Properties

Label 1.42.a.a.1.3
Level 1
Weight 42
Character 1.1
Self dual Yes
Analytic conductor 10.647
Analytic rank 1
Dimension 3
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 42 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(10.6471670456\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{11}\cdot 3^{3}\cdot 5\cdot 7 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(52412.2\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.40087e6 q^{2} -6.65953e9 q^{3} +3.56518e12 q^{4} -3.38080e14 q^{5} -1.59887e16 q^{6} -9.19453e16 q^{7} +3.27996e18 q^{8} +7.87633e18 q^{9} +O(q^{10})\) \(q+2.40087e6 q^{2} -6.65953e9 q^{3} +3.56518e12 q^{4} -3.38080e14 q^{5} -1.59887e16 q^{6} -9.19453e16 q^{7} +3.27996e18 q^{8} +7.87633e18 q^{9} -8.11687e20 q^{10} +2.15850e21 q^{11} -2.37424e22 q^{12} -8.71848e22 q^{13} -2.20749e23 q^{14} +2.25145e24 q^{15} +3.48699e22 q^{16} +5.13467e24 q^{17} +1.89101e25 q^{18} +4.11372e25 q^{19} -1.20531e27 q^{20} +6.12312e26 q^{21} +5.18229e27 q^{22} +2.60656e27 q^{23} -2.18430e28 q^{24} +6.88231e28 q^{25} -2.09320e29 q^{26} +1.90440e29 q^{27} -3.27801e29 q^{28} -4.19842e29 q^{29} +5.40545e30 q^{30} -2.68405e30 q^{31} -7.12899e30 q^{32} -1.43746e31 q^{33} +1.23277e31 q^{34} +3.10848e31 q^{35} +2.80805e31 q^{36} -1.06323e32 q^{37} +9.87652e31 q^{38} +5.80610e32 q^{39} -1.10889e33 q^{40} -1.44220e33 q^{41} +1.47009e33 q^{42} -7.60160e31 q^{43} +7.69544e33 q^{44} -2.66283e33 q^{45} +6.25802e33 q^{46} -3.36927e34 q^{47} -2.32217e32 q^{48} -3.61137e34 q^{49} +1.65236e35 q^{50} -3.41945e34 q^{51} -3.10829e35 q^{52} +3.75996e35 q^{53} +4.57223e35 q^{54} -7.29746e35 q^{55} -3.01577e35 q^{56} -2.73954e35 q^{57} -1.00799e36 q^{58} -6.72854e34 q^{59} +8.02682e36 q^{60} -2.74886e35 q^{61} -6.44406e36 q^{62} -7.24191e35 q^{63} -1.71925e37 q^{64} +2.94754e37 q^{65} -3.45116e37 q^{66} +2.47724e37 q^{67} +1.83060e37 q^{68} -1.73585e37 q^{69} +7.46308e37 q^{70} -1.25628e38 q^{71} +2.58340e37 q^{72} +2.44972e38 q^{73} -2.55268e38 q^{74} -4.58329e38 q^{75} +1.46661e38 q^{76} -1.98464e38 q^{77} +1.39397e39 q^{78} +6.92089e38 q^{79} -1.17888e37 q^{80} -1.55552e39 q^{81} -3.46253e39 q^{82} +1.80861e39 q^{83} +2.18300e39 q^{84} -1.73593e39 q^{85} -1.82505e38 q^{86} +2.79595e39 q^{87} +7.07980e39 q^{88} -7.15901e39 q^{89} -6.39311e39 q^{90} +8.01623e39 q^{91} +9.29284e39 q^{92} +1.78745e40 q^{93} -8.08920e40 q^{94} -1.39076e40 q^{95} +4.74757e40 q^{96} +7.50364e40 q^{97} -8.67045e40 q^{98} +1.70011e40 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 344688q^{2} - 10820953044q^{3} + 6271704903936q^{4} - 212302350281550q^{5} + 4970194114982976q^{6} + 57878416258239192q^{7} - 3555831711183237120q^{8} + 13277004110931878919q^{9} + O(q^{10}) \) \( 3q - 344688q^{2} - 10820953044q^{3} + 6271704903936q^{4} - 212302350281550q^{5} + 4970194114982976q^{6} + 57878416258239192q^{7} - 3555831711183237120q^{8} + 13277004110931878919q^{9} - \)\(91\!\cdots\!00\)\(q^{10} - \)\(30\!\cdots\!64\)\(q^{11} - \)\(71\!\cdots\!48\)\(q^{12} - \)\(98\!\cdots\!94\)\(q^{13} - \)\(66\!\cdots\!08\)\(q^{14} + \)\(23\!\cdots\!00\)\(q^{15} + \)\(13\!\cdots\!48\)\(q^{16} + \)\(35\!\cdots\!02\)\(q^{17} - \)\(51\!\cdots\!04\)\(q^{18} - \)\(23\!\cdots\!80\)\(q^{19} - \)\(12\!\cdots\!00\)\(q^{20} - \)\(78\!\cdots\!24\)\(q^{21} + \)\(10\!\cdots\!44\)\(q^{22} + \)\(28\!\cdots\!56\)\(q^{23} + \)\(36\!\cdots\!60\)\(q^{24} - \)\(12\!\cdots\!75\)\(q^{25} - \)\(44\!\cdots\!04\)\(q^{26} + \)\(40\!\cdots\!80\)\(q^{27} + \)\(52\!\cdots\!64\)\(q^{28} - \)\(12\!\cdots\!70\)\(q^{29} + \)\(61\!\cdots\!00\)\(q^{30} - \)\(55\!\cdots\!04\)\(q^{31} - \)\(14\!\cdots\!48\)\(q^{32} - \)\(13\!\cdots\!28\)\(q^{33} - \)\(42\!\cdots\!08\)\(q^{34} + \)\(35\!\cdots\!00\)\(q^{35} + \)\(20\!\cdots\!28\)\(q^{36} + \)\(49\!\cdots\!22\)\(q^{37} + \)\(38\!\cdots\!20\)\(q^{38} - \)\(54\!\cdots\!12\)\(q^{39} - \)\(13\!\cdots\!00\)\(q^{40} - \)\(31\!\cdots\!74\)\(q^{41} + \)\(50\!\cdots\!24\)\(q^{42} + \)\(14\!\cdots\!56\)\(q^{43} + \)\(68\!\cdots\!32\)\(q^{44} - \)\(37\!\cdots\!50\)\(q^{45} + \)\(34\!\cdots\!16\)\(q^{46} - \)\(63\!\cdots\!68\)\(q^{47} - \)\(48\!\cdots\!44\)\(q^{48} - \)\(97\!\cdots\!29\)\(q^{49} + \)\(28\!\cdots\!00\)\(q^{50} - \)\(15\!\cdots\!24\)\(q^{51} + \)\(36\!\cdots\!52\)\(q^{52} + \)\(79\!\cdots\!06\)\(q^{53} + \)\(27\!\cdots\!20\)\(q^{54} - \)\(11\!\cdots\!00\)\(q^{55} - \)\(15\!\cdots\!80\)\(q^{56} - \)\(12\!\cdots\!40\)\(q^{57} + \)\(10\!\cdots\!80\)\(q^{58} + \)\(19\!\cdots\!60\)\(q^{59} + \)\(59\!\cdots\!00\)\(q^{60} + \)\(87\!\cdots\!86\)\(q^{61} - \)\(12\!\cdots\!16\)\(q^{62} + \)\(41\!\cdots\!36\)\(q^{63} - \)\(28\!\cdots\!64\)\(q^{64} + \)\(23\!\cdots\!00\)\(q^{65} - \)\(70\!\cdots\!88\)\(q^{66} + \)\(11\!\cdots\!52\)\(q^{67} + \)\(95\!\cdots\!84\)\(q^{68} + \)\(11\!\cdots\!48\)\(q^{69} + \)\(59\!\cdots\!00\)\(q^{70} - \)\(14\!\cdots\!84\)\(q^{71} - \)\(17\!\cdots\!60\)\(q^{72} + \)\(45\!\cdots\!06\)\(q^{73} - \)\(25\!\cdots\!08\)\(q^{74} - \)\(24\!\cdots\!00\)\(q^{75} + \)\(26\!\cdots\!40\)\(q^{76} - \)\(42\!\cdots\!96\)\(q^{77} + \)\(33\!\cdots\!32\)\(q^{78} - \)\(52\!\cdots\!20\)\(q^{79} + \)\(71\!\cdots\!00\)\(q^{80} - \)\(31\!\cdots\!97\)\(q^{81} - \)\(57\!\cdots\!96\)\(q^{82} - \)\(61\!\cdots\!44\)\(q^{83} - \)\(41\!\cdots\!88\)\(q^{84} - \)\(10\!\cdots\!00\)\(q^{85} - \)\(47\!\cdots\!44\)\(q^{86} + \)\(13\!\cdots\!40\)\(q^{87} + \)\(18\!\cdots\!60\)\(q^{88} - \)\(14\!\cdots\!10\)\(q^{89} - \)\(87\!\cdots\!00\)\(q^{90} + \)\(25\!\cdots\!96\)\(q^{91} - \)\(67\!\cdots\!48\)\(q^{92} + \)\(34\!\cdots\!92\)\(q^{93} - \)\(53\!\cdots\!08\)\(q^{94} - \)\(33\!\cdots\!00\)\(q^{95} + \)\(95\!\cdots\!96\)\(q^{96} + \)\(11\!\cdots\!82\)\(q^{97} - \)\(38\!\cdots\!16\)\(q^{98} + \)\(45\!\cdots\!28\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.40087e6 1.61903 0.809514 0.587100i \(-0.199730\pi\)
0.809514 + 0.587100i \(0.199730\pi\)
\(3\) −6.65953e9 −1.10270 −0.551351 0.834274i \(-0.685887\pi\)
−0.551351 + 0.834274i \(0.685887\pi\)
\(4\) 3.56518e12 1.62125
\(5\) −3.38080e14 −1.58538 −0.792691 0.609624i \(-0.791321\pi\)
−0.792691 + 0.609624i \(0.791321\pi\)
\(6\) −1.59887e16 −1.78530
\(7\) −9.19453e16 −0.435532 −0.217766 0.976001i \(-0.569877\pi\)
−0.217766 + 0.976001i \(0.569877\pi\)
\(8\) 3.27996e18 1.00583
\(9\) 7.87633e18 0.215949
\(10\) −8.11687e20 −2.56678
\(11\) 2.15850e21 0.967392 0.483696 0.875236i \(-0.339294\pi\)
0.483696 + 0.875236i \(0.339294\pi\)
\(12\) −2.37424e22 −1.78776
\(13\) −8.71848e22 −1.27234 −0.636169 0.771550i \(-0.719482\pi\)
−0.636169 + 0.771550i \(0.719482\pi\)
\(14\) −2.20749e23 −0.705138
\(15\) 2.25145e24 1.74820
\(16\) 3.48699e22 0.00721093
\(17\) 5.13467e24 0.306415 0.153207 0.988194i \(-0.451040\pi\)
0.153207 + 0.988194i \(0.451040\pi\)
\(18\) 1.89101e25 0.349628
\(19\) 4.11372e25 0.251065 0.125532 0.992090i \(-0.459936\pi\)
0.125532 + 0.992090i \(0.459936\pi\)
\(20\) −1.20531e27 −2.57031
\(21\) 6.12312e26 0.480261
\(22\) 5.18229e27 1.56624
\(23\) 2.60656e27 0.316699 0.158350 0.987383i \(-0.449383\pi\)
0.158350 + 0.987383i \(0.449383\pi\)
\(24\) −2.18430e28 −1.10913
\(25\) 6.88231e28 1.51344
\(26\) −2.09320e29 −2.05995
\(27\) 1.90440e29 0.864573
\(28\) −3.27801e29 −0.706107
\(29\) −4.19842e29 −0.440480 −0.220240 0.975446i \(-0.570684\pi\)
−0.220240 + 0.975446i \(0.570684\pi\)
\(30\) 5.40545e30 2.83039
\(31\) −2.68405e30 −0.717589 −0.358794 0.933417i \(-0.616812\pi\)
−0.358794 + 0.933417i \(0.616812\pi\)
\(32\) −7.12899e30 −0.994154
\(33\) −1.43746e31 −1.06674
\(34\) 1.23277e31 0.496094
\(35\) 3.10848e31 0.690484
\(36\) 2.80805e31 0.350109
\(37\) −1.06323e32 −0.755947 −0.377974 0.925816i \(-0.623379\pi\)
−0.377974 + 0.925816i \(0.623379\pi\)
\(38\) 9.87652e31 0.406481
\(39\) 5.80610e32 1.40301
\(40\) −1.10889e33 −1.59462
\(41\) −1.44220e33 −1.25013 −0.625065 0.780573i \(-0.714928\pi\)
−0.625065 + 0.780573i \(0.714928\pi\)
\(42\) 1.47009e33 0.777557
\(43\) −7.60160e31 −0.0248200 −0.0124100 0.999923i \(-0.503950\pi\)
−0.0124100 + 0.999923i \(0.503950\pi\)
\(44\) 7.69544e33 1.56839
\(45\) −2.66283e33 −0.342362
\(46\) 6.25802e33 0.512745
\(47\) −3.36927e34 −1.77636 −0.888179 0.459499i \(-0.848029\pi\)
−0.888179 + 0.459499i \(0.848029\pi\)
\(48\) −2.32217e32 −0.00795151
\(49\) −3.61137e34 −0.810312
\(50\) 1.65236e35 2.45030
\(51\) −3.41945e34 −0.337884
\(52\) −3.10829e35 −2.06278
\(53\) 3.75996e35 1.68861 0.844303 0.535866i \(-0.180015\pi\)
0.844303 + 0.535866i \(0.180015\pi\)
\(54\) 4.57223e35 1.39977
\(55\) −7.29746e35 −1.53369
\(56\) −3.01577e35 −0.438070
\(57\) −2.73954e35 −0.276849
\(58\) −1.00799e36 −0.713150
\(59\) −6.72854e34 −0.0335316 −0.0167658 0.999859i \(-0.505337\pi\)
−0.0167658 + 0.999859i \(0.505337\pi\)
\(60\) 8.02682e36 2.83428
\(61\) −2.74886e35 −0.0691657 −0.0345828 0.999402i \(-0.511010\pi\)
−0.0345828 + 0.999402i \(0.511010\pi\)
\(62\) −6.44406e36 −1.16180
\(63\) −7.24191e35 −0.0940528
\(64\) −1.71925e37 −1.61677
\(65\) 2.94754e37 2.01714
\(66\) −3.45116e37 −1.72709
\(67\) 2.47724e37 0.910824 0.455412 0.890281i \(-0.349492\pi\)
0.455412 + 0.890281i \(0.349492\pi\)
\(68\) 1.83060e37 0.496776
\(69\) −1.73585e37 −0.349225
\(70\) 7.46308e37 1.11791
\(71\) −1.25628e38 −1.40698 −0.703491 0.710704i \(-0.748377\pi\)
−0.703491 + 0.710704i \(0.748377\pi\)
\(72\) 2.58340e37 0.217208
\(73\) 2.44972e38 1.55238 0.776189 0.630500i \(-0.217150\pi\)
0.776189 + 0.630500i \(0.217150\pi\)
\(74\) −2.55268e38 −1.22390
\(75\) −4.58329e38 −1.66887
\(76\) 1.46661e38 0.407040
\(77\) −1.98464e38 −0.421330
\(78\) 1.39397e39 2.27151
\(79\) 6.92089e38 0.868574 0.434287 0.900775i \(-0.357000\pi\)
0.434287 + 0.900775i \(0.357000\pi\)
\(80\) −1.17888e37 −0.0114321
\(81\) −1.55552e39 −1.16932
\(82\) −3.46253e39 −2.02400
\(83\) 1.80861e39 0.824600 0.412300 0.911048i \(-0.364726\pi\)
0.412300 + 0.911048i \(0.364726\pi\)
\(84\) 2.18300e39 0.778625
\(85\) −1.73593e39 −0.485784
\(86\) −1.82505e38 −0.0401843
\(87\) 2.79595e39 0.485718
\(88\) 7.07980e39 0.973031
\(89\) −7.15901e39 −0.780473 −0.390237 0.920715i \(-0.627607\pi\)
−0.390237 + 0.920715i \(0.627607\pi\)
\(90\) −6.39311e39 −0.554295
\(91\) 8.01623e39 0.554143
\(92\) 9.29284e39 0.513450
\(93\) 1.78745e40 0.791286
\(94\) −8.08920e40 −2.87597
\(95\) −1.39076e40 −0.398034
\(96\) 4.74757e40 1.09625
\(97\) 7.50364e40 1.40104 0.700521 0.713632i \(-0.252951\pi\)
0.700521 + 0.713632i \(0.252951\pi\)
\(98\) −8.67045e40 −1.31192
\(99\) 1.70011e40 0.208908
\(100\) 2.45366e41 2.45366
\(101\) −9.43857e40 −0.769694 −0.384847 0.922980i \(-0.625746\pi\)
−0.384847 + 0.922980i \(0.625746\pi\)
\(102\) −8.20967e40 −0.547044
\(103\) −2.03470e41 −1.11003 −0.555017 0.831839i \(-0.687288\pi\)
−0.555017 + 0.831839i \(0.687288\pi\)
\(104\) −2.85963e41 −1.27975
\(105\) −2.07010e41 −0.761397
\(106\) 9.02720e41 2.73390
\(107\) −1.95974e41 −0.489589 −0.244794 0.969575i \(-0.578720\pi\)
−0.244794 + 0.969575i \(0.578720\pi\)
\(108\) 6.78953e41 1.40169
\(109\) 1.27681e41 0.218214 0.109107 0.994030i \(-0.465201\pi\)
0.109107 + 0.994030i \(0.465201\pi\)
\(110\) −1.75203e42 −2.48308
\(111\) 7.08060e41 0.833584
\(112\) −3.20613e39 −0.00314059
\(113\) 1.47167e42 1.20144 0.600720 0.799460i \(-0.294881\pi\)
0.600720 + 0.799460i \(0.294881\pi\)
\(114\) −6.57730e41 −0.448227
\(115\) −8.81225e41 −0.502089
\(116\) −1.49681e42 −0.714131
\(117\) −6.86696e41 −0.274761
\(118\) −1.61544e41 −0.0542886
\(119\) −4.72109e41 −0.133453
\(120\) 7.38467e42 1.75839
\(121\) −3.19384e41 −0.0641524
\(122\) −6.59966e41 −0.111981
\(123\) 9.60435e42 1.37852
\(124\) −9.56910e42 −1.16339
\(125\) −7.89360e42 −0.813992
\(126\) −1.73869e42 −0.152274
\(127\) −3.99623e42 −0.297628 −0.148814 0.988865i \(-0.547546\pi\)
−0.148814 + 0.988865i \(0.547546\pi\)
\(128\) −2.56002e43 −1.62345
\(129\) 5.06230e41 0.0273690
\(130\) 7.07668e43 3.26581
\(131\) 1.69219e43 0.667404 0.333702 0.942679i \(-0.391702\pi\)
0.333702 + 0.942679i \(0.391702\pi\)
\(132\) −5.12480e43 −1.72946
\(133\) −3.78237e42 −0.109347
\(134\) 5.94754e43 1.47465
\(135\) −6.43840e43 −1.37068
\(136\) 1.68415e43 0.308201
\(137\) −3.96792e43 −0.624873 −0.312436 0.949939i \(-0.601145\pi\)
−0.312436 + 0.949939i \(0.601145\pi\)
\(138\) −4.16755e43 −0.565405
\(139\) −2.45873e43 −0.287679 −0.143839 0.989601i \(-0.545945\pi\)
−0.143839 + 0.989601i \(0.545945\pi\)
\(140\) 1.10823e44 1.11945
\(141\) 2.24378e44 1.95879
\(142\) −3.01616e44 −2.27795
\(143\) −1.88189e44 −1.23085
\(144\) 2.74647e41 0.00155720
\(145\) 1.41940e44 0.698330
\(146\) 5.88147e44 2.51334
\(147\) 2.40500e44 0.893532
\(148\) −3.79060e44 −1.22558
\(149\) −2.54122e42 −0.00715687 −0.00357844 0.999994i \(-0.501139\pi\)
−0.00357844 + 0.999994i \(0.501139\pi\)
\(150\) −1.10039e45 −2.70194
\(151\) 7.23871e43 0.155108 0.0775539 0.996988i \(-0.475289\pi\)
0.0775539 + 0.996988i \(0.475289\pi\)
\(152\) 1.34928e44 0.252528
\(153\) 4.04423e43 0.0661701
\(154\) −4.76488e44 −0.682145
\(155\) 9.07422e44 1.13765
\(156\) 2.06998e45 2.27463
\(157\) −1.76934e45 −1.70557 −0.852783 0.522266i \(-0.825087\pi\)
−0.852783 + 0.522266i \(0.825087\pi\)
\(158\) 1.66162e45 1.40625
\(159\) −2.50396e45 −1.86203
\(160\) 2.41017e45 1.57611
\(161\) −2.39661e44 −0.137933
\(162\) −3.73460e45 −1.89316
\(163\) 1.55154e45 0.693295 0.346648 0.937995i \(-0.387320\pi\)
0.346648 + 0.937995i \(0.387320\pi\)
\(164\) −5.14168e45 −2.02678
\(165\) 4.85976e45 1.69120
\(166\) 4.34224e45 1.33505
\(167\) −5.53546e45 −1.50476 −0.752378 0.658732i \(-0.771093\pi\)
−0.752378 + 0.658732i \(0.771093\pi\)
\(168\) 2.00836e45 0.483060
\(169\) 2.90574e45 0.618842
\(170\) −4.16774e45 −0.786499
\(171\) 3.24010e44 0.0542173
\(172\) −2.71010e44 −0.0402395
\(173\) 6.50011e45 0.856990 0.428495 0.903544i \(-0.359044\pi\)
0.428495 + 0.903544i \(0.359044\pi\)
\(174\) 6.71272e45 0.786392
\(175\) −6.32796e45 −0.659149
\(176\) 7.52669e43 0.00697580
\(177\) 4.48089e44 0.0369753
\(178\) −1.71879e46 −1.26361
\(179\) −1.33774e46 −0.876765 −0.438383 0.898788i \(-0.644449\pi\)
−0.438383 + 0.898788i \(0.644449\pi\)
\(180\) −9.49344e45 −0.555057
\(181\) 1.31888e46 0.688328 0.344164 0.938910i \(-0.388162\pi\)
0.344164 + 0.938910i \(0.388162\pi\)
\(182\) 1.92460e46 0.897173
\(183\) 1.83061e45 0.0762691
\(184\) 8.54941e45 0.318545
\(185\) 3.59456e46 1.19847
\(186\) 4.29144e46 1.28111
\(187\) 1.10832e46 0.296423
\(188\) −1.20121e47 −2.87993
\(189\) −1.75101e46 −0.376549
\(190\) −3.33905e46 −0.644428
\(191\) −1.01788e47 −1.76406 −0.882031 0.471192i \(-0.843824\pi\)
−0.882031 + 0.471192i \(0.843824\pi\)
\(192\) 1.14494e47 1.78282
\(193\) 8.24135e46 1.15365 0.576824 0.816868i \(-0.304292\pi\)
0.576824 + 0.816868i \(0.304292\pi\)
\(194\) 1.80153e47 2.26833
\(195\) −1.96292e47 −2.22430
\(196\) −1.28752e47 −1.31372
\(197\) 2.27618e46 0.209242 0.104621 0.994512i \(-0.466637\pi\)
0.104621 + 0.994512i \(0.466637\pi\)
\(198\) 4.08174e46 0.338228
\(199\) 1.53840e47 1.14969 0.574846 0.818262i \(-0.305062\pi\)
0.574846 + 0.818262i \(0.305062\pi\)
\(200\) 2.25737e47 1.52226
\(201\) −1.64972e47 −1.00437
\(202\) −2.26608e47 −1.24616
\(203\) 3.86025e46 0.191843
\(204\) −1.21909e47 −0.547796
\(205\) 4.87577e47 1.98193
\(206\) −4.88505e47 −1.79718
\(207\) 2.05301e46 0.0683910
\(208\) −3.04013e45 −0.00917474
\(209\) 8.87947e46 0.242878
\(210\) −4.97006e47 −1.23272
\(211\) −7.00983e47 −1.57731 −0.788655 0.614836i \(-0.789222\pi\)
−0.788655 + 0.614836i \(0.789222\pi\)
\(212\) 1.34049e48 2.73766
\(213\) 8.36620e47 1.55148
\(214\) −4.70509e47 −0.792658
\(215\) 2.56994e46 0.0393491
\(216\) 6.24637e47 0.869612
\(217\) 2.46786e47 0.312533
\(218\) 3.06546e47 0.353295
\(219\) −1.63140e48 −1.71181
\(220\) −2.60167e48 −2.48649
\(221\) −4.47665e47 −0.389863
\(222\) 1.69996e48 1.34960
\(223\) −2.18317e47 −0.158066 −0.0790330 0.996872i \(-0.525183\pi\)
−0.0790330 + 0.996872i \(0.525183\pi\)
\(224\) 6.55477e47 0.432985
\(225\) 5.42073e47 0.326826
\(226\) 3.53329e48 1.94516
\(227\) −1.64330e48 −0.826391 −0.413196 0.910642i \(-0.635587\pi\)
−0.413196 + 0.910642i \(0.635587\pi\)
\(228\) −9.76695e47 −0.448843
\(229\) 2.31385e48 0.972093 0.486047 0.873933i \(-0.338438\pi\)
0.486047 + 0.873933i \(0.338438\pi\)
\(230\) −2.11571e48 −0.812897
\(231\) 1.32168e48 0.464601
\(232\) −1.37706e48 −0.443048
\(233\) −5.25096e48 −1.54683 −0.773414 0.633901i \(-0.781453\pi\)
−0.773414 + 0.633901i \(0.781453\pi\)
\(234\) −1.64867e48 −0.444845
\(235\) 1.13908e49 2.81620
\(236\) −2.39884e47 −0.0543633
\(237\) −4.60899e48 −0.957777
\(238\) −1.13347e48 −0.216065
\(239\) −4.02474e48 −0.704013 −0.352007 0.935998i \(-0.614501\pi\)
−0.352007 + 0.935998i \(0.614501\pi\)
\(240\) 7.85080e46 0.0126062
\(241\) −2.82992e48 −0.417277 −0.208638 0.977993i \(-0.566903\pi\)
−0.208638 + 0.977993i \(0.566903\pi\)
\(242\) −7.66800e47 −0.103865
\(243\) 3.41307e48 0.424832
\(244\) −9.80016e47 −0.112135
\(245\) 1.22093e49 1.28465
\(246\) 2.30588e49 2.23186
\(247\) −3.58654e48 −0.319439
\(248\) −8.80357e48 −0.721771
\(249\) −1.20445e49 −0.909287
\(250\) −1.89516e49 −1.31788
\(251\) 2.68976e48 0.172346 0.0861732 0.996280i \(-0.472536\pi\)
0.0861732 + 0.996280i \(0.472536\pi\)
\(252\) −2.58187e48 −0.152484
\(253\) 5.62627e48 0.306372
\(254\) −9.59444e48 −0.481868
\(255\) 1.15605e49 0.535675
\(256\) −2.36562e49 −1.01164
\(257\) −6.05982e48 −0.239238 −0.119619 0.992820i \(-0.538167\pi\)
−0.119619 + 0.992820i \(0.538167\pi\)
\(258\) 1.21540e48 0.0443112
\(259\) 9.77589e48 0.329239
\(260\) 1.05085e50 3.27030
\(261\) −3.30681e48 −0.0951215
\(262\) 4.06275e49 1.08055
\(263\) −4.72993e49 −1.16349 −0.581743 0.813372i \(-0.697629\pi\)
−0.581743 + 0.813372i \(0.697629\pi\)
\(264\) −4.71482e49 −1.07296
\(265\) −1.27117e50 −2.67709
\(266\) −9.08100e48 −0.177035
\(267\) 4.76757e49 0.860629
\(268\) 8.83179e49 1.47668
\(269\) 3.21338e49 0.497784 0.248892 0.968531i \(-0.419934\pi\)
0.248892 + 0.968531i \(0.419934\pi\)
\(270\) −1.54578e50 −2.21917
\(271\) 1.33856e50 1.78142 0.890709 0.454574i \(-0.150208\pi\)
0.890709 + 0.454574i \(0.150208\pi\)
\(272\) 1.79046e47 0.00220954
\(273\) −5.33843e49 −0.611054
\(274\) −9.52648e49 −1.01169
\(275\) 1.48555e50 1.46409
\(276\) −6.18859e49 −0.566182
\(277\) 5.53962e49 0.470592 0.235296 0.971924i \(-0.424394\pi\)
0.235296 + 0.971924i \(0.424394\pi\)
\(278\) −5.90310e49 −0.465760
\(279\) −2.11404e49 −0.154963
\(280\) 1.01957e50 0.694508
\(281\) −2.22399e49 −0.140816 −0.0704082 0.997518i \(-0.522430\pi\)
−0.0704082 + 0.997518i \(0.522430\pi\)
\(282\) 5.38703e50 3.17134
\(283\) −1.61973e50 −0.886790 −0.443395 0.896326i \(-0.646226\pi\)
−0.443395 + 0.896326i \(0.646226\pi\)
\(284\) −4.47884e50 −2.28108
\(285\) 9.26184e49 0.438912
\(286\) −4.51817e50 −1.99278
\(287\) 1.32603e50 0.544471
\(288\) −5.61503e49 −0.214687
\(289\) −2.54441e50 −0.906110
\(290\) 3.40780e50 1.13062
\(291\) −4.99707e50 −1.54493
\(292\) 8.73367e50 2.51680
\(293\) 4.58527e49 0.123191 0.0615955 0.998101i \(-0.480381\pi\)
0.0615955 + 0.998101i \(0.480381\pi\)
\(294\) 5.77411e50 1.44665
\(295\) 2.27478e49 0.0531604
\(296\) −3.48735e50 −0.760353
\(297\) 4.11066e50 0.836381
\(298\) −6.10115e48 −0.0115872
\(299\) −2.27252e50 −0.402948
\(300\) −1.63402e51 −2.70566
\(301\) 6.98931e48 0.0108099
\(302\) 1.73792e50 0.251124
\(303\) 6.28564e50 0.848742
\(304\) 1.43445e48 0.00181041
\(305\) 9.29333e49 0.109654
\(306\) 9.70970e49 0.107131
\(307\) −1.04806e51 −1.08156 −0.540779 0.841165i \(-0.681871\pi\)
−0.540779 + 0.841165i \(0.681871\pi\)
\(308\) −7.07560e50 −0.683083
\(309\) 1.35501e51 1.22404
\(310\) 2.17861e51 1.84189
\(311\) −1.45879e51 −1.15453 −0.577265 0.816557i \(-0.695880\pi\)
−0.577265 + 0.816557i \(0.695880\pi\)
\(312\) 1.90438e51 1.41118
\(313\) 5.50229e50 0.381843 0.190922 0.981605i \(-0.438852\pi\)
0.190922 + 0.981605i \(0.438852\pi\)
\(314\) −4.24796e51 −2.76136
\(315\) 2.44834e50 0.149110
\(316\) 2.46742e51 1.40818
\(317\) 2.01228e51 1.07640 0.538199 0.842818i \(-0.319105\pi\)
0.538199 + 0.842818i \(0.319105\pi\)
\(318\) −6.01169e51 −3.01468
\(319\) −9.06229e50 −0.426117
\(320\) 5.81243e51 2.56320
\(321\) 1.30510e51 0.539870
\(322\) −5.75396e50 −0.223317
\(323\) 2.11226e50 0.0769299
\(324\) −5.54569e51 −1.89576
\(325\) −6.00033e51 −1.92560
\(326\) 3.72506e51 1.12246
\(327\) −8.50295e50 −0.240625
\(328\) −4.73035e51 −1.25742
\(329\) 3.09789e51 0.773660
\(330\) 1.16677e52 2.73810
\(331\) 7.84661e51 1.73065 0.865323 0.501215i \(-0.167113\pi\)
0.865323 + 0.501215i \(0.167113\pi\)
\(332\) 6.44800e51 1.33689
\(333\) −8.37434e50 −0.163246
\(334\) −1.32899e52 −2.43624
\(335\) −8.37504e51 −1.44400
\(336\) 2.13513e49 0.00346313
\(337\) 1.59637e51 0.243624 0.121812 0.992553i \(-0.461129\pi\)
0.121812 + 0.992553i \(0.461129\pi\)
\(338\) 6.97632e51 1.00192
\(339\) −9.80062e51 −1.32483
\(340\) −6.18889e51 −0.787580
\(341\) −5.79352e51 −0.694190
\(342\) 7.77907e50 0.0877794
\(343\) 7.41827e51 0.788448
\(344\) −2.49329e50 −0.0249646
\(345\) 5.86854e51 0.553654
\(346\) 1.56060e52 1.38749
\(347\) −3.39579e51 −0.284568 −0.142284 0.989826i \(-0.545445\pi\)
−0.142284 + 0.989826i \(0.545445\pi\)
\(348\) 9.96804e51 0.787473
\(349\) 9.21738e51 0.686572 0.343286 0.939231i \(-0.388460\pi\)
0.343286 + 0.939231i \(0.388460\pi\)
\(350\) −1.51926e52 −1.06718
\(351\) −1.66035e52 −1.10003
\(352\) −1.53879e52 −0.961737
\(353\) 1.05771e52 0.623715 0.311857 0.950129i \(-0.399049\pi\)
0.311857 + 0.950129i \(0.399049\pi\)
\(354\) 1.07581e51 0.0598641
\(355\) 4.24721e52 2.23060
\(356\) −2.55231e52 −1.26535
\(357\) 3.14402e51 0.147159
\(358\) −3.21174e52 −1.41951
\(359\) 1.47439e52 0.615428 0.307714 0.951479i \(-0.400436\pi\)
0.307714 + 0.951479i \(0.400436\pi\)
\(360\) −8.73396e51 −0.344358
\(361\) −2.51548e52 −0.936966
\(362\) 3.16647e52 1.11442
\(363\) 2.12694e51 0.0707409
\(364\) 2.85793e52 0.898407
\(365\) −8.28200e52 −2.46111
\(366\) 4.39506e51 0.123482
\(367\) 5.60693e52 1.48960 0.744802 0.667285i \(-0.232544\pi\)
0.744802 + 0.667285i \(0.232544\pi\)
\(368\) 9.08906e49 0.00228370
\(369\) −1.13592e52 −0.269965
\(370\) 8.63009e52 1.94035
\(371\) −3.45711e52 −0.735442
\(372\) 6.37257e52 1.28288
\(373\) −8.78610e52 −1.67404 −0.837018 0.547175i \(-0.815703\pi\)
−0.837018 + 0.547175i \(0.815703\pi\)
\(374\) 2.66094e52 0.479918
\(375\) 5.25677e52 0.897590
\(376\) −1.10511e53 −1.78671
\(377\) 3.66038e52 0.560440
\(378\) −4.20395e52 −0.609644
\(379\) −2.73345e52 −0.375498 −0.187749 0.982217i \(-0.560119\pi\)
−0.187749 + 0.982217i \(0.560119\pi\)
\(380\) −4.95832e52 −0.645314
\(381\) 2.66130e52 0.328195
\(382\) −2.44381e53 −2.85607
\(383\) 2.55810e52 0.283362 0.141681 0.989912i \(-0.454749\pi\)
0.141681 + 0.989912i \(0.454749\pi\)
\(384\) 1.70485e53 1.79018
\(385\) 6.70967e52 0.667969
\(386\) 1.97864e53 1.86779
\(387\) −5.98726e50 −0.00535986
\(388\) 2.67518e53 2.27145
\(389\) 1.34317e53 1.08185 0.540923 0.841072i \(-0.318075\pi\)
0.540923 + 0.841072i \(0.318075\pi\)
\(390\) −4.71273e53 −3.60121
\(391\) 1.33838e52 0.0970413
\(392\) −1.18452e53 −0.815035
\(393\) −1.12692e53 −0.735947
\(394\) 5.46483e52 0.338770
\(395\) −2.33981e53 −1.37702
\(396\) 6.06118e52 0.338693
\(397\) 6.36376e52 0.337683 0.168841 0.985643i \(-0.445997\pi\)
0.168841 + 0.985643i \(0.445997\pi\)
\(398\) 3.69351e53 1.86138
\(399\) 2.51888e52 0.120577
\(400\) 2.39986e51 0.0109133
\(401\) −1.74531e53 −0.754071 −0.377036 0.926199i \(-0.623057\pi\)
−0.377036 + 0.926199i \(0.623057\pi\)
\(402\) −3.96078e53 −1.62610
\(403\) 2.34008e53 0.913015
\(404\) −3.36501e53 −1.24787
\(405\) 5.25888e53 1.85381
\(406\) 9.26797e52 0.310600
\(407\) −2.29498e53 −0.731298
\(408\) −1.12157e53 −0.339853
\(409\) −2.90188e53 −0.836279 −0.418140 0.908383i \(-0.637318\pi\)
−0.418140 + 0.908383i \(0.637318\pi\)
\(410\) 1.17061e54 3.20881
\(411\) 2.64245e53 0.689048
\(412\) −7.25405e53 −1.79965
\(413\) 6.18657e51 0.0146041
\(414\) 4.92902e52 0.110727
\(415\) −6.11453e53 −1.30731
\(416\) 6.21540e53 1.26490
\(417\) 1.63740e53 0.317223
\(418\) 2.13185e53 0.393227
\(419\) −1.59662e53 −0.280424 −0.140212 0.990121i \(-0.544778\pi\)
−0.140212 + 0.990121i \(0.544778\pi\)
\(420\) −7.38028e53 −1.23442
\(421\) −4.06387e53 −0.647377 −0.323688 0.946164i \(-0.604923\pi\)
−0.323688 + 0.946164i \(0.604923\pi\)
\(422\) −1.68297e54 −2.55371
\(423\) −2.65375e53 −0.383603
\(424\) 1.23325e54 1.69845
\(425\) 3.53384e53 0.463739
\(426\) 2.00862e54 2.51189
\(427\) 2.52744e52 0.0301238
\(428\) −6.98682e53 −0.793748
\(429\) 1.25325e54 1.35726
\(430\) 6.17011e52 0.0637074
\(431\) −9.52197e53 −0.937438 −0.468719 0.883347i \(-0.655284\pi\)
−0.468719 + 0.883347i \(0.655284\pi\)
\(432\) 6.64064e51 0.00623438
\(433\) 4.92132e53 0.440636 0.220318 0.975428i \(-0.429291\pi\)
0.220318 + 0.975428i \(0.429291\pi\)
\(434\) 5.92501e53 0.505999
\(435\) −9.45253e53 −0.770049
\(436\) 4.55205e53 0.353780
\(437\) 1.07227e53 0.0795120
\(438\) −3.91678e54 −2.77147
\(439\) 1.37566e54 0.928940 0.464470 0.885589i \(-0.346245\pi\)
0.464470 + 0.885589i \(0.346245\pi\)
\(440\) −2.39354e54 −1.54263
\(441\) −2.84443e53 −0.174987
\(442\) −1.07479e54 −0.631199
\(443\) 2.53462e54 1.42114 0.710570 0.703626i \(-0.248437\pi\)
0.710570 + 0.703626i \(0.248437\pi\)
\(444\) 2.52436e54 1.35145
\(445\) 2.42032e54 1.23735
\(446\) −5.24152e53 −0.255913
\(447\) 1.69233e52 0.00789189
\(448\) 1.58077e54 0.704156
\(449\) −3.83879e54 −1.63359 −0.816797 0.576926i \(-0.804252\pi\)
−0.816797 + 0.576926i \(0.804252\pi\)
\(450\) 1.30145e54 0.529140
\(451\) −3.11298e54 −1.20937
\(452\) 5.24676e54 1.94784
\(453\) −4.82064e53 −0.171038
\(454\) −3.94535e54 −1.33795
\(455\) −2.71013e54 −0.878528
\(456\) −8.98559e53 −0.278463
\(457\) 5.46700e54 1.61982 0.809910 0.586554i \(-0.199516\pi\)
0.809910 + 0.586554i \(0.199516\pi\)
\(458\) 5.55527e54 1.57385
\(459\) 9.77848e53 0.264918
\(460\) −3.14172e54 −0.814014
\(461\) −6.86605e54 −1.70152 −0.850762 0.525551i \(-0.823859\pi\)
−0.850762 + 0.525551i \(0.823859\pi\)
\(462\) 3.17318e54 0.752202
\(463\) 2.69469e54 0.611082 0.305541 0.952179i \(-0.401163\pi\)
0.305541 + 0.952179i \(0.401163\pi\)
\(464\) −1.46399e52 −0.00317628
\(465\) −6.04300e54 −1.25449
\(466\) −1.26069e55 −2.50436
\(467\) −1.01233e54 −0.192453 −0.0962267 0.995359i \(-0.530677\pi\)
−0.0962267 + 0.995359i \(0.530677\pi\)
\(468\) −2.44819e54 −0.445457
\(469\) −2.27770e54 −0.396693
\(470\) 2.73480e55 4.55952
\(471\) 1.17830e55 1.88073
\(472\) −2.20693e53 −0.0337271
\(473\) −1.64081e53 −0.0240107
\(474\) −1.10656e55 −1.55067
\(475\) 2.83119e54 0.379970
\(476\) −1.68315e54 −0.216362
\(477\) 2.96147e54 0.364654
\(478\) −9.66289e54 −1.13982
\(479\) 8.03512e54 0.908060 0.454030 0.890986i \(-0.349986\pi\)
0.454030 + 0.890986i \(0.349986\pi\)
\(480\) −1.60506e55 −1.73798
\(481\) 9.26974e54 0.961820
\(482\) −6.79428e54 −0.675583
\(483\) 1.59603e54 0.152098
\(484\) −1.13866e54 −0.104007
\(485\) −2.53683e55 −2.22119
\(486\) 8.19436e54 0.687815
\(487\) 3.58922e54 0.288839 0.144420 0.989517i \(-0.453868\pi\)
0.144420 + 0.989517i \(0.453868\pi\)
\(488\) −9.01614e53 −0.0695688
\(489\) −1.03326e55 −0.764497
\(490\) 2.93130e55 2.07989
\(491\) 8.12128e53 0.0552655 0.0276327 0.999618i \(-0.491203\pi\)
0.0276327 + 0.999618i \(0.491203\pi\)
\(492\) 3.42412e55 2.23493
\(493\) −2.15575e54 −0.134970
\(494\) −8.61083e54 −0.517181
\(495\) −5.74772e54 −0.331199
\(496\) −9.35926e52 −0.00517448
\(497\) 1.15509e55 0.612785
\(498\) −2.89173e55 −1.47216
\(499\) −6.57141e54 −0.321068 −0.160534 0.987030i \(-0.551322\pi\)
−0.160534 + 0.987030i \(0.551322\pi\)
\(500\) −2.81421e55 −1.31969
\(501\) 3.68636e55 1.65930
\(502\) 6.45777e54 0.279034
\(503\) −3.12409e55 −1.29592 −0.647962 0.761672i \(-0.724379\pi\)
−0.647962 + 0.761672i \(0.724379\pi\)
\(504\) −2.37532e54 −0.0946010
\(505\) 3.19099e55 1.22026
\(506\) 1.35080e55 0.496026
\(507\) −1.93509e55 −0.682397
\(508\) −1.42472e55 −0.482530
\(509\) −2.10477e55 −0.684684 −0.342342 0.939575i \(-0.611220\pi\)
−0.342342 + 0.939575i \(0.611220\pi\)
\(510\) 2.77552e55 0.867273
\(511\) −2.25240e55 −0.676110
\(512\) −5.00094e53 −0.0144217
\(513\) 7.83418e54 0.217064
\(514\) −1.45489e55 −0.387334
\(515\) 6.87889e55 1.75983
\(516\) 1.80480e54 0.0443721
\(517\) −7.27259e55 −1.71843
\(518\) 2.34707e55 0.533047
\(519\) −4.32877e55 −0.945004
\(520\) 9.66782e55 2.02890
\(521\) 1.04403e55 0.210639 0.105320 0.994438i \(-0.466413\pi\)
0.105320 + 0.994438i \(0.466413\pi\)
\(522\) −7.93924e54 −0.154004
\(523\) 3.89473e55 0.726429 0.363215 0.931706i \(-0.381679\pi\)
0.363215 + 0.931706i \(0.381679\pi\)
\(524\) 6.03297e55 1.08203
\(525\) 4.21412e55 0.726844
\(526\) −1.13560e56 −1.88372
\(527\) −1.37817e55 −0.219880
\(528\) −5.01242e53 −0.00769222
\(529\) −6.09452e55 −0.899702
\(530\) −3.05191e56 −4.33428
\(531\) −5.29962e53 −0.00724114
\(532\) −1.34848e55 −0.177279
\(533\) 1.25738e56 1.59059
\(534\) 1.14463e56 1.39338
\(535\) 6.62549e55 0.776185
\(536\) 8.12524e55 0.916132
\(537\) 8.90869e55 0.966810
\(538\) 7.71493e55 0.805926
\(539\) −7.79515e55 −0.783890
\(540\) −2.29540e56 −2.22222
\(541\) 7.83261e55 0.730067 0.365033 0.930994i \(-0.381058\pi\)
0.365033 + 0.930994i \(0.381058\pi\)
\(542\) 3.21370e56 2.88417
\(543\) −8.78314e55 −0.759020
\(544\) −3.66050e55 −0.304623
\(545\) −4.31663e55 −0.345953
\(546\) −1.28169e56 −0.989314
\(547\) −1.75108e56 −1.30187 −0.650933 0.759135i \(-0.725622\pi\)
−0.650933 + 0.759135i \(0.725622\pi\)
\(548\) −1.41463e56 −1.01308
\(549\) −2.16509e54 −0.0149363
\(550\) 3.56662e56 2.37040
\(551\) −1.72711e55 −0.110589
\(552\) −5.69351e55 −0.351260
\(553\) −6.36343e55 −0.378291
\(554\) 1.32999e56 0.761902
\(555\) −2.39381e56 −1.32155
\(556\) −8.76581e55 −0.466400
\(557\) 2.17848e56 1.11718 0.558588 0.829445i \(-0.311343\pi\)
0.558588 + 0.829445i \(0.311343\pi\)
\(558\) −5.07555e55 −0.250889
\(559\) 6.62744e54 0.0315794
\(560\) 1.08393e54 0.00497903
\(561\) −7.38089e55 −0.326866
\(562\) −5.33952e55 −0.227986
\(563\) 3.30210e56 1.35947 0.679733 0.733459i \(-0.262095\pi\)
0.679733 + 0.733459i \(0.262095\pi\)
\(564\) 7.99946e56 3.17570
\(565\) −4.97541e56 −1.90474
\(566\) −3.88877e56 −1.43574
\(567\) 1.43022e56 0.509274
\(568\) −4.12053e56 −1.41518
\(569\) −8.68468e55 −0.287708 −0.143854 0.989599i \(-0.545950\pi\)
−0.143854 + 0.989599i \(0.545950\pi\)
\(570\) 2.22365e56 0.710611
\(571\) 4.87083e56 1.50163 0.750815 0.660512i \(-0.229661\pi\)
0.750815 + 0.660512i \(0.229661\pi\)
\(572\) −6.70926e56 −1.99552
\(573\) 6.77862e56 1.94523
\(574\) 3.18363e56 0.881514
\(575\) 1.79391e56 0.479304
\(576\) −1.35414e56 −0.349142
\(577\) −7.14972e56 −1.77904 −0.889518 0.456900i \(-0.848960\pi\)
−0.889518 + 0.456900i \(0.848960\pi\)
\(578\) −6.10880e56 −1.46702
\(579\) −5.48835e56 −1.27213
\(580\) 5.06041e56 1.13217
\(581\) −1.66293e56 −0.359139
\(582\) −1.19973e57 −2.50129
\(583\) 8.11589e56 1.63354
\(584\) 8.03498e56 1.56143
\(585\) 2.32158e56 0.435600
\(586\) 1.10087e56 0.199450
\(587\) 4.35978e56 0.762752 0.381376 0.924420i \(-0.375450\pi\)
0.381376 + 0.924420i \(0.375450\pi\)
\(588\) 8.57426e56 1.44864
\(589\) −1.10414e56 −0.180161
\(590\) 5.46147e55 0.0860682
\(591\) −1.51583e56 −0.230732
\(592\) −3.70747e54 −0.00545109
\(593\) −8.14584e56 −1.15695 −0.578475 0.815700i \(-0.696352\pi\)
−0.578475 + 0.815700i \(0.696352\pi\)
\(594\) 9.86918e56 1.35413
\(595\) 1.59610e56 0.211574
\(596\) −9.05989e54 −0.0116031
\(597\) −1.02450e57 −1.26777
\(598\) −5.45605e56 −0.652385
\(599\) −1.46611e57 −1.69401 −0.847004 0.531587i \(-0.821596\pi\)
−0.847004 + 0.531587i \(0.821596\pi\)
\(600\) −1.50330e57 −1.67859
\(601\) 1.27455e57 1.37540 0.687700 0.725995i \(-0.258620\pi\)
0.687700 + 0.725995i \(0.258620\pi\)
\(602\) 1.67805e55 0.0175015
\(603\) 1.95115e56 0.196692
\(604\) 2.58073e56 0.251469
\(605\) 1.07977e56 0.101706
\(606\) 1.50910e57 1.37414
\(607\) 7.08566e56 0.623752 0.311876 0.950123i \(-0.399043\pi\)
0.311876 + 0.950123i \(0.399043\pi\)
\(608\) −2.93267e56 −0.249597
\(609\) −2.57074e56 −0.211546
\(610\) 2.23121e56 0.177533
\(611\) 2.93750e57 2.26012
\(612\) 1.44184e56 0.107279
\(613\) −1.17754e57 −0.847298 −0.423649 0.905827i \(-0.639251\pi\)
−0.423649 + 0.905827i \(0.639251\pi\)
\(614\) −2.51626e57 −1.75107
\(615\) −3.24703e57 −2.18548
\(616\) −6.50955e56 −0.423786
\(617\) 1.61404e57 1.01641 0.508205 0.861236i \(-0.330309\pi\)
0.508205 + 0.861236i \(0.330309\pi\)
\(618\) 3.25321e57 1.98175
\(619\) −6.36804e56 −0.375273 −0.187637 0.982239i \(-0.560083\pi\)
−0.187637 + 0.982239i \(0.560083\pi\)
\(620\) 3.23512e57 1.84442
\(621\) 4.96394e56 0.273810
\(622\) −3.50238e57 −1.86922
\(623\) 6.58238e56 0.339921
\(624\) 2.02458e55 0.0101170
\(625\) −4.61045e56 −0.222948
\(626\) 1.32103e57 0.618215
\(627\) −5.91331e56 −0.267822
\(628\) −6.30801e57 −2.76516
\(629\) −5.45933e56 −0.231633
\(630\) 5.87816e56 0.241413
\(631\) −2.73724e57 −1.08820 −0.544102 0.839019i \(-0.683130\pi\)
−0.544102 + 0.839019i \(0.683130\pi\)
\(632\) 2.27003e57 0.873636
\(633\) 4.66821e57 1.73930
\(634\) 4.83123e57 1.74272
\(635\) 1.35104e57 0.471854
\(636\) −8.92706e57 −3.01882
\(637\) 3.14857e57 1.03099
\(638\) −2.17574e57 −0.689896
\(639\) −9.89483e56 −0.303837
\(640\) 8.65491e57 2.57379
\(641\) −2.81100e57 −0.809602 −0.404801 0.914405i \(-0.632659\pi\)
−0.404801 + 0.914405i \(0.632659\pi\)
\(642\) 3.13337e57 0.874065
\(643\) 1.13133e57 0.305679 0.152840 0.988251i \(-0.451158\pi\)
0.152840 + 0.988251i \(0.451158\pi\)
\(644\) −8.54433e56 −0.223624
\(645\) −1.71146e56 −0.0433903
\(646\) 5.07127e56 0.124552
\(647\) 2.99702e57 0.713102 0.356551 0.934276i \(-0.383953\pi\)
0.356551 + 0.934276i \(0.383953\pi\)
\(648\) −5.10203e57 −1.17613
\(649\) −1.45236e56 −0.0324382
\(650\) −1.44060e58 −3.11760
\(651\) −1.64348e57 −0.344630
\(652\) 5.53153e57 1.12401
\(653\) 1.36513e57 0.268815 0.134407 0.990926i \(-0.457087\pi\)
0.134407 + 0.990926i \(0.457087\pi\)
\(654\) −2.04145e57 −0.389579
\(655\) −5.72096e57 −1.05809
\(656\) −5.02893e55 −0.00901461
\(657\) 1.92948e57 0.335235
\(658\) 7.43764e57 1.25258
\(659\) −8.45274e57 −1.37990 −0.689949 0.723858i \(-0.742367\pi\)
−0.689949 + 0.723858i \(0.742367\pi\)
\(660\) 1.73259e58 2.74186
\(661\) −1.12370e58 −1.72393 −0.861964 0.506970i \(-0.830766\pi\)
−0.861964 + 0.506970i \(0.830766\pi\)
\(662\) 1.88387e58 2.80197
\(663\) 2.98124e57 0.429902
\(664\) 5.93216e57 0.829406
\(665\) 1.27874e57 0.173356
\(666\) −2.01057e57 −0.264301
\(667\) −1.09434e57 −0.139500
\(668\) −1.97349e58 −2.43959
\(669\) 1.45389e57 0.174300
\(670\) −2.01074e58 −2.33788
\(671\) −5.93342e56 −0.0669103
\(672\) −4.36517e57 −0.477453
\(673\) 1.32183e58 1.40239 0.701193 0.712971i \(-0.252651\pi\)
0.701193 + 0.712971i \(0.252651\pi\)
\(674\) 3.83269e57 0.394435
\(675\) 1.31067e58 1.30848
\(676\) 1.03595e58 1.00330
\(677\) 4.87678e57 0.458211 0.229105 0.973402i \(-0.426420\pi\)
0.229105 + 0.973402i \(0.426420\pi\)
\(678\) −2.35301e58 −2.14494
\(679\) −6.89924e57 −0.610198
\(680\) −5.69377e57 −0.488616
\(681\) 1.09436e58 0.911262
\(682\) −1.39095e58 −1.12391
\(683\) 2.89510e57 0.227007 0.113504 0.993538i \(-0.463793\pi\)
0.113504 + 0.993538i \(0.463793\pi\)
\(684\) 1.15515e57 0.0879001
\(685\) 1.34147e58 0.990662
\(686\) 1.78103e58 1.27652
\(687\) −1.54092e58 −1.07193
\(688\) −2.65067e54 −0.000178975 0
\(689\) −3.27812e58 −2.14848
\(690\) 1.40896e58 0.896382
\(691\) 6.99589e57 0.432059 0.216029 0.976387i \(-0.430689\pi\)
0.216029 + 0.976387i \(0.430689\pi\)
\(692\) 2.31740e58 1.38940
\(693\) −1.56317e57 −0.0909860
\(694\) −8.15286e57 −0.460724
\(695\) 8.31247e57 0.456080
\(696\) 9.17060e57 0.488549
\(697\) −7.40520e57 −0.383058
\(698\) 2.21298e58 1.11158
\(699\) 3.49689e58 1.70569
\(700\) −2.25603e58 −1.06865
\(701\) −6.70824e56 −0.0308595 −0.0154298 0.999881i \(-0.504912\pi\)
−0.0154298 + 0.999881i \(0.504912\pi\)
\(702\) −3.98629e58 −1.78098
\(703\) −4.37383e57 −0.189792
\(704\) −3.71100e58 −1.56405
\(705\) −7.58576e58 −3.10543
\(706\) 2.53943e58 1.00981
\(707\) 8.67832e57 0.335226
\(708\) 1.59752e57 0.0599464
\(709\) −1.26212e58 −0.460102 −0.230051 0.973179i \(-0.573889\pi\)
−0.230051 + 0.973179i \(0.573889\pi\)
\(710\) 1.01970e59 3.61141
\(711\) 5.45112e57 0.187568
\(712\) −2.34813e58 −0.785022
\(713\) −6.99613e57 −0.227260
\(714\) 7.54840e57 0.238255
\(715\) 6.36228e58 1.95137
\(716\) −4.76926e58 −1.42146
\(717\) 2.68029e58 0.776316
\(718\) 3.53983e58 0.996396
\(719\) −3.64927e58 −0.998307 −0.499153 0.866514i \(-0.666356\pi\)
−0.499153 + 0.866514i \(0.666356\pi\)
\(720\) −9.28526e55 −0.00246875
\(721\) 1.87081e58 0.483455
\(722\) −6.03936e58 −1.51698
\(723\) 1.88459e58 0.460132
\(724\) 4.70205e58 1.11595
\(725\) −2.88948e58 −0.666639
\(726\) 5.10653e57 0.114532
\(727\) −5.20217e58 −1.13430 −0.567152 0.823613i \(-0.691955\pi\)
−0.567152 + 0.823613i \(0.691955\pi\)
\(728\) 2.62929e58 0.557373
\(729\) 3.40049e58 0.700853
\(730\) −1.98840e59 −3.98461
\(731\) −3.90317e56 −0.00760521
\(732\) 6.52644e57 0.123652
\(733\) 2.57497e58 0.474396 0.237198 0.971461i \(-0.423771\pi\)
0.237198 + 0.971461i \(0.423771\pi\)
\(734\) 1.34615e59 2.41171
\(735\) −8.13082e58 −1.41659
\(736\) −1.85821e58 −0.314848
\(737\) 5.34713e58 0.881124
\(738\) −2.72720e58 −0.437081
\(739\) 1.07870e59 1.68148 0.840738 0.541442i \(-0.182121\pi\)
0.840738 + 0.541442i \(0.182121\pi\)
\(740\) 1.28152e59 1.94302
\(741\) 2.38847e58 0.352246
\(742\) −8.30009e58 −1.19070
\(743\) −1.21669e59 −1.69788 −0.848942 0.528487i \(-0.822760\pi\)
−0.848942 + 0.528487i \(0.822760\pi\)
\(744\) 5.86276e58 0.795898
\(745\) 8.59134e56 0.0113464
\(746\) −2.10943e59 −2.71031
\(747\) 1.42452e58 0.178072
\(748\) 3.95136e58 0.480577
\(749\) 1.80189e58 0.213231
\(750\) 1.26208e59 1.45322
\(751\) 6.80995e58 0.763001 0.381500 0.924369i \(-0.375408\pi\)
0.381500 + 0.924369i \(0.375408\pi\)
\(752\) −1.17486e57 −0.0128092
\(753\) −1.79125e58 −0.190046
\(754\) 8.78812e58 0.907368
\(755\) −2.44726e58 −0.245905
\(756\) −6.24266e58 −0.610482
\(757\) −2.77019e58 −0.263660 −0.131830 0.991272i \(-0.542085\pi\)
−0.131830 + 0.991272i \(0.542085\pi\)
\(758\) −6.56267e58 −0.607942
\(759\) −3.74683e58 −0.337837
\(760\) −4.56165e58 −0.400353
\(761\) −7.33770e57 −0.0626866 −0.0313433 0.999509i \(-0.509979\pi\)
−0.0313433 + 0.999509i \(0.509979\pi\)
\(762\) 6.38944e58 0.531356
\(763\) −1.17397e58 −0.0950391
\(764\) −3.62893e59 −2.85999
\(765\) −1.36727e58 −0.104905
\(766\) 6.14167e58 0.458772
\(767\) 5.86626e57 0.0426635
\(768\) 1.57539e59 1.11554
\(769\) 7.07782e58 0.487988 0.243994 0.969777i \(-0.421542\pi\)
0.243994 + 0.969777i \(0.421542\pi\)
\(770\) 1.61091e59 1.08146
\(771\) 4.03555e58 0.263808
\(772\) 2.93819e59 1.87036
\(773\) −6.55116e57 −0.0406105 −0.0203053 0.999794i \(-0.506464\pi\)
−0.0203053 + 0.999794i \(0.506464\pi\)
\(774\) −1.43747e57 −0.00867777
\(775\) −1.84724e59 −1.08602
\(776\) 2.46116e59 1.40921
\(777\) −6.51028e58 −0.363052
\(778\) 3.22479e59 1.75154
\(779\) −5.93279e58 −0.313864
\(780\) −6.99817e59 −3.60616
\(781\) −2.71167e59 −1.36110
\(782\) 3.21329e58 0.157113
\(783\) −7.99548e58 −0.380828
\(784\) −1.25928e57 −0.00584311
\(785\) 5.98178e59 2.70397
\(786\) −2.70560e59 −1.19152
\(787\) −3.33588e59 −1.43129 −0.715647 0.698462i \(-0.753868\pi\)
−0.715647 + 0.698462i \(0.753868\pi\)
\(788\) 8.11500e58 0.339235
\(789\) 3.14991e59 1.28298
\(790\) −5.61760e59 −2.22944
\(791\) −1.35313e59 −0.523265
\(792\) 5.57628e58 0.210125
\(793\) 2.39659e58 0.0880020
\(794\) 1.52786e59 0.546718
\(795\) 8.46538e59 2.95203
\(796\) 5.48467e59 1.86394
\(797\) −1.53090e59 −0.507050 −0.253525 0.967329i \(-0.581590\pi\)
−0.253525 + 0.967329i \(0.581590\pi\)
\(798\) 6.04752e58 0.195217
\(799\) −1.73001e59 −0.544302
\(800\) −4.90639e59 −1.50459
\(801\) −5.63867e58 −0.168543
\(802\) −4.19027e59 −1.22086
\(803\) 5.28772e59 1.50176
\(804\) −5.88156e59 −1.62833
\(805\) 8.10245e58 0.218676
\(806\) 5.61824e59 1.47820
\(807\) −2.13996e59 −0.548907
\(808\) −3.09581e59 −0.774180
\(809\) −1.38621e59 −0.337974 −0.168987 0.985618i \(-0.554050\pi\)
−0.168987 + 0.985618i \(0.554050\pi\)
\(810\) 1.26259e60 3.00137
\(811\) 8.92972e58 0.206971 0.103486 0.994631i \(-0.467000\pi\)
0.103486 + 0.994631i \(0.467000\pi\)
\(812\) 1.37625e59 0.311026
\(813\) −8.91415e59 −1.96437
\(814\) −5.50997e59 −1.18399
\(815\) −5.24545e59 −1.09914
\(816\) −1.19236e57 −0.00243646
\(817\) −3.12708e57 −0.00623142
\(818\) −6.96705e59 −1.35396
\(819\) 6.31385e58 0.119667
\(820\) 1.73830e60 3.21322
\(821\) 5.66077e59 1.02057 0.510283 0.860007i \(-0.329541\pi\)
0.510283 + 0.860007i \(0.329541\pi\)
\(822\) 6.34419e59 1.11559
\(823\) −9.70422e59 −1.66442 −0.832212 0.554458i \(-0.812926\pi\)
−0.832212 + 0.554458i \(0.812926\pi\)
\(824\) −6.67372e59 −1.11650
\(825\) −9.89305e59 −1.61445
\(826\) 1.48532e58 0.0236444
\(827\) 1.07249e60 1.66545 0.832725 0.553687i \(-0.186780\pi\)
0.832725 + 0.553687i \(0.186780\pi\)
\(828\) 7.31934e58 0.110879
\(829\) 6.30712e59 0.932101 0.466051 0.884758i \(-0.345676\pi\)
0.466051 + 0.884758i \(0.345676\pi\)
\(830\) −1.46802e60 −2.11657
\(831\) −3.68913e59 −0.518923
\(832\) 1.49892e60 2.05708
\(833\) −1.85432e59 −0.248292
\(834\) 3.93119e59 0.513594
\(835\) 1.87143e60 2.38561
\(836\) 3.16569e59 0.393767
\(837\) −5.11151e59 −0.620408
\(838\) −3.83330e59 −0.454015
\(839\) 6.10677e59 0.705815 0.352908 0.935658i \(-0.385193\pi\)
0.352908 + 0.935658i \(0.385193\pi\)
\(840\) −6.78986e59 −0.765835
\(841\) −7.32218e59 −0.805977
\(842\) −9.75685e59 −1.04812
\(843\) 1.48107e59 0.155278
\(844\) −2.49913e60 −2.55722
\(845\) −9.82372e59 −0.981100
\(846\) −6.37132e59 −0.621065
\(847\) 2.93658e58 0.0279404
\(848\) 1.31110e58 0.0121764
\(849\) 1.07866e60 0.977864
\(850\) 8.48430e59 0.750807
\(851\) −2.77137e59 −0.239408
\(852\) 2.98270e60 2.51535
\(853\) 1.07715e60 0.886788 0.443394 0.896327i \(-0.353774\pi\)
0.443394 + 0.896327i \(0.353774\pi\)
\(854\) 6.06808e58 0.0487714
\(855\) −1.09541e59 −0.0859552
\(856\) −6.42788e59 −0.492442
\(857\) −2.94243e59 −0.220090 −0.110045 0.993927i \(-0.535099\pi\)
−0.110045 + 0.993927i \(0.535099\pi\)
\(858\) 3.00889e60 2.19744
\(859\) 1.39886e59 0.0997504 0.0498752 0.998755i \(-0.484118\pi\)
0.0498752 + 0.998755i \(0.484118\pi\)
\(860\) 9.16230e58 0.0637950
\(861\) −8.83074e59 −0.600389
\(862\) −2.28610e60 −1.51774
\(863\) −3.64782e59 −0.236490 −0.118245 0.992984i \(-0.537727\pi\)
−0.118245 + 0.992984i \(0.537727\pi\)
\(864\) −1.35765e60 −0.859519
\(865\) −2.19756e60 −1.35866
\(866\) 1.18155e60 0.713402
\(867\) 1.69446e60 0.999168
\(868\) 8.79834e59 0.506695
\(869\) 1.49388e60 0.840251
\(870\) −2.26943e60 −1.24673
\(871\) −2.15978e60 −1.15887
\(872\) 4.18788e59 0.219486
\(873\) 5.91011e59 0.302554
\(874\) 2.57437e59 0.128732
\(875\) 7.25780e59 0.354519
\(876\) −5.81622e60 −2.77528
\(877\) 3.99235e60 1.86096 0.930480 0.366341i \(-0.119390\pi\)
0.930480 + 0.366341i \(0.119390\pi\)
\(878\) 3.30278e60 1.50398
\(879\) −3.05358e59 −0.135843
\(880\) −2.54462e58 −0.0110593
\(881\) 1.50864e60 0.640589 0.320295 0.947318i \(-0.396218\pi\)
0.320295 + 0.947318i \(0.396218\pi\)
\(882\) −6.82913e59 −0.283308
\(883\) −4.31876e60 −1.75051 −0.875254 0.483663i \(-0.839306\pi\)
−0.875254 + 0.483663i \(0.839306\pi\)
\(884\) −1.59601e60 −0.632067
\(885\) −1.51490e59 −0.0586200
\(886\) 6.08531e60 2.30087
\(887\) −4.39179e60 −1.62259 −0.811293 0.584640i \(-0.801236\pi\)
−0.811293 + 0.584640i \(0.801236\pi\)
\(888\) 2.32241e60 0.838442
\(889\) 3.67434e59 0.129626
\(890\) 5.81088e60 2.00330
\(891\) −3.35759e60 −1.13119
\(892\) −7.78340e59 −0.256265
\(893\) −1.38602e60 −0.445981
\(894\) 4.06308e58 0.0127772
\(895\) 4.52261e60 1.39001
\(896\) 2.35382e60 0.707064
\(897\) 1.51339e60 0.444331
\(898\) −9.21644e60 −2.64483
\(899\) 1.12688e60 0.316084
\(900\) 1.93259e60 0.529868
\(901\) 1.93062e60 0.517414
\(902\) −7.47388e60 −1.95800
\(903\) −4.65455e58 −0.0119201
\(904\) 4.82701e60 1.20844
\(905\) −4.45887e60 −1.09126
\(906\) −1.15738e60 −0.276915
\(907\) 1.38889e60 0.324875 0.162438 0.986719i \(-0.448064\pi\)
0.162438 + 0.986719i \(0.448064\pi\)
\(908\) −5.85864e60 −1.33979
\(909\) −7.43412e59 −0.166215
\(910\) −6.50667e60 −1.42236
\(911\) 1.25104e60 0.267389 0.133694 0.991023i \(-0.457316\pi\)
0.133694 + 0.991023i \(0.457316\pi\)
\(912\) −9.55277e57 −0.00199634
\(913\) 3.90388e60 0.797711
\(914\) 1.31256e61 2.62254
\(915\) −6.18892e59 −0.120916
\(916\) 8.24929e60 1.57601
\(917\) −1.55589e60 −0.290675
\(918\) 2.34769e60 0.428910
\(919\) −1.70510e60 −0.304637 −0.152319 0.988331i \(-0.548674\pi\)
−0.152319 + 0.988331i \(0.548674\pi\)
\(920\) −2.89038e60 −0.505016
\(921\) 6.97959e60 1.19264
\(922\) −1.64845e61 −2.75482
\(923\) 1.09528e61 1.79016
\(924\) 4.71201e60 0.753236
\(925\) −7.31747e60 −1.14408
\(926\) 6.46962e60 0.989359
\(927\) −1.60259e60 −0.239711
\(928\) 2.99305e60 0.437905
\(929\) −1.11160e60 −0.159084 −0.0795422 0.996832i \(-0.525346\pi\)
−0.0795422 + 0.996832i \(0.525346\pi\)
\(930\) −1.45085e61 −2.03106
\(931\) −1.48562e60 −0.203441
\(932\) −1.87206e61 −2.50780
\(933\) 9.71487e60 1.27310
\(934\) −2.43048e60 −0.311588
\(935\) −3.74700e60 −0.469944
\(936\) −2.25234e60 −0.276362
\(937\) −6.31851e60 −0.758495 −0.379248 0.925295i \(-0.623817\pi\)
−0.379248 + 0.925295i \(0.623817\pi\)
\(938\) −5.46848e60 −0.642257
\(939\) −3.66427e60 −0.421059
\(940\) 4.06103e61 4.56578
\(941\) −6.22380e59 −0.0684650 −0.0342325 0.999414i \(-0.510899\pi\)
−0.0342325 + 0.999414i \(0.510899\pi\)
\(942\) 2.82894e61 3.04495
\(943\) −3.75917e60 −0.395915
\(944\) −2.34624e57 −0.000241794 0
\(945\) 5.91981e60 0.596974
\(946\) −3.93937e59 −0.0388739
\(947\) −1.79375e61 −1.73216 −0.866079 0.499907i \(-0.833368\pi\)
−0.866079 + 0.499907i \(0.833368\pi\)
\(948\) −1.64319e61 −1.55280
\(949\) −2.13578e61 −1.97515
\(950\) 6.79733e60 0.615183
\(951\) −1.34008e61 −1.18695
\(952\) −1.54850e60 −0.134231
\(953\) 1.46295e61 1.24116 0.620578 0.784145i \(-0.286898\pi\)
0.620578 + 0.784145i \(0.286898\pi\)
\(954\) 7.11012e60 0.590385
\(955\) 3.44125e61 2.79671
\(956\) −1.43489e61 −1.14138
\(957\) 6.03506e60 0.469880
\(958\) 1.92913e61 1.47018
\(959\) 3.64832e60 0.272152
\(960\) −3.87081e61 −2.82645
\(961\) −6.78626e60 −0.485067
\(962\) 2.22555e61 1.55721
\(963\) −1.54356e60 −0.105726
\(964\) −1.00892e61 −0.676512
\(965\) −2.78623e61 −1.82897
\(966\) 3.83186e60 0.246252
\(967\) 2.19658e61 1.38199 0.690993 0.722861i \(-0.257173\pi\)
0.690993 + 0.722861i \(0.257173\pi\)
\(968\) −1.04757e60 −0.0645263
\(969\) −1.40666e60 −0.0848307
\(970\) −6.09060e61 −3.59617
\(971\) 8.01229e60 0.463193 0.231597 0.972812i \(-0.425605\pi\)
0.231597 + 0.972812i \(0.425605\pi\)
\(972\) 1.21682e61 0.688760
\(973\) 2.26069e60 0.125293
\(974\) 8.61726e60 0.467639
\(975\) 3.99594e61 2.12336
\(976\) −9.58525e57 −0.000498749 0
\(977\) −1.53487e60 −0.0782047 −0.0391024 0.999235i \(-0.512450\pi\)
−0.0391024 + 0.999235i \(0.512450\pi\)
\(978\) −2.48072e61 −1.23774
\(979\) −1.54528e61 −0.755024
\(980\) 4.35283e61 2.08275
\(981\) 1.00566e60 0.0471232
\(982\) 1.94982e60 0.0894764
\(983\) 2.13980e61 0.961670 0.480835 0.876811i \(-0.340334\pi\)
0.480835 + 0.876811i \(0.340334\pi\)
\(984\) 3.15019e61 1.38655
\(985\) −7.69531e60 −0.331729
\(986\) −5.17568e60 −0.218520
\(987\) −2.06305e61 −0.853115
\(988\) −1.27866e61 −0.517892
\(989\) −1.98140e59 −0.00786047
\(990\) −1.37995e61 −0.536220
\(991\) 2.19295e61 0.834678 0.417339 0.908751i \(-0.362963\pi\)
0.417339 + 0.908751i \(0.362963\pi\)
\(992\) 1.91346e61 0.713393
\(993\) −5.22547e61 −1.90838
\(994\) 2.77322e61 0.992117
\(995\) −5.20102e61 −1.82270
\(996\) −4.29406e61 −1.47419
\(997\) 1.15402e61 0.388116 0.194058 0.980990i \(-0.437835\pi\)
0.194058 + 0.980990i \(0.437835\pi\)
\(998\) −1.57771e61 −0.519819
\(999\) −2.02482e61 −0.653572
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))