.58020e80 −0.0463989
\(951\) 1.99788e82 2.51539
\(952\) −5.13714e81 −0.628355
\(953\) 1.78938e81 0.212641 0.106320 0.994332i \(-0.466093\pi\)
0.106320 + 0.994332i \(0.466093\pi\)
\(954\) −1.53423e82 −1.77137
\(955\) 2.82546e80 0.0316954
\(956\) −1.59427e80 −0.0173768
\(957\) 2.79108e81 0.295593
\(958\) 7.61060e81 0.783190
\(959\) −5.36975e81 −0.536961
\(960\) 5.37014e81 0.521827
\(961\) −6.33077e81 −0.597810
\(962\) 7.48388e81 0.686772
\(963\) −1.86802e82 −1.66593
\(964\) −6.43356e81 −0.557613
\(965\) 8.41517e81 0.708862
\(966\) −1.51466e81 −0.124007
\(967\) 2.92369e81 0.232650 0.116325 0.993211i \(-0.462889\pi\)
0.116325 + 0.993211i \(0.462889\pi\)
\(968\) 1.20986e82 0.935757
\(969\) 1.50343e81 0.113026
\(970\) −7.18362e81 −0.524953
\(971\) −7.61535e81 −0.540955 −0.270477 0.962726i \(-0.587182\pi\)
−0.270477 + 0.962726i \(0.587182\pi\)
\(972\) 6.59868e81 0.455654
\(973\) 3.23592e82 2.17218
\(974\) 7.27148e81 0.474517
\(975\) −1.33806e82 −0.848886
\(976\) 3.79611e81 0.234136
\(977\) −1.12361e82 −0.673778 −0.336889 0.941544i \(-0.609375\pi\)
−0.336889 + 0.941544i \(0.609375\pi\)
\(978\) 2.64369e82 1.54132
\(979\) −7.53873e80 −0.0427341
\(980\) 1.07839e82 0.594373
\(981\) −7.59212e81 −0.406879
\(982\) −2.42346e81 −0.126290
\(983\) −3.41757e82 −1.73179 −0.865896 0.500225i \(-0.833251\pi\)
−0.865896 + 0.500225i \(0.833251\pi\)
\(984\) −4.12999e82 −2.03509
\(985\) −1.45535e82 −0.697384
\(986\) 6.97591e81 0.325077
\(987\) 1.12348e82 0.509145
\(988\) 1.91619e81 0.0844546
\(989\) 5.16463e80 0.0221381
\(990\) −2.45221e81 −0.102233
\(991\) −3.84020e81 −0.155714 −0.0778571 0.996965i \(-0.524808\pi\)
−0.0778571 + 0.996965i \(0.524808\pi\)
\(992\) 1.65752e82 0.653713
\(993\) 2.02879e82 0.778274
\(994\) −1.46450e82 −0.546467
\(995\) 9.21259e81 0.334385
\(996\) −2.30453e82 −0.813676
\(997\) −7.93338e81 −0.272484 −0.136242 0.990676i \(-0.543503\pi\)
−0.136242 + 0.990676i \(0.543503\pi\)
\(998\) 2.97863e81 0.0995237
\(999\) 9.17806e82 2.98332
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))