Properties

Label 1.42.a.a.1.2
Level 1
Weight 42
Character 1.1
Self dual Yes
Analytic conductor 10.647
Analytic rank 1
Dimension 3
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 42 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(10.6471670456\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{11}\cdot 3^{3}\cdot 5\cdot 7 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(698.922\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q-81363.7 q^{2} +3.82217e9 q^{3} -2.19240e12 q^{4} +9.10518e13 q^{5} -3.10986e14 q^{6} -1.69829e16 q^{7} +3.57303e17 q^{8} -2.18640e19 q^{9} +O(q^{10})\) \(q-81363.7 q^{2} +3.82217e9 q^{3} -2.19240e12 q^{4} +9.10518e13 q^{5} -3.10986e14 q^{6} -1.69829e16 q^{7} +3.57303e17 q^{8} -2.18640e19 q^{9} -7.40831e18 q^{10} -3.48555e21 q^{11} -8.37973e21 q^{12} -1.03131e23 q^{13} +1.38179e21 q^{14} +3.48015e23 q^{15} +4.79207e24 q^{16} +1.01608e25 q^{17} +1.77894e24 q^{18} -1.72697e26 q^{19} -1.99622e26 q^{20} -6.49115e25 q^{21} +2.83598e26 q^{22} +1.09881e28 q^{23} +1.36567e27 q^{24} -3.71843e28 q^{25} +8.39114e27 q^{26} -2.22974e29 q^{27} +3.72334e28 q^{28} +1.22079e30 q^{29} -2.83158e28 q^{30} +5.57694e29 q^{31} -1.17562e30 q^{32} -1.33224e31 q^{33} -8.26720e29 q^{34} -1.54633e30 q^{35} +4.79348e31 q^{36} +1.14515e32 q^{37} +1.40513e31 q^{38} -3.94185e32 q^{39} +3.25331e31 q^{40} -6.17804e32 q^{41} +5.28145e30 q^{42} -1.51443e32 q^{43} +7.64174e33 q^{44} -1.99076e33 q^{45} -8.94030e32 q^{46} -1.94739e34 q^{47} +1.83161e34 q^{48} -4.42792e34 q^{49} +3.02545e33 q^{50} +3.88362e34 q^{51} +2.26105e35 q^{52} -1.38685e35 q^{53} +1.81420e34 q^{54} -3.17366e35 q^{55} -6.06805e33 q^{56} -6.60078e35 q^{57} -9.93283e34 q^{58} +2.19974e36 q^{59} -7.62989e35 q^{60} +2.83478e36 q^{61} -4.53761e34 q^{62} +3.71315e35 q^{63} -1.04422e37 q^{64} -9.39028e36 q^{65} +1.08396e36 q^{66} +2.71602e37 q^{67} -2.22766e37 q^{68} +4.19982e37 q^{69} +1.25815e35 q^{70} +4.91576e37 q^{71} -7.81208e36 q^{72} -2.29426e38 q^{73} -9.31739e36 q^{74} -1.42125e38 q^{75} +3.78622e38 q^{76} +5.91949e37 q^{77} +3.20723e37 q^{78} +1.69414e38 q^{79} +4.36327e38 q^{80} -5.47960e37 q^{81} +5.02668e37 q^{82} -3.52307e39 q^{83} +1.42312e38 q^{84} +9.25158e38 q^{85} +1.23220e37 q^{86} +4.66608e39 q^{87} -1.24540e39 q^{88} +6.37675e39 q^{89} +1.61976e38 q^{90} +1.75147e39 q^{91} -2.40903e40 q^{92} +2.13160e39 q^{93} +1.58447e39 q^{94} -1.57244e40 q^{95} -4.49341e39 q^{96} +3.79303e40 q^{97} +3.60272e39 q^{98} +7.62083e40 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 344688q^{2} - 10820953044q^{3} + 6271704903936q^{4} - 212302350281550q^{5} + 4970194114982976q^{6} + 57878416258239192q^{7} - 3555831711183237120q^{8} + 13277004110931878919q^{9} + O(q^{10}) \) \( 3q - 344688q^{2} - 10820953044q^{3} + 6271704903936q^{4} - 212302350281550q^{5} + 4970194114982976q^{6} + 57878416258239192q^{7} - 3555831711183237120q^{8} + 13277004110931878919q^{9} - \)\(91\!\cdots\!00\)\(q^{10} - \)\(30\!\cdots\!64\)\(q^{11} - \)\(71\!\cdots\!48\)\(q^{12} - \)\(98\!\cdots\!94\)\(q^{13} - \)\(66\!\cdots\!08\)\(q^{14} + \)\(23\!\cdots\!00\)\(q^{15} + \)\(13\!\cdots\!48\)\(q^{16} + \)\(35\!\cdots\!02\)\(q^{17} - \)\(51\!\cdots\!04\)\(q^{18} - \)\(23\!\cdots\!80\)\(q^{19} - \)\(12\!\cdots\!00\)\(q^{20} - \)\(78\!\cdots\!24\)\(q^{21} + \)\(10\!\cdots\!44\)\(q^{22} + \)\(28\!\cdots\!56\)\(q^{23} + \)\(36\!\cdots\!60\)\(q^{24} - \)\(12\!\cdots\!75\)\(q^{25} - \)\(44\!\cdots\!04\)\(q^{26} + \)\(40\!\cdots\!80\)\(q^{27} + \)\(52\!\cdots\!64\)\(q^{28} - \)\(12\!\cdots\!70\)\(q^{29} + \)\(61\!\cdots\!00\)\(q^{30} - \)\(55\!\cdots\!04\)\(q^{31} - \)\(14\!\cdots\!48\)\(q^{32} - \)\(13\!\cdots\!28\)\(q^{33} - \)\(42\!\cdots\!08\)\(q^{34} + \)\(35\!\cdots\!00\)\(q^{35} + \)\(20\!\cdots\!28\)\(q^{36} + \)\(49\!\cdots\!22\)\(q^{37} + \)\(38\!\cdots\!20\)\(q^{38} - \)\(54\!\cdots\!12\)\(q^{39} - \)\(13\!\cdots\!00\)\(q^{40} - \)\(31\!\cdots\!74\)\(q^{41} + \)\(50\!\cdots\!24\)\(q^{42} + \)\(14\!\cdots\!56\)\(q^{43} + \)\(68\!\cdots\!32\)\(q^{44} - \)\(37\!\cdots\!50\)\(q^{45} + \)\(34\!\cdots\!16\)\(q^{46} - \)\(63\!\cdots\!68\)\(q^{47} - \)\(48\!\cdots\!44\)\(q^{48} - \)\(97\!\cdots\!29\)\(q^{49} + \)\(28\!\cdots\!00\)\(q^{50} - \)\(15\!\cdots\!24\)\(q^{51} + \)\(36\!\cdots\!52\)\(q^{52} + \)\(79\!\cdots\!06\)\(q^{53} + \)\(27\!\cdots\!20\)\(q^{54} - \)\(11\!\cdots\!00\)\(q^{55} - \)\(15\!\cdots\!80\)\(q^{56} - \)\(12\!\cdots\!40\)\(q^{57} + \)\(10\!\cdots\!80\)\(q^{58} + \)\(19\!\cdots\!60\)\(q^{59} + \)\(59\!\cdots\!00\)\(q^{60} + \)\(87\!\cdots\!86\)\(q^{61} - \)\(12\!\cdots\!16\)\(q^{62} + \)\(41\!\cdots\!36\)\(q^{63} - \)\(28\!\cdots\!64\)\(q^{64} + \)\(23\!\cdots\!00\)\(q^{65} - \)\(70\!\cdots\!88\)\(q^{66} + \)\(11\!\cdots\!52\)\(q^{67} + \)\(95\!\cdots\!84\)\(q^{68} + \)\(11\!\cdots\!48\)\(q^{69} + \)\(59\!\cdots\!00\)\(q^{70} - \)\(14\!\cdots\!84\)\(q^{71} - \)\(17\!\cdots\!60\)\(q^{72} + \)\(45\!\cdots\!06\)\(q^{73} - \)\(25\!\cdots\!08\)\(q^{74} - \)\(24\!\cdots\!00\)\(q^{75} + \)\(26\!\cdots\!40\)\(q^{76} - \)\(42\!\cdots\!96\)\(q^{77} + \)\(33\!\cdots\!32\)\(q^{78} - \)\(52\!\cdots\!20\)\(q^{79} + \)\(71\!\cdots\!00\)\(q^{80} - \)\(31\!\cdots\!97\)\(q^{81} - \)\(57\!\cdots\!96\)\(q^{82} - \)\(61\!\cdots\!44\)\(q^{83} - \)\(41\!\cdots\!88\)\(q^{84} - \)\(10\!\cdots\!00\)\(q^{85} - \)\(47\!\cdots\!44\)\(q^{86} + \)\(13\!\cdots\!40\)\(q^{87} + \)\(18\!\cdots\!60\)\(q^{88} - \)\(14\!\cdots\!10\)\(q^{89} - \)\(87\!\cdots\!00\)\(q^{90} + \)\(25\!\cdots\!96\)\(q^{91} - \)\(67\!\cdots\!48\)\(q^{92} + \)\(34\!\cdots\!92\)\(q^{93} - \)\(53\!\cdots\!08\)\(q^{94} - \)\(33\!\cdots\!00\)\(q^{95} + \)\(95\!\cdots\!96\)\(q^{96} + \)\(11\!\cdots\!82\)\(q^{97} - \)\(38\!\cdots\!16\)\(q^{98} + \)\(45\!\cdots\!28\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −81363.7 −0.0548676 −0.0274338 0.999624i \(-0.508734\pi\)
−0.0274338 + 0.999624i \(0.508734\pi\)
\(3\) 3.82217e9 0.632884 0.316442 0.948612i \(-0.397512\pi\)
0.316442 + 0.948612i \(0.397512\pi\)
\(4\) −2.19240e12 −0.996990
\(5\) 9.10518e13 0.426976 0.213488 0.976946i \(-0.431518\pi\)
0.213488 + 0.976946i \(0.431518\pi\)
\(6\) −3.10986e14 −0.0347248
\(7\) −1.69829e16 −0.0804457 −0.0402228 0.999191i \(-0.512807\pi\)
−0.0402228 + 0.999191i \(0.512807\pi\)
\(8\) 3.57303e17 0.109570
\(9\) −2.18640e19 −0.599458
\(10\) −7.40831e18 −0.0234271
\(11\) −3.48555e21 −1.56215 −0.781073 0.624440i \(-0.785327\pi\)
−0.781073 + 0.624440i \(0.785327\pi\)
\(12\) −8.37973e21 −0.630978
\(13\) −1.03131e23 −1.50505 −0.752526 0.658563i \(-0.771165\pi\)
−0.752526 + 0.658563i \(0.771165\pi\)
\(14\) 1.38179e21 0.00441386
\(15\) 3.48015e23 0.270226
\(16\) 4.79207e24 0.990978
\(17\) 1.01608e25 0.606352 0.303176 0.952935i \(-0.401953\pi\)
0.303176 + 0.952935i \(0.401953\pi\)
\(18\) 1.77894e24 0.0328908
\(19\) −1.72697e26 −1.05399 −0.526995 0.849868i \(-0.676681\pi\)
−0.526995 + 0.849868i \(0.676681\pi\)
\(20\) −1.99622e26 −0.425691
\(21\) −6.49115e25 −0.0509127
\(22\) 2.83598e26 0.0857112
\(23\) 1.09881e28 1.33506 0.667530 0.744583i \(-0.267352\pi\)
0.667530 + 0.744583i \(0.267352\pi\)
\(24\) 1.36567e27 0.0693451
\(25\) −3.71843e28 −0.817692
\(26\) 8.39114e27 0.0825786
\(27\) −2.22974e29 −1.01227
\(28\) 3.72334e28 0.0802035
\(29\) 1.22079e30 1.28081 0.640403 0.768039i \(-0.278767\pi\)
0.640403 + 0.768039i \(0.278767\pi\)
\(30\) −2.83158e28 −0.0148267
\(31\) 5.57694e29 0.149101 0.0745506 0.997217i \(-0.476248\pi\)
0.0745506 + 0.997217i \(0.476248\pi\)
\(32\) −1.17562e30 −0.163943
\(33\) −1.33224e31 −0.988657
\(34\) −8.26720e29 −0.0332691
\(35\) −1.54633e30 −0.0343484
\(36\) 4.79348e31 0.597654
\(37\) 1.14515e32 0.814194 0.407097 0.913385i \(-0.366541\pi\)
0.407097 + 0.913385i \(0.366541\pi\)
\(38\) 1.40513e31 0.0578299
\(39\) −3.94185e32 −0.952522
\(40\) 3.25331e31 0.0467838
\(41\) −6.17804e32 −0.535527 −0.267764 0.963485i \(-0.586285\pi\)
−0.267764 + 0.963485i \(0.586285\pi\)
\(42\) 5.28145e30 0.00279346
\(43\) −1.51443e32 −0.0494478 −0.0247239 0.999694i \(-0.507871\pi\)
−0.0247239 + 0.999694i \(0.507871\pi\)
\(44\) 7.64174e33 1.55744
\(45\) −1.99076e33 −0.255954
\(46\) −8.94030e32 −0.0732515
\(47\) −1.94739e34 −1.02671 −0.513354 0.858177i \(-0.671597\pi\)
−0.513354 + 0.858177i \(0.671597\pi\)
\(48\) 1.83161e34 0.627174
\(49\) −4.42792e34 −0.993528
\(50\) 3.02545e33 0.0448648
\(51\) 3.88362e34 0.383750
\(52\) 2.26105e35 1.50052
\(53\) −1.38685e35 −0.622837 −0.311418 0.950273i \(-0.600804\pi\)
−0.311418 + 0.950273i \(0.600804\pi\)
\(54\) 1.81420e34 0.0555409
\(55\) −3.17366e35 −0.666999
\(56\) −6.06805e33 −0.00881443
\(57\) −6.60078e35 −0.667053
\(58\) −9.93283e34 −0.0702747
\(59\) 2.19974e36 1.09624 0.548119 0.836400i \(-0.315344\pi\)
0.548119 + 0.836400i \(0.315344\pi\)
\(60\) −7.62989e35 −0.269413
\(61\) 2.83478e36 0.713277 0.356639 0.934242i \(-0.383923\pi\)
0.356639 + 0.934242i \(0.383923\pi\)
\(62\) −4.53761e34 −0.00818083
\(63\) 3.71315e35 0.0482238
\(64\) −1.04422e37 −0.981983
\(65\) −9.39028e36 −0.642621
\(66\) 1.08396e36 0.0542452
\(67\) 2.71602e37 0.998617 0.499308 0.866424i \(-0.333587\pi\)
0.499308 + 0.866424i \(0.333587\pi\)
\(68\) −2.22766e37 −0.604526
\(69\) 4.19982e37 0.844937
\(70\) 1.25815e35 0.00188461
\(71\) 4.91576e37 0.550548 0.275274 0.961366i \(-0.411231\pi\)
0.275274 + 0.961366i \(0.411231\pi\)
\(72\) −7.81208e36 −0.0656827
\(73\) −2.29426e38 −1.45386 −0.726932 0.686709i \(-0.759055\pi\)
−0.726932 + 0.686709i \(0.759055\pi\)
\(74\) −9.31739e36 −0.0446729
\(75\) −1.42125e38 −0.517504
\(76\) 3.78622e38 1.05082
\(77\) 5.91949e37 0.125668
\(78\) 3.20723e37 0.0522626
\(79\) 1.69414e38 0.212615 0.106307 0.994333i \(-0.466097\pi\)
0.106307 + 0.994333i \(0.466097\pi\)
\(80\) 4.36327e38 0.423124
\(81\) −5.47960e37 −0.0411913
\(82\) 5.02668e37 0.0293831
\(83\) −3.52307e39 −1.60628 −0.803138 0.595793i \(-0.796838\pi\)
−0.803138 + 0.595793i \(0.796838\pi\)
\(84\) 1.42312e38 0.0507595
\(85\) 9.25158e38 0.258898
\(86\) 1.23220e37 0.00271308
\(87\) 4.66608e39 0.810601
\(88\) −1.24540e39 −0.171164
\(89\) 6.37675e39 0.695192 0.347596 0.937644i \(-0.386998\pi\)
0.347596 + 0.937644i \(0.386998\pi\)
\(90\) 1.61976e38 0.0140436
\(91\) 1.75147e39 0.121075
\(92\) −2.40903e40 −1.33104
\(93\) 2.13160e39 0.0943638
\(94\) 1.58447e39 0.0563330
\(95\) −1.57244e40 −0.450029
\(96\) −4.49341e39 −0.103757
\(97\) 3.79303e40 0.708216 0.354108 0.935205i \(-0.384785\pi\)
0.354108 + 0.935205i \(0.384785\pi\)
\(98\) 3.60272e39 0.0545125
\(99\) 7.62083e40 0.936441
\(100\) 8.15230e40 0.815230
\(101\) −2.06559e41 −1.68444 −0.842222 0.539131i \(-0.818753\pi\)
−0.842222 + 0.539131i \(0.818753\pi\)
\(102\) −3.15986e39 −0.0210554
\(103\) −2.70863e40 −0.147770 −0.0738851 0.997267i \(-0.523540\pi\)
−0.0738851 + 0.997267i \(0.523540\pi\)
\(104\) −3.68491e40 −0.164909
\(105\) −5.91031e39 −0.0217385
\(106\) 1.12839e40 0.0341736
\(107\) −3.86524e41 −0.965626 −0.482813 0.875723i \(-0.660385\pi\)
−0.482813 + 0.875723i \(0.660385\pi\)
\(108\) 4.88849e41 1.00922
\(109\) 5.41460e41 0.925387 0.462693 0.886518i \(-0.346883\pi\)
0.462693 + 0.886518i \(0.346883\pi\)
\(110\) 2.58221e40 0.0365966
\(111\) 4.37696e41 0.515290
\(112\) −8.13834e40 −0.0797198
\(113\) −1.99438e42 −1.62817 −0.814086 0.580744i \(-0.802762\pi\)
−0.814086 + 0.580744i \(0.802762\pi\)
\(114\) 5.37064e40 0.0365996
\(115\) 1.00048e42 0.570038
\(116\) −2.67647e42 −1.27695
\(117\) 2.25487e42 0.902216
\(118\) −1.78979e41 −0.0601479
\(119\) −1.72560e41 −0.0487784
\(120\) 1.24347e41 0.0296087
\(121\) 7.17056e42 1.44030
\(122\) −2.30649e41 −0.0391358
\(123\) −2.36135e42 −0.338926
\(124\) −1.22269e42 −0.148652
\(125\) −7.52625e42 −0.776111
\(126\) −3.02116e40 −0.00264592
\(127\) −7.87891e42 −0.586800 −0.293400 0.955990i \(-0.594787\pi\)
−0.293400 + 0.955990i \(0.594787\pi\)
\(128\) 3.43483e42 0.217822
\(129\) −5.78842e41 −0.0312947
\(130\) 7.64028e41 0.0352591
\(131\) 8.75549e42 0.345318 0.172659 0.984982i \(-0.444764\pi\)
0.172659 + 0.984982i \(0.444764\pi\)
\(132\) 2.92080e43 0.985680
\(133\) 2.93290e42 0.0847889
\(134\) −2.20985e42 −0.0547917
\(135\) −2.03022e43 −0.432215
\(136\) 3.63048e42 0.0664380
\(137\) −1.30585e43 −0.205647 −0.102824 0.994700i \(-0.532788\pi\)
−0.102824 + 0.994700i \(0.532788\pi\)
\(138\) −3.41713e42 −0.0463597
\(139\) −7.47721e43 −0.874855 −0.437428 0.899254i \(-0.644110\pi\)
−0.437428 + 0.899254i \(0.644110\pi\)
\(140\) 3.39017e42 0.0342450
\(141\) −7.44325e43 −0.649787
\(142\) −3.99965e42 −0.0302072
\(143\) 3.59469e44 2.35111
\(144\) −1.04774e44 −0.594050
\(145\) 1.11155e44 0.546873
\(146\) 1.86670e43 0.0797701
\(147\) −1.69243e44 −0.628788
\(148\) −2.51064e44 −0.811743
\(149\) 3.41118e44 0.960696 0.480348 0.877078i \(-0.340510\pi\)
0.480348 + 0.877078i \(0.340510\pi\)
\(150\) 1.15638e43 0.0283942
\(151\) −4.86675e44 −1.04282 −0.521412 0.853305i \(-0.674595\pi\)
−0.521412 + 0.853305i \(0.674595\pi\)
\(152\) −6.17052e43 −0.115486
\(153\) −2.22156e44 −0.363483
\(154\) −4.81631e42 −0.00689509
\(155\) 5.07791e43 0.0636627
\(156\) 8.64212e44 0.949655
\(157\) 1.02260e45 0.985744 0.492872 0.870102i \(-0.335947\pi\)
0.492872 + 0.870102i \(0.335947\pi\)
\(158\) −1.37841e43 −0.0116657
\(159\) −5.30077e44 −0.394183
\(160\) −1.07042e44 −0.0699995
\(161\) −1.86609e44 −0.107400
\(162\) 4.45840e42 0.00226007
\(163\) −2.57464e45 −1.15046 −0.575228 0.817993i \(-0.695087\pi\)
−0.575228 + 0.817993i \(0.695087\pi\)
\(164\) 1.35447e45 0.533915
\(165\) −1.21302e45 −0.422133
\(166\) 2.86650e44 0.0881325
\(167\) −1.90182e45 −0.516991 −0.258495 0.966013i \(-0.583227\pi\)
−0.258495 + 0.966013i \(0.583227\pi\)
\(168\) −2.31931e43 −0.00557851
\(169\) 5.94059e45 1.26518
\(170\) −7.52743e43 −0.0142051
\(171\) 3.77586e45 0.631823
\(172\) 3.32025e44 0.0492989
\(173\) −1.22944e45 −0.162092 −0.0810462 0.996710i \(-0.525826\pi\)
−0.0810462 + 0.996710i \(0.525826\pi\)
\(174\) −3.79649e44 −0.0444757
\(175\) 6.31498e44 0.0657797
\(176\) −1.67030e46 −1.54805
\(177\) 8.40776e45 0.693791
\(178\) −5.18837e44 −0.0381435
\(179\) −2.04820e46 −1.34241 −0.671206 0.741271i \(-0.734223\pi\)
−0.671206 + 0.741271i \(0.734223\pi\)
\(180\) 4.36455e45 0.255184
\(181\) 1.96476e46 1.02541 0.512706 0.858564i \(-0.328643\pi\)
0.512706 + 0.858564i \(0.328643\pi\)
\(182\) −1.42506e44 −0.00664309
\(183\) 1.08350e46 0.451421
\(184\) 3.92607e45 0.146282
\(185\) 1.04268e46 0.347641
\(186\) −1.73435e44 −0.00517751
\(187\) −3.54160e46 −0.947210
\(188\) 4.26947e46 1.02362
\(189\) 3.78675e45 0.0814328
\(190\) 1.27940e45 0.0246920
\(191\) −8.46016e46 −1.46620 −0.733102 0.680118i \(-0.761928\pi\)
−0.733102 + 0.680118i \(0.761928\pi\)
\(192\) −3.99119e46 −0.621481
\(193\) 1.25564e46 0.175768 0.0878840 0.996131i \(-0.471990\pi\)
0.0878840 + 0.996131i \(0.471990\pi\)
\(194\) −3.08615e45 −0.0388581
\(195\) −3.58912e46 −0.406704
\(196\) 9.70779e46 0.990538
\(197\) 1.78208e47 1.63821 0.819103 0.573647i \(-0.194472\pi\)
0.819103 + 0.573647i \(0.194472\pi\)
\(198\) −6.20059e45 −0.0513803
\(199\) −1.36946e47 −1.02343 −0.511717 0.859154i \(-0.670990\pi\)
−0.511717 + 0.859154i \(0.670990\pi\)
\(200\) −1.32861e46 −0.0895945
\(201\) 1.03811e47 0.632008
\(202\) 1.68064e46 0.0924214
\(203\) −2.07326e46 −0.103035
\(204\) −8.51447e46 −0.382595
\(205\) −5.62521e46 −0.228657
\(206\) 2.20384e45 0.00810780
\(207\) −2.40243e47 −0.800312
\(208\) −4.94212e47 −1.49147
\(209\) 6.01945e47 1.64649
\(210\) 4.80885e44 0.00119274
\(211\) 1.52351e47 0.342812 0.171406 0.985200i \(-0.445169\pi\)
0.171406 + 0.985200i \(0.445169\pi\)
\(212\) 3.04053e47 0.620962
\(213\) 1.87889e47 0.348433
\(214\) 3.14490e46 0.0529816
\(215\) −1.37892e46 −0.0211130
\(216\) −7.96692e46 −0.110915
\(217\) −9.47128e45 −0.0119946
\(218\) −4.40552e46 −0.0507737
\(219\) −8.76904e47 −0.920127
\(220\) 6.95794e47 0.664991
\(221\) −1.04789e48 −0.912591
\(222\) −3.56126e46 −0.0282727
\(223\) −5.14471e47 −0.372487 −0.186243 0.982504i \(-0.559631\pi\)
−0.186243 + 0.982504i \(0.559631\pi\)
\(224\) 1.99654e46 0.0131885
\(225\) 8.12999e47 0.490172
\(226\) 1.62270e47 0.0893339
\(227\) 1.86061e47 0.0935677 0.0467838 0.998905i \(-0.485103\pi\)
0.0467838 + 0.998905i \(0.485103\pi\)
\(228\) 1.44716e48 0.665045
\(229\) 1.08478e48 0.455738 0.227869 0.973692i \(-0.426824\pi\)
0.227869 + 0.973692i \(0.426824\pi\)
\(230\) −8.14030e46 −0.0312766
\(231\) 2.26253e47 0.0795331
\(232\) 4.36193e47 0.140338
\(233\) −1.31896e48 −0.388541 −0.194270 0.980948i \(-0.562234\pi\)
−0.194270 + 0.980948i \(0.562234\pi\)
\(234\) −1.83464e47 −0.0495024
\(235\) −1.77313e48 −0.438380
\(236\) −4.82271e48 −1.09294
\(237\) 6.47528e47 0.134560
\(238\) 1.40401e46 0.00267635
\(239\) −2.46866e48 −0.431821 −0.215911 0.976413i \(-0.569272\pi\)
−0.215911 + 0.976413i \(0.569272\pi\)
\(240\) 1.66771e48 0.267788
\(241\) 7.05413e48 1.04015 0.520073 0.854122i \(-0.325905\pi\)
0.520073 + 0.854122i \(0.325905\pi\)
\(242\) −5.83423e47 −0.0790258
\(243\) 7.92309e48 0.986202
\(244\) −6.21499e48 −0.711130
\(245\) −4.03170e48 −0.424213
\(246\) 1.92128e47 0.0185961
\(247\) 1.78105e49 1.58631
\(248\) 1.99266e47 0.0163370
\(249\) −1.34657e49 −1.01659
\(250\) 6.12364e47 0.0425833
\(251\) −1.10391e48 −0.0707330 −0.0353665 0.999374i \(-0.511260\pi\)
−0.0353665 + 0.999374i \(0.511260\pi\)
\(252\) −8.14073e47 −0.0480786
\(253\) −3.82995e49 −2.08556
\(254\) 6.41058e47 0.0321963
\(255\) 3.53611e48 0.163852
\(256\) 2.26832e49 0.970031
\(257\) 1.99173e49 0.786324 0.393162 0.919469i \(-0.371381\pi\)
0.393162 + 0.919469i \(0.371381\pi\)
\(258\) 4.70967e46 0.00171707
\(259\) −1.94480e48 −0.0654984
\(260\) 2.05873e49 0.640686
\(261\) −2.66915e49 −0.767790
\(262\) −7.12379e47 −0.0189468
\(263\) 3.95658e49 0.973255 0.486627 0.873610i \(-0.338227\pi\)
0.486627 + 0.873610i \(0.338227\pi\)
\(264\) −4.76012e48 −0.108327
\(265\) −1.26275e49 −0.265936
\(266\) −2.38632e47 −0.00465217
\(267\) 2.43730e49 0.439975
\(268\) −5.95460e49 −0.995611
\(269\) −7.39690e49 −1.14585 −0.572926 0.819607i \(-0.694192\pi\)
−0.572926 + 0.819607i \(0.694192\pi\)
\(270\) 1.65186e48 0.0237146
\(271\) −2.66721e49 −0.354966 −0.177483 0.984124i \(-0.556795\pi\)
−0.177483 + 0.984124i \(0.556795\pi\)
\(272\) 4.86913e49 0.600881
\(273\) 6.69441e48 0.0766263
\(274\) 1.06249e48 0.0112834
\(275\) 1.29608e50 1.27735
\(276\) −9.20770e49 −0.842393
\(277\) 1.32709e50 1.12737 0.563684 0.825991i \(-0.309384\pi\)
0.563684 + 0.825991i \(0.309384\pi\)
\(278\) 6.08374e48 0.0480012
\(279\) −1.21935e49 −0.0893800
\(280\) −5.52506e47 −0.00376355
\(281\) 1.25230e49 0.0792918 0.0396459 0.999214i \(-0.487377\pi\)
0.0396459 + 0.999214i \(0.487377\pi\)
\(282\) 6.05611e48 0.0356522
\(283\) −9.97157e49 −0.545936 −0.272968 0.962023i \(-0.588005\pi\)
−0.272968 + 0.962023i \(0.588005\pi\)
\(284\) −1.07773e50 −0.548890
\(285\) −6.01013e49 −0.284816
\(286\) −2.92478e49 −0.129000
\(287\) 1.04921e49 0.0430808
\(288\) 2.57038e49 0.0982767
\(289\) −1.77564e50 −0.632337
\(290\) −9.04402e48 −0.0300056
\(291\) 1.44976e50 0.448218
\(292\) 5.02994e50 1.44949
\(293\) −3.65149e50 −0.981035 −0.490517 0.871431i \(-0.663192\pi\)
−0.490517 + 0.871431i \(0.663192\pi\)
\(294\) 1.37702e49 0.0345001
\(295\) 2.00290e50 0.468067
\(296\) 4.09166e49 0.0892113
\(297\) 7.77187e50 1.58131
\(298\) −2.77546e49 −0.0527111
\(299\) −1.13321e51 −2.00933
\(300\) 3.11594e50 0.515946
\(301\) 2.57195e48 0.00397786
\(302\) 3.95977e49 0.0572173
\(303\) −7.89504e50 −1.06606
\(304\) −8.27578e50 −1.04448
\(305\) 2.58112e50 0.304552
\(306\) 1.80754e49 0.0199434
\(307\) 1.30418e51 1.34586 0.672932 0.739705i \(-0.265035\pi\)
0.672932 + 0.739705i \(0.265035\pi\)
\(308\) −1.29779e50 −0.125290
\(309\) −1.03528e50 −0.0935214
\(310\) −4.13157e48 −0.00349302
\(311\) 3.10188e50 0.245492 0.122746 0.992438i \(-0.460830\pi\)
0.122746 + 0.992438i \(0.460830\pi\)
\(312\) −1.40843e50 −0.104368
\(313\) 9.82549e50 0.681860 0.340930 0.940089i \(-0.389258\pi\)
0.340930 + 0.940089i \(0.389258\pi\)
\(314\) −8.32028e49 −0.0540854
\(315\) 3.38089e49 0.0205904
\(316\) −3.71423e50 −0.211975
\(317\) 2.98911e51 1.59892 0.799462 0.600717i \(-0.205118\pi\)
0.799462 + 0.600717i \(0.205118\pi\)
\(318\) 4.31291e49 0.0216279
\(319\) −4.25514e51 −2.00081
\(320\) −9.50784e50 −0.419283
\(321\) −1.47736e51 −0.611129
\(322\) 1.51832e49 0.00589276
\(323\) −1.75474e51 −0.639089
\(324\) 1.20135e50 0.0410673
\(325\) 3.83486e51 1.23067
\(326\) 2.09482e50 0.0631227
\(327\) 2.06955e51 0.585662
\(328\) −2.20743e50 −0.0586777
\(329\) 3.30724e50 0.0825942
\(330\) 9.86962e49 0.0231614
\(331\) −3.54686e51 −0.782294 −0.391147 0.920328i \(-0.627922\pi\)
−0.391147 + 0.920328i \(0.627922\pi\)
\(332\) 7.72398e51 1.60144
\(333\) −2.50377e51 −0.488076
\(334\) 1.54739e50 0.0283660
\(335\) 2.47298e51 0.426385
\(336\) −3.11061e50 −0.0504534
\(337\) −3.30444e51 −0.504295 −0.252147 0.967689i \(-0.581137\pi\)
−0.252147 + 0.967689i \(0.581137\pi\)
\(338\) −4.83349e50 −0.0694174
\(339\) −7.62286e51 −1.03044
\(340\) −2.02832e51 −0.258118
\(341\) −1.94387e51 −0.232918
\(342\) −3.07218e50 −0.0346666
\(343\) 1.50888e51 0.160371
\(344\) −5.41112e49 −0.00541800
\(345\) 3.82401e51 0.360768
\(346\) 1.00032e50 0.00889362
\(347\) 1.33458e52 1.11838 0.559189 0.829040i \(-0.311113\pi\)
0.559189 + 0.829040i \(0.311113\pi\)
\(348\) −1.02299e52 −0.808161
\(349\) 5.90464e51 0.439817 0.219908 0.975521i \(-0.429424\pi\)
0.219908 + 0.975521i \(0.429424\pi\)
\(350\) −5.13810e49 −0.00360918
\(351\) 2.29956e52 1.52352
\(352\) 4.09768e51 0.256102
\(353\) −2.48492e52 −1.46531 −0.732657 0.680598i \(-0.761720\pi\)
−0.732657 + 0.680598i \(0.761720\pi\)
\(354\) −6.84087e50 −0.0380666
\(355\) 4.47589e51 0.235071
\(356\) −1.39804e52 −0.693099
\(357\) −6.59553e50 −0.0308710
\(358\) 1.66649e51 0.0736549
\(359\) −2.54547e52 −1.06251 −0.531254 0.847213i \(-0.678279\pi\)
−0.531254 + 0.847213i \(0.678279\pi\)
\(360\) −7.11304e50 −0.0280449
\(361\) 2.97723e51 0.110896
\(362\) −1.59860e51 −0.0562619
\(363\) 2.74071e52 0.911542
\(364\) −3.83993e51 −0.120710
\(365\) −2.08897e52 −0.620765
\(366\) −8.81577e50 −0.0247684
\(367\) 8.12057e51 0.215741 0.107870 0.994165i \(-0.465597\pi\)
0.107870 + 0.994165i \(0.465597\pi\)
\(368\) 5.26556e52 1.32301
\(369\) 1.35077e52 0.321026
\(370\) −8.48365e50 −0.0190742
\(371\) 2.35528e51 0.0501045
\(372\) −4.67333e51 −0.0940797
\(373\) 9.33073e51 0.177781 0.0888903 0.996041i \(-0.471668\pi\)
0.0888903 + 0.996041i \(0.471668\pi\)
\(374\) 2.88158e51 0.0519711
\(375\) −2.87666e52 −0.491188
\(376\) −6.95808e51 −0.112496
\(377\) −1.25902e53 −1.92768
\(378\) −3.08104e50 −0.00446802
\(379\) 2.43584e52 0.334614 0.167307 0.985905i \(-0.446493\pi\)
0.167307 + 0.985905i \(0.446493\pi\)
\(380\) 3.44742e52 0.448674
\(381\) −3.01145e52 −0.371376
\(382\) 6.88350e51 0.0804471
\(383\) 5.83695e52 0.646564 0.323282 0.946303i \(-0.395214\pi\)
0.323282 + 0.946303i \(0.395214\pi\)
\(384\) 1.31285e52 0.137856
\(385\) 5.38980e51 0.0536571
\(386\) −1.02163e51 −0.00964397
\(387\) 3.31116e51 0.0296419
\(388\) −8.31585e52 −0.706084
\(389\) 1.42025e53 1.14393 0.571964 0.820279i \(-0.306182\pi\)
0.571964 + 0.820279i \(0.306182\pi\)
\(390\) 2.92024e51 0.0223149
\(391\) 1.11647e53 0.809516
\(392\) −1.58211e52 −0.108861
\(393\) 3.34649e52 0.218546
\(394\) −1.44996e52 −0.0898844
\(395\) 1.54254e52 0.0907814
\(396\) −1.67079e53 −0.933622
\(397\) −2.90471e53 −1.54133 −0.770667 0.637238i \(-0.780077\pi\)
−0.770667 + 0.637238i \(0.780077\pi\)
\(398\) 1.11424e52 0.0561534
\(399\) 1.12100e52 0.0536615
\(400\) −1.78190e53 −0.810314
\(401\) 2.01288e53 0.869677 0.434839 0.900508i \(-0.356805\pi\)
0.434839 + 0.900508i \(0.356805\pi\)
\(402\) −8.44642e51 −0.0346768
\(403\) −5.75157e52 −0.224405
\(404\) 4.52861e53 1.67937
\(405\) −4.98927e51 −0.0175877
\(406\) 1.68688e51 0.00565330
\(407\) −3.99149e53 −1.27189
\(408\) 1.38763e52 0.0420475
\(409\) 6.23107e53 1.79570 0.897852 0.440298i \(-0.145127\pi\)
0.897852 + 0.440298i \(0.145127\pi\)
\(410\) 4.57688e51 0.0125459
\(411\) −4.99119e52 −0.130151
\(412\) 5.93841e52 0.147325
\(413\) −3.73580e52 −0.0881876
\(414\) 1.95471e52 0.0439112
\(415\) −3.20782e53 −0.685841
\(416\) 1.21243e53 0.246742
\(417\) −2.85791e53 −0.553682
\(418\) −4.89765e52 −0.0903388
\(419\) −7.69430e53 −1.35139 −0.675696 0.737180i \(-0.736157\pi\)
−0.675696 + 0.737180i \(0.736157\pi\)
\(420\) 1.29578e52 0.0216731
\(421\) 3.14569e53 0.501110 0.250555 0.968102i \(-0.419387\pi\)
0.250555 + 0.968102i \(0.419387\pi\)
\(422\) −1.23959e52 −0.0188093
\(423\) 4.25779e53 0.615469
\(424\) −4.95525e52 −0.0682442
\(425\) −3.77822e53 −0.495809
\(426\) −1.52873e52 −0.0191177
\(427\) −4.81429e52 −0.0573800
\(428\) 8.47417e53 0.962719
\(429\) 1.37395e54 1.48798
\(430\) 1.12194e51 0.00115842
\(431\) −5.35565e53 −0.527264 −0.263632 0.964623i \(-0.584921\pi\)
−0.263632 + 0.964623i \(0.584921\pi\)
\(432\) −1.06851e54 −1.00314
\(433\) 1.35139e54 1.20999 0.604993 0.796231i \(-0.293176\pi\)
0.604993 + 0.796231i \(0.293176\pi\)
\(434\) 7.70618e50 0.000658112 0
\(435\) 4.24855e53 0.346107
\(436\) −1.18710e54 −0.922601
\(437\) −1.89761e54 −1.40714
\(438\) 7.13482e52 0.0504852
\(439\) 2.63178e52 0.0177716 0.00888582 0.999961i \(-0.497172\pi\)
0.00888582 + 0.999961i \(0.497172\pi\)
\(440\) −1.13396e53 −0.0730831
\(441\) 9.68123e53 0.595579
\(442\) 8.52606e52 0.0500717
\(443\) −9.66050e53 −0.541656 −0.270828 0.962628i \(-0.587297\pi\)
−0.270828 + 0.962628i \(0.587297\pi\)
\(444\) −9.59607e53 −0.513739
\(445\) 5.80615e53 0.296830
\(446\) 4.18593e52 0.0204375
\(447\) 1.30381e54 0.608009
\(448\) 1.77340e53 0.0789962
\(449\) −5.56332e53 −0.236747 −0.118373 0.992969i \(-0.537768\pi\)
−0.118373 + 0.992969i \(0.537768\pi\)
\(450\) −6.61486e52 −0.0268946
\(451\) 2.15339e54 0.836571
\(452\) 4.37249e54 1.62327
\(453\) −1.86015e54 −0.659987
\(454\) −1.51386e52 −0.00513383
\(455\) 1.59474e53 0.0516961
\(456\) −2.35848e53 −0.0730890
\(457\) −2.92141e54 −0.865587 −0.432794 0.901493i \(-0.642472\pi\)
−0.432794 + 0.901493i \(0.642472\pi\)
\(458\) −8.82619e52 −0.0250052
\(459\) −2.26559e54 −0.613792
\(460\) −2.19346e54 −0.568322
\(461\) −1.66774e54 −0.413295 −0.206648 0.978415i \(-0.566255\pi\)
−0.206648 + 0.978415i \(0.566255\pi\)
\(462\) −1.84088e52 −0.00436379
\(463\) −2.72429e54 −0.617793 −0.308896 0.951096i \(-0.599960\pi\)
−0.308896 + 0.951096i \(0.599960\pi\)
\(464\) 5.85013e54 1.26925
\(465\) 1.94086e53 0.0402911
\(466\) 1.07316e53 0.0213183
\(467\) 4.71337e54 0.896057 0.448028 0.894019i \(-0.352126\pi\)
0.448028 + 0.894019i \(0.352126\pi\)
\(468\) −4.94357e54 −0.899500
\(469\) −4.61259e53 −0.0803344
\(470\) 1.44269e53 0.0240528
\(471\) 3.90856e54 0.623861
\(472\) 7.85973e53 0.120115
\(473\) 5.27864e53 0.0772447
\(474\) −5.26853e52 −0.00738301
\(475\) 6.42163e54 0.861839
\(476\) 3.78321e53 0.0486315
\(477\) 3.03222e54 0.373365
\(478\) 2.00859e53 0.0236930
\(479\) −6.42979e54 −0.726639 −0.363320 0.931665i \(-0.618357\pi\)
−0.363320 + 0.931665i \(0.618357\pi\)
\(480\) −4.09133e53 −0.0443016
\(481\) −1.18101e55 −1.22540
\(482\) −5.73950e53 −0.0570703
\(483\) −7.13252e53 −0.0679715
\(484\) −1.57208e55 −1.43596
\(485\) 3.45362e54 0.302391
\(486\) −6.44652e53 −0.0541105
\(487\) 2.20621e55 1.77543 0.887714 0.460396i \(-0.152292\pi\)
0.887714 + 0.460396i \(0.152292\pi\)
\(488\) 1.01288e54 0.0781538
\(489\) −9.84068e54 −0.728104
\(490\) 3.28034e53 0.0232755
\(491\) −2.26714e54 −0.154279 −0.0771395 0.997020i \(-0.524579\pi\)
−0.0771395 + 0.997020i \(0.524579\pi\)
\(492\) 5.17703e54 0.337906
\(493\) 1.24042e55 0.776619
\(494\) −1.44913e54 −0.0870370
\(495\) 6.93890e54 0.399838
\(496\) 2.67251e54 0.147756
\(497\) −8.34840e53 −0.0442892
\(498\) 1.09562e54 0.0557776
\(499\) −2.08851e54 −0.102041 −0.0510205 0.998698i \(-0.516247\pi\)
−0.0510205 + 0.998698i \(0.516247\pi\)
\(500\) 1.65006e55 0.773774
\(501\) −7.26909e54 −0.327195
\(502\) 8.98182e52 0.00388095
\(503\) −4.18071e55 −1.73423 −0.867115 0.498107i \(-0.834029\pi\)
−0.867115 + 0.498107i \(0.834029\pi\)
\(504\) 1.32672e53 0.00528388
\(505\) −1.88076e55 −0.719217
\(506\) 3.11619e54 0.114429
\(507\) 2.27059e55 0.800712
\(508\) 1.72738e55 0.585033
\(509\) −4.54501e55 −1.47850 −0.739248 0.673433i \(-0.764819\pi\)
−0.739248 + 0.673433i \(0.764819\pi\)
\(510\) −2.87711e53 −0.00899017
\(511\) 3.89632e54 0.116957
\(512\) −9.39886e54 −0.271045
\(513\) 3.85070e55 1.06692
\(514\) −1.62055e54 −0.0431437
\(515\) −2.46626e54 −0.0630943
\(516\) 1.26905e54 0.0312005
\(517\) 6.78774e55 1.60387
\(518\) 1.58236e53 0.00359374
\(519\) −4.69913e54 −0.102586
\(520\) −3.35517e54 −0.0704120
\(521\) 4.52665e55 0.913278 0.456639 0.889652i \(-0.349053\pi\)
0.456639 + 0.889652i \(0.349053\pi\)
\(522\) 2.17172e54 0.0421268
\(523\) −1.00124e56 −1.86748 −0.933738 0.357957i \(-0.883473\pi\)
−0.933738 + 0.357957i \(0.883473\pi\)
\(524\) −1.91956e55 −0.344278
\(525\) 2.41369e54 0.0416309
\(526\) −3.21922e54 −0.0534002
\(527\) 5.66662e54 0.0904078
\(528\) −6.38417e55 −0.979737
\(529\) 5.29981e55 0.782383
\(530\) 1.02742e54 0.0145913
\(531\) −4.80952e55 −0.657149
\(532\) −6.43011e54 −0.0845337
\(533\) 6.37148e55 0.805996
\(534\) −1.98308e54 −0.0241404
\(535\) −3.51937e55 −0.412299
\(536\) 9.70440e54 0.109418
\(537\) −7.82857e55 −0.849590
\(538\) 6.01840e54 0.0628701
\(539\) 1.54338e56 1.55204
\(540\) 4.45105e55 0.430914
\(541\) 1.94080e55 0.180899 0.0904495 0.995901i \(-0.471170\pi\)
0.0904495 + 0.995901i \(0.471170\pi\)
\(542\) 2.17014e54 0.0194761
\(543\) 7.50963e55 0.648966
\(544\) −1.19452e55 −0.0994069
\(545\) 4.93009e55 0.395118
\(546\) −5.44682e53 −0.00420430
\(547\) −1.89248e56 −1.40699 −0.703495 0.710700i \(-0.748378\pi\)
−0.703495 + 0.710700i \(0.748378\pi\)
\(548\) 2.86296e55 0.205028
\(549\) −6.19798e55 −0.427580
\(550\) −1.05454e55 −0.0700853
\(551\) −2.10828e56 −1.34996
\(552\) 1.50061e55 0.0925798
\(553\) −2.87714e54 −0.0171039
\(554\) −1.07977e55 −0.0618560
\(555\) 3.98530e55 0.220017
\(556\) 1.63931e56 0.872222
\(557\) −4.31584e55 −0.221327 −0.110663 0.993858i \(-0.535298\pi\)
−0.110663 + 0.993858i \(0.535298\pi\)
\(558\) 9.92105e53 0.00490407
\(559\) 1.56185e55 0.0744215
\(560\) −7.41011e54 −0.0340385
\(561\) −1.35366e56 −0.599474
\(562\) −1.01892e54 −0.00435055
\(563\) 3.50637e56 1.44356 0.721781 0.692121i \(-0.243324\pi\)
0.721781 + 0.692121i \(0.243324\pi\)
\(564\) 1.63186e56 0.647831
\(565\) −1.81592e56 −0.695191
\(566\) 8.11324e54 0.0299542
\(567\) 9.30596e53 0.00331366
\(568\) 1.75642e55 0.0603235
\(569\) 3.92278e56 1.29955 0.649775 0.760127i \(-0.274863\pi\)
0.649775 + 0.760127i \(0.274863\pi\)
\(570\) 4.89006e54 0.0156271
\(571\) 3.12164e56 0.962370 0.481185 0.876619i \(-0.340206\pi\)
0.481185 + 0.876619i \(0.340206\pi\)
\(572\) −7.88102e56 −2.34403
\(573\) −3.23361e56 −0.927937
\(574\) −8.53677e53 −0.00236374
\(575\) −4.08584e56 −1.09167
\(576\) 2.28309e56 0.588658
\(577\) 5.15710e55 0.128322 0.0641611 0.997940i \(-0.479563\pi\)
0.0641611 + 0.997940i \(0.479563\pi\)
\(578\) 1.44473e55 0.0346948
\(579\) 4.79926e55 0.111241
\(580\) −2.43698e56 −0.545227
\(581\) 5.98320e55 0.129218
\(582\) −1.17958e55 −0.0245926
\(583\) 4.83394e56 0.972962
\(584\) −8.19746e55 −0.159300
\(585\) 2.05310e56 0.385224
\(586\) 2.97099e55 0.0538270
\(587\) −1.62999e56 −0.285170 −0.142585 0.989783i \(-0.545541\pi\)
−0.142585 + 0.989783i \(0.545541\pi\)
\(588\) 3.71048e56 0.626895
\(589\) −9.63123e55 −0.157151
\(590\) −1.62963e55 −0.0256817
\(591\) 6.81139e56 1.03679
\(592\) 5.48766e56 0.806848
\(593\) −6.76525e56 −0.960866 −0.480433 0.877031i \(-0.659520\pi\)
−0.480433 + 0.877031i \(0.659520\pi\)
\(594\) −6.32348e55 −0.0867629
\(595\) −1.57119e55 −0.0208272
\(596\) −7.47868e56 −0.957804
\(597\) −5.23429e56 −0.647715
\(598\) 9.22024e55 0.110247
\(599\) 8.22842e56 0.950751 0.475376 0.879783i \(-0.342312\pi\)
0.475376 + 0.879783i \(0.342312\pi\)
\(600\) −5.07815e55 −0.0567029
\(601\) −1.40310e57 −1.51412 −0.757062 0.653343i \(-0.773366\pi\)
−0.757062 + 0.653343i \(0.773366\pi\)
\(602\) −2.09264e53 −0.000218256 0
\(603\) −5.93831e56 −0.598629
\(604\) 1.06699e57 1.03969
\(605\) 6.52892e56 0.614973
\(606\) 6.42370e55 0.0584920
\(607\) −1.85452e57 −1.63254 −0.816271 0.577669i \(-0.803962\pi\)
−0.816271 + 0.577669i \(0.803962\pi\)
\(608\) 2.03026e56 0.172794
\(609\) −7.92436e55 −0.0652093
\(610\) −2.10010e55 −0.0167100
\(611\) 2.00837e57 1.54525
\(612\) 4.87056e56 0.362388
\(613\) 1.52593e57 1.09798 0.548992 0.835828i \(-0.315012\pi\)
0.548992 + 0.835828i \(0.315012\pi\)
\(614\) −1.06113e56 −0.0738443
\(615\) −2.15005e56 −0.144713
\(616\) 2.11505e55 0.0137694
\(617\) 2.09012e56 0.131621 0.0658105 0.997832i \(-0.479037\pi\)
0.0658105 + 0.997832i \(0.479037\pi\)
\(618\) 8.42346e54 0.00513129
\(619\) −5.03746e56 −0.296861 −0.148431 0.988923i \(-0.547422\pi\)
−0.148431 + 0.988923i \(0.547422\pi\)
\(620\) −1.11328e56 −0.0634710
\(621\) −2.45005e57 −1.35144
\(622\) −2.52381e55 −0.0134696
\(623\) −1.08296e56 −0.0559251
\(624\) −1.88896e57 −0.943929
\(625\) 1.00567e57 0.486311
\(626\) −7.99438e55 −0.0374120
\(627\) 2.30074e57 1.04203
\(628\) −2.24196e57 −0.982776
\(629\) 1.16357e57 0.493688
\(630\) −2.75082e54 −0.00112975
\(631\) −2.05980e57 −0.818887 −0.409444 0.912335i \(-0.634277\pi\)
−0.409444 + 0.912335i \(0.634277\pi\)
\(632\) 6.05320e55 0.0232962
\(633\) 5.82312e56 0.216960
\(634\) −2.43205e56 −0.0877291
\(635\) −7.17389e56 −0.250549
\(636\) 1.16214e57 0.392996
\(637\) 4.56657e57 1.49531
\(638\) 3.46214e56 0.109779
\(639\) −1.07478e57 −0.330030
\(640\) 3.12747e56 0.0930046
\(641\) 4.32782e57 1.24646 0.623232 0.782037i \(-0.285819\pi\)
0.623232 + 0.782037i \(0.285819\pi\)
\(642\) 1.20203e56 0.0335312
\(643\) −2.48467e57 −0.671341 −0.335670 0.941980i \(-0.608963\pi\)
−0.335670 + 0.941980i \(0.608963\pi\)
\(644\) 4.09123e56 0.107076
\(645\) −5.27046e55 −0.0133621
\(646\) 1.42772e56 0.0350653
\(647\) −4.23499e57 −1.00766 −0.503831 0.863802i \(-0.668077\pi\)
−0.503831 + 0.863802i \(0.668077\pi\)
\(648\) −1.95788e55 −0.00451333
\(649\) −7.66730e57 −1.71248
\(650\) −3.12019e56 −0.0675238
\(651\) −3.62008e55 −0.00759115
\(652\) 5.64464e57 1.14699
\(653\) −1.80067e57 −0.354580 −0.177290 0.984159i \(-0.556733\pi\)
−0.177290 + 0.984159i \(0.556733\pi\)
\(654\) −1.68386e56 −0.0321339
\(655\) 7.97203e56 0.147442
\(656\) −2.96056e57 −0.530695
\(657\) 5.01618e57 0.871532
\(658\) −2.69089e55 −0.00453175
\(659\) −6.74103e57 −1.10046 −0.550231 0.835012i \(-0.685460\pi\)
−0.550231 + 0.835012i \(0.685460\pi\)
\(660\) 2.65944e57 0.420862
\(661\) 9.42263e57 1.44558 0.722790 0.691068i \(-0.242859\pi\)
0.722790 + 0.691068i \(0.242859\pi\)
\(662\) 2.88586e56 0.0429226
\(663\) −4.00523e57 −0.577564
\(664\) −1.25880e57 −0.176000
\(665\) 2.67046e56 0.0362028
\(666\) 2.03716e56 0.0267795
\(667\) 1.34142e58 1.70995
\(668\) 4.16957e57 0.515434
\(669\) −1.96639e57 −0.235741
\(670\) −2.01211e56 −0.0233947
\(671\) −9.88079e57 −1.11424
\(672\) 7.63112e55 0.00834676
\(673\) −7.22539e57 −0.766571 −0.383285 0.923630i \(-0.625207\pi\)
−0.383285 + 0.923630i \(0.625207\pi\)
\(674\) 2.68861e56 0.0276694
\(675\) 8.29113e57 0.827725
\(676\) −1.30242e58 −1.26137
\(677\) −9.31845e57 −0.875540 −0.437770 0.899087i \(-0.644232\pi\)
−0.437770 + 0.899087i \(0.644232\pi\)
\(678\) 6.20224e56 0.0565380
\(679\) −6.44167e56 −0.0569729
\(680\) 3.30562e56 0.0283674
\(681\) 7.11157e56 0.0592175
\(682\) 1.58161e56 0.0127796
\(683\) 1.54469e58 1.21121 0.605603 0.795767i \(-0.292932\pi\)
0.605603 + 0.795767i \(0.292932\pi\)
\(684\) −8.27821e57 −0.629921
\(685\) −1.18900e57 −0.0878064
\(686\) −1.22768e56 −0.00879915
\(687\) 4.14622e57 0.288429
\(688\) −7.25728e56 −0.0490017
\(689\) 1.43028e58 0.937401
\(690\) −3.11136e56 −0.0197945
\(691\) 1.40721e58 0.869078 0.434539 0.900653i \(-0.356911\pi\)
0.434539 + 0.900653i \(0.356911\pi\)
\(692\) 2.69543e57 0.161604
\(693\) −1.29424e57 −0.0753326
\(694\) −1.08586e57 −0.0613627
\(695\) −6.80814e57 −0.373542
\(696\) 1.66720e57 0.0888175
\(697\) −6.27738e57 −0.324718
\(698\) −4.80423e56 −0.0241317
\(699\) −5.04130e57 −0.245901
\(700\) −1.38450e57 −0.0655817
\(701\) −2.16291e58 −0.994991 −0.497495 0.867467i \(-0.665747\pi\)
−0.497495 + 0.867467i \(0.665747\pi\)
\(702\) −1.87100e57 −0.0835919
\(703\) −1.97765e58 −0.858153
\(704\) 3.63969e58 1.53400
\(705\) −6.77722e57 −0.277443
\(706\) 2.02182e57 0.0803982
\(707\) 3.50798e57 0.135506
\(708\) −1.84332e58 −0.691702
\(709\) −1.27581e58 −0.465090 −0.232545 0.972586i \(-0.574705\pi\)
−0.232545 + 0.972586i \(0.574705\pi\)
\(710\) −3.64175e56 −0.0128978
\(711\) −3.70407e57 −0.127454
\(712\) 2.27843e57 0.0761722
\(713\) 6.12798e57 0.199059
\(714\) 5.36637e55 0.00169382
\(715\) 3.27303e58 1.00387
\(716\) 4.49049e58 1.33837
\(717\) −9.43563e57 −0.273293
\(718\) 2.07109e57 0.0582973
\(719\) 2.41677e58 0.661138 0.330569 0.943782i \(-0.392759\pi\)
0.330569 + 0.943782i \(0.392759\pi\)
\(720\) −9.53987e57 −0.253645
\(721\) 4.60005e56 0.0118875
\(722\) −2.42238e56 −0.00608458
\(723\) 2.69621e58 0.658291
\(724\) −4.30754e58 −1.02232
\(725\) −4.53944e58 −1.04730
\(726\) −2.22994e57 −0.0500141
\(727\) −4.92924e58 −1.07479 −0.537396 0.843330i \(-0.680592\pi\)
−0.537396 + 0.843330i \(0.680592\pi\)
\(728\) 6.25805e56 0.0132662
\(729\) 3.22819e58 0.665342
\(730\) 1.69966e57 0.0340599
\(731\) −1.53878e57 −0.0299828
\(732\) −2.37547e58 −0.450062
\(733\) 4.81159e58 0.886456 0.443228 0.896409i \(-0.353833\pi\)
0.443228 + 0.896409i \(0.353833\pi\)
\(734\) −6.60720e56 −0.0118372
\(735\) −1.54098e58 −0.268477
\(736\) −1.29178e58 −0.218873
\(737\) −9.46682e58 −1.55999
\(738\) −1.09904e57 −0.0176139
\(739\) 9.13074e58 1.42330 0.711648 0.702537i \(-0.247949\pi\)
0.711648 + 0.702537i \(0.247949\pi\)
\(740\) −2.28598e58 −0.346595
\(741\) 6.80746e58 1.00395
\(742\) −1.91634e56 −0.00274911
\(743\) 1.50391e57 0.0209870 0.0104935 0.999945i \(-0.496660\pi\)
0.0104935 + 0.999945i \(0.496660\pi\)
\(744\) 7.61627e56 0.0103394
\(745\) 3.10594e58 0.410194
\(746\) −7.59183e56 −0.00975439
\(747\) 7.70285e58 0.962895
\(748\) 7.76461e58 0.944358
\(749\) 6.56431e57 0.0776804
\(750\) 2.34056e57 0.0269503
\(751\) −1.25195e59 −1.40272 −0.701358 0.712809i \(-0.747423\pi\)
−0.701358 + 0.712809i \(0.747423\pi\)
\(752\) −9.33204e58 −1.01745
\(753\) −4.21933e57 −0.0447658
\(754\) 1.02438e58 0.105767
\(755\) −4.43126e58 −0.445261
\(756\) −8.30208e57 −0.0811876
\(757\) 1.29607e58 0.123357 0.0616784 0.998096i \(-0.480355\pi\)
0.0616784 + 0.998096i \(0.480355\pi\)
\(758\) −1.98189e57 −0.0183595
\(759\) −1.46387e59 −1.31991
\(760\) −5.61837e57 −0.0493096
\(761\) 6.14300e58 0.524801 0.262401 0.964959i \(-0.415486\pi\)
0.262401 + 0.964959i \(0.415486\pi\)
\(762\) 2.45023e57 0.0203765
\(763\) −9.19557e57 −0.0744433
\(764\) 1.85481e59 1.46179
\(765\) −2.02277e58 −0.155198
\(766\) −4.74916e57 −0.0354754
\(767\) −2.26862e59 −1.64989
\(768\) 8.66991e58 0.613917
\(769\) 1.38280e59 0.953388 0.476694 0.879069i \(-0.341835\pi\)
0.476694 + 0.879069i \(0.341835\pi\)
\(770\) −4.38534e56 −0.00294404
\(771\) 7.61272e58 0.497651
\(772\) −2.75287e58 −0.175239
\(773\) 1.19232e59 0.739119 0.369560 0.929207i \(-0.379509\pi\)
0.369560 + 0.929207i \(0.379509\pi\)
\(774\) −2.69409e56 −0.00162638
\(775\) −2.07375e58 −0.121919
\(776\) 1.35526e58 0.0775992
\(777\) −7.43336e57 −0.0414529
\(778\) −1.15557e58 −0.0627646
\(779\) 1.06693e59 0.564440
\(780\) 7.86880e58 0.405480
\(781\) −1.71342e59 −0.860036
\(782\) −9.08405e57 −0.0444162
\(783\) −2.72205e59 −1.29652
\(784\) −2.12189e59 −0.984565
\(785\) 9.31098e58 0.420889
\(786\) −2.72283e57 −0.0119911
\(787\) 2.56981e59 1.10260 0.551301 0.834307i \(-0.314132\pi\)
0.551301 + 0.834307i \(0.314132\pi\)
\(788\) −3.90703e59 −1.63327
\(789\) 1.51227e59 0.615957
\(790\) −1.25507e57 −0.00498096
\(791\) 3.38704e58 0.130979
\(792\) 2.72294e58 0.102606
\(793\) −2.92355e59 −1.07352
\(794\) 2.36338e58 0.0845693
\(795\) −4.82645e58 −0.168307
\(796\) 3.00240e59 1.02035
\(797\) 5.39123e59 1.78563 0.892816 0.450421i \(-0.148726\pi\)
0.892816 + 0.450421i \(0.148726\pi\)
\(798\) −9.12091e56 −0.00294428
\(799\) −1.97870e59 −0.622547
\(800\) 4.37145e58 0.134054
\(801\) −1.39422e59 −0.416738
\(802\) −1.63775e58 −0.0477171
\(803\) 7.99677e59 2.27115
\(804\) −2.27595e59 −0.630106
\(805\) −1.69911e58 −0.0458571
\(806\) 4.67969e57 0.0123126
\(807\) −2.82722e59 −0.725190
\(808\) −7.38042e58 −0.184565
\(809\) −4.68209e59 −1.14155 −0.570775 0.821106i \(-0.693357\pi\)
−0.570775 + 0.821106i \(0.693357\pi\)
\(810\) 4.05946e56 0.000964995 0
\(811\) 5.03719e58 0.116751 0.0583756 0.998295i \(-0.481408\pi\)
0.0583756 + 0.998295i \(0.481408\pi\)
\(812\) 4.54543e58 0.102725
\(813\) −1.01945e59 −0.224652
\(814\) 3.24763e58 0.0697856
\(815\) −2.34425e59 −0.491217
\(816\) 1.86106e59 0.380288
\(817\) 2.61539e58 0.0521175
\(818\) −5.06983e58 −0.0985259
\(819\) −3.82942e58 −0.0725793
\(820\) 1.23327e59 0.227969
\(821\) −7.92919e59 −1.42953 −0.714766 0.699363i \(-0.753467\pi\)
−0.714766 + 0.699363i \(0.753467\pi\)
\(822\) 4.06102e57 0.00714106
\(823\) 5.91534e58 0.101457 0.0507287 0.998712i \(-0.483846\pi\)
0.0507287 + 0.998712i \(0.483846\pi\)
\(824\) −9.67802e57 −0.0161912
\(825\) 4.95383e59 0.808416
\(826\) 3.03958e57 0.00483864
\(827\) 9.18303e59 1.42601 0.713006 0.701158i \(-0.247333\pi\)
0.713006 + 0.701158i \(0.247333\pi\)
\(828\) 5.26711e59 0.797903
\(829\) −6.10924e59 −0.902858 −0.451429 0.892307i \(-0.649086\pi\)
−0.451429 + 0.892307i \(0.649086\pi\)
\(830\) 2.61000e58 0.0376304
\(831\) 5.07236e59 0.713493
\(832\) 1.07692e60 1.47793
\(833\) −4.49912e59 −0.602428
\(834\) 2.32531e58 0.0303792
\(835\) −1.73164e59 −0.220743
\(836\) −1.31971e60 −1.64153
\(837\) −1.24351e59 −0.150931
\(838\) 6.26037e58 0.0741476
\(839\) −1.07495e60 −1.24242 −0.621210 0.783644i \(-0.713359\pi\)
−0.621210 + 0.783644i \(0.713359\pi\)
\(840\) −2.11177e57 −0.00238189
\(841\) 5.81851e59 0.640463
\(842\) −2.55945e58 −0.0274947
\(843\) 4.78649e58 0.0501825
\(844\) −3.34016e59 −0.341780
\(845\) 5.40902e59 0.540202
\(846\) −3.46429e58 −0.0337693
\(847\) −1.21777e59 −0.115866
\(848\) −6.64589e59 −0.617217
\(849\) −3.81130e59 −0.345514
\(850\) 3.07410e58 0.0272038
\(851\) 1.25830e60 1.08700
\(852\) −4.11928e59 −0.347384
\(853\) −7.04560e59 −0.580047 −0.290023 0.957020i \(-0.593663\pi\)
−0.290023 + 0.957020i \(0.593663\pi\)
\(854\) 3.91709e57 0.00314830
\(855\) 3.43799e59 0.269773
\(856\) −1.38106e59 −0.105804
\(857\) 1.18884e60 0.889234 0.444617 0.895721i \(-0.353340\pi\)
0.444617 + 0.895721i \(0.353340\pi\)
\(858\) −1.11790e59 −0.0816418
\(859\) 2.54870e60 1.81744 0.908718 0.417410i \(-0.137062\pi\)
0.908718 + 0.417410i \(0.137062\pi\)
\(860\) 3.02315e58 0.0210495
\(861\) 4.01026e58 0.0272651
\(862\) 4.35756e58 0.0289297
\(863\) −1.01594e60 −0.658640 −0.329320 0.944218i \(-0.606819\pi\)
−0.329320 + 0.944218i \(0.606819\pi\)
\(864\) 2.62132e59 0.165954
\(865\) −1.11943e59 −0.0692095
\(866\) −1.09954e59 −0.0663890
\(867\) −6.78679e59 −0.400196
\(868\) 2.07649e58 0.0119584
\(869\) −5.90501e59 −0.332135
\(870\) −3.45677e58 −0.0189901
\(871\) −2.80106e60 −1.50297
\(872\) 1.93465e59 0.101395
\(873\) −8.29309e59 −0.424546
\(874\) 1.54396e59 0.0772064
\(875\) 1.27818e59 0.0624347
\(876\) 1.92253e60 0.917357
\(877\) −3.07649e59 −0.143405 −0.0717023 0.997426i \(-0.522843\pi\)
−0.0717023 + 0.997426i \(0.522843\pi\)
\(878\) −2.14132e57 −0.000975087 0
\(879\) −1.39566e60 −0.620881
\(880\) −1.52084e60 −0.660981
\(881\) 1.76559e60 0.749694 0.374847 0.927087i \(-0.377695\pi\)
0.374847 + 0.927087i \(0.377695\pi\)
\(882\) −7.87701e58 −0.0326780
\(883\) 1.02366e60 0.414918 0.207459 0.978244i \(-0.433481\pi\)
0.207459 + 0.978244i \(0.433481\pi\)
\(884\) 2.29741e60 0.909843
\(885\) 7.65542e59 0.296232
\(886\) 7.86015e58 0.0297193
\(887\) −4.52674e59 −0.167244 −0.0836221 0.996498i \(-0.526649\pi\)
−0.0836221 + 0.996498i \(0.526649\pi\)
\(888\) 1.56390e59 0.0564604
\(889\) 1.33807e59 0.0472055
\(890\) −4.72410e58 −0.0162864
\(891\) 1.90994e59 0.0643468
\(892\) 1.12793e60 0.371366
\(893\) 3.36309e60 1.08214
\(894\) −1.06083e59 −0.0333600
\(895\) −1.86493e60 −0.573178
\(896\) −5.83335e58 −0.0175228
\(897\) −4.33133e60 −1.27167
\(898\) 4.52652e58 0.0129897
\(899\) 6.80829e59 0.190970
\(900\) −1.78242e60 −0.488696
\(901\) −1.40915e60 −0.377658
\(902\) −1.75208e59 −0.0459007
\(903\) 9.83043e57 0.00251752
\(904\) −7.12599e59 −0.178399
\(905\) 1.78895e60 0.437826
\(906\) 1.51349e59 0.0362119
\(907\) −6.39985e60 −1.49699 −0.748497 0.663138i \(-0.769224\pi\)
−0.748497 + 0.663138i \(0.769224\pi\)
\(908\) −4.07921e59 −0.0932860
\(909\) 4.51622e60 1.00975
\(910\) −1.29754e58 −0.00283644
\(911\) −3.60826e60 −0.771208 −0.385604 0.922664i \(-0.626007\pi\)
−0.385604 + 0.922664i \(0.626007\pi\)
\(912\) −3.16314e60 −0.661035
\(913\) 1.22798e61 2.50924
\(914\) 2.37697e59 0.0474927
\(915\) 9.86547e59 0.192746
\(916\) −2.37828e60 −0.454366
\(917\) −1.48694e59 −0.0277793
\(918\) 1.84337e59 0.0336773
\(919\) 6.99835e60 1.25034 0.625170 0.780489i \(-0.285030\pi\)
0.625170 + 0.780489i \(0.285030\pi\)
\(920\) 3.57475e59 0.0624591
\(921\) 4.98479e60 0.851775
\(922\) 1.35694e59 0.0226765
\(923\) −5.06969e60 −0.828603
\(924\) −4.96037e59 −0.0792937
\(925\) −4.25817e60 −0.665760
\(926\) 2.21658e59 0.0338968
\(927\) 5.92217e59 0.0885821
\(928\) −1.43519e60 −0.209979
\(929\) −1.28627e61 −1.84081 −0.920406 0.390963i \(-0.872142\pi\)
−0.920406 + 0.390963i \(0.872142\pi\)
\(930\) −1.57916e58 −0.00221067
\(931\) 7.64690e60 1.04717
\(932\) 2.89170e60 0.387371
\(933\) 1.18559e60 0.155368
\(934\) −3.83497e59 −0.0491645
\(935\) −3.22469e60 −0.404436
\(936\) 8.05670e59 0.0988558
\(937\) −1.05021e61 −1.26071 −0.630354 0.776308i \(-0.717090\pi\)
−0.630354 + 0.776308i \(0.717090\pi\)
\(938\) 3.75297e58 0.00440775
\(939\) 3.75546e60 0.431538
\(940\) 3.88743e60 0.437060
\(941\) −7.41023e60 −0.815163 −0.407581 0.913169i \(-0.633628\pi\)
−0.407581 + 0.913169i \(0.633628\pi\)
\(942\) −3.18015e59 −0.0342298
\(943\) −6.78847e60 −0.714960
\(944\) 1.05413e61 1.08635
\(945\) 3.44790e59 0.0347698
\(946\) −4.29490e58 −0.00423823
\(947\) 5.73646e60 0.553949 0.276974 0.960877i \(-0.410668\pi\)
0.276974 + 0.960877i \(0.410668\pi\)
\(948\) −1.41964e60 −0.134155
\(949\) 2.36610e61 2.18814
\(950\) −5.22488e59 −0.0472870
\(951\) 1.14249e61 1.01193
\(952\) −6.16562e58 −0.00534465
\(953\) −1.08849e61 −0.923467 −0.461733 0.887019i \(-0.652772\pi\)
−0.461733 + 0.887019i \(0.652772\pi\)
\(954\) −2.46712e59 −0.0204856
\(955\) −7.70313e60 −0.626034
\(956\) 5.41230e60 0.430521
\(957\) −1.62639e61 −1.26628
\(958\) 5.23152e59 0.0398690
\(959\) 2.21772e59 0.0165434
\(960\) −3.63405e60 −0.265357
\(961\) −1.36794e61 −0.977769
\(962\) 9.60914e59 0.0672350
\(963\) 8.45098e60 0.578853
\(964\) −1.54655e61 −1.03701
\(965\) 1.14328e60 0.0750487
\(966\) 5.80329e58 0.00372943
\(967\) 2.37432e61 1.49381 0.746906 0.664930i \(-0.231539\pi\)
0.746906 + 0.664930i \(0.231539\pi\)
\(968\) 2.56206e60 0.157814
\(969\) −6.70691e60 −0.404469
\(970\) −2.80999e59 −0.0165915
\(971\) −1.71671e61 −0.992436 −0.496218 0.868198i \(-0.665278\pi\)
−0.496218 + 0.868198i \(0.665278\pi\)
\(972\) −1.73706e61 −0.983233
\(973\) 1.26985e60 0.0703783
\(974\) −1.79505e60 −0.0974134
\(975\) 1.46575e61 0.778870
\(976\) 1.35845e61 0.706842
\(977\) 3.29474e61 1.67873 0.839367 0.543565i \(-0.182926\pi\)
0.839367 + 0.543565i \(0.182926\pi\)
\(978\) 8.00675e59 0.0399493
\(979\) −2.22265e61 −1.08599
\(980\) 8.83912e60 0.422936
\(981\) −1.18385e61 −0.554731
\(982\) 1.84463e59 0.00846492
\(983\) 3.50912e61 1.57707 0.788535 0.614990i \(-0.210840\pi\)
0.788535 + 0.614990i \(0.210840\pi\)
\(984\) −8.43716e59 −0.0371362
\(985\) 1.62261e61 0.699474
\(986\) −1.00925e60 −0.0426112
\(987\) 1.26408e60 0.0522725
\(988\) −3.90477e61 −1.58153
\(989\) −1.66407e60 −0.0660157
\(990\) −5.64575e59 −0.0219381
\(991\) −1.41075e61 −0.536959 −0.268480 0.963285i \(-0.586521\pi\)
−0.268480 + 0.963285i \(0.586521\pi\)
\(992\) −6.55635e59 −0.0244441
\(993\) −1.35567e61 −0.495101
\(994\) 6.79257e58 0.00243004
\(995\) −1.24691e61 −0.436982
\(996\) 2.95224e61 1.01353
\(997\) −1.88767e61 −0.634857 −0.317429 0.948282i \(-0.602819\pi\)
−0.317429 + 0.948282i \(0.602819\pi\)
\(998\) 1.69929e59 0.00559874
\(999\) −2.55339e61 −0.824185
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))