Properties

Label 1.42.a.a.1.1
Level 1
Weight 42
Character 1.1
Self dual Yes
Analytic conductor 10.647
Analytic rank 1
Dimension 3
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 42 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(10.6471670456\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{11}\cdot 3^{3}\cdot 5\cdot 7 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-53110.1\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.66420e6 q^{2} -7.98359e9 q^{3} +4.89893e12 q^{4} +3.47255e13 q^{5} +2.12699e16 q^{6} +1.66807e17 q^{7} -7.19310e18 q^{8} +2.72647e19 q^{9} +O(q^{10})\) \(q-2.66420e6 q^{2} -7.98359e9 q^{3} +4.89893e12 q^{4} +3.47255e13 q^{5} +2.12699e16 q^{6} +1.66807e17 q^{7} -7.19310e18 q^{8} +2.72647e19 q^{9} -9.25156e19 q^{10} -1.73703e21 q^{11} -3.91111e22 q^{12} +9.18003e22 q^{13} -4.44406e23 q^{14} -2.77234e23 q^{15} +8.39097e24 q^{16} +2.02868e25 q^{17} -7.26386e25 q^{18} -1.01896e26 q^{19} +1.70118e26 q^{20} -1.33172e27 q^{21} +4.62780e27 q^{22} -1.07819e28 q^{23} +5.74267e28 q^{24} -4.42689e28 q^{25} -2.44574e29 q^{26} +7.35151e28 q^{27} +8.17174e29 q^{28} -8.13688e29 q^{29} +7.38607e29 q^{30} +2.07038e30 q^{31} -6.53743e30 q^{32} +1.38677e31 q^{33} -5.40481e31 q^{34} +5.79244e30 q^{35} +1.33568e32 q^{36} -3.24660e30 q^{37} +2.71472e32 q^{38} -7.32896e32 q^{39} -2.49784e32 q^{40} -1.06315e33 q^{41} +3.54796e33 q^{42} +1.71944e33 q^{43} -8.50960e33 q^{44} +9.46781e32 q^{45} +2.87252e34 q^{46} -9.87145e33 q^{47} -6.69901e34 q^{48} -1.67432e34 q^{49} +1.17941e35 q^{50} -1.61962e35 q^{51} +4.49723e35 q^{52} -1.57415e35 q^{53} -1.95859e35 q^{54} -6.03192e34 q^{55} -1.19986e36 q^{56} +8.13498e35 q^{57} +2.16783e36 q^{58} -1.93994e36 q^{59} -1.35815e36 q^{60} +6.18066e36 q^{61} -5.51589e36 q^{62} +4.54794e36 q^{63} -1.03493e36 q^{64} +3.18781e36 q^{65} -3.69464e37 q^{66} -4.06657e37 q^{67} +9.93837e37 q^{68} +8.60784e37 q^{69} -1.54322e37 q^{70} -6.45010e37 q^{71} -1.96118e38 q^{72} +3.02798e37 q^{73} +8.64959e36 q^{74} +3.53425e38 q^{75} -4.99183e38 q^{76} -2.89748e38 q^{77} +1.95258e39 q^{78} -1.38169e39 q^{79} +2.91380e38 q^{80} -1.58134e39 q^{81} +2.83245e39 q^{82} +1.09468e39 q^{83} -6.52399e39 q^{84} +7.04469e38 q^{85} -4.58093e39 q^{86} +6.49615e39 q^{87} +1.24946e40 q^{88} +6.39870e38 q^{89} -2.52241e39 q^{90} +1.53129e40 q^{91} -5.28199e40 q^{92} -1.65290e40 q^{93} +2.62995e40 q^{94} -3.53840e39 q^{95} +5.21922e40 q^{96} +3.04505e39 q^{97} +4.46072e40 q^{98} -4.73597e40 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 344688q^{2} - 10820953044q^{3} + 6271704903936q^{4} - 212302350281550q^{5} + 4970194114982976q^{6} + 57878416258239192q^{7} - 3555831711183237120q^{8} + 13277004110931878919q^{9} + O(q^{10}) \) \( 3q - 344688q^{2} - 10820953044q^{3} + 6271704903936q^{4} - 212302350281550q^{5} + 4970194114982976q^{6} + 57878416258239192q^{7} - 3555831711183237120q^{8} + 13277004110931878919q^{9} - \)\(91\!\cdots\!00\)\(q^{10} - \)\(30\!\cdots\!64\)\(q^{11} - \)\(71\!\cdots\!48\)\(q^{12} - \)\(98\!\cdots\!94\)\(q^{13} - \)\(66\!\cdots\!08\)\(q^{14} + \)\(23\!\cdots\!00\)\(q^{15} + \)\(13\!\cdots\!48\)\(q^{16} + \)\(35\!\cdots\!02\)\(q^{17} - \)\(51\!\cdots\!04\)\(q^{18} - \)\(23\!\cdots\!80\)\(q^{19} - \)\(12\!\cdots\!00\)\(q^{20} - \)\(78\!\cdots\!24\)\(q^{21} + \)\(10\!\cdots\!44\)\(q^{22} + \)\(28\!\cdots\!56\)\(q^{23} + \)\(36\!\cdots\!60\)\(q^{24} - \)\(12\!\cdots\!75\)\(q^{25} - \)\(44\!\cdots\!04\)\(q^{26} + \)\(40\!\cdots\!80\)\(q^{27} + \)\(52\!\cdots\!64\)\(q^{28} - \)\(12\!\cdots\!70\)\(q^{29} + \)\(61\!\cdots\!00\)\(q^{30} - \)\(55\!\cdots\!04\)\(q^{31} - \)\(14\!\cdots\!48\)\(q^{32} - \)\(13\!\cdots\!28\)\(q^{33} - \)\(42\!\cdots\!08\)\(q^{34} + \)\(35\!\cdots\!00\)\(q^{35} + \)\(20\!\cdots\!28\)\(q^{36} + \)\(49\!\cdots\!22\)\(q^{37} + \)\(38\!\cdots\!20\)\(q^{38} - \)\(54\!\cdots\!12\)\(q^{39} - \)\(13\!\cdots\!00\)\(q^{40} - \)\(31\!\cdots\!74\)\(q^{41} + \)\(50\!\cdots\!24\)\(q^{42} + \)\(14\!\cdots\!56\)\(q^{43} + \)\(68\!\cdots\!32\)\(q^{44} - \)\(37\!\cdots\!50\)\(q^{45} + \)\(34\!\cdots\!16\)\(q^{46} - \)\(63\!\cdots\!68\)\(q^{47} - \)\(48\!\cdots\!44\)\(q^{48} - \)\(97\!\cdots\!29\)\(q^{49} + \)\(28\!\cdots\!00\)\(q^{50} - \)\(15\!\cdots\!24\)\(q^{51} + \)\(36\!\cdots\!52\)\(q^{52} + \)\(79\!\cdots\!06\)\(q^{53} + \)\(27\!\cdots\!20\)\(q^{54} - \)\(11\!\cdots\!00\)\(q^{55} - \)\(15\!\cdots\!80\)\(q^{56} - \)\(12\!\cdots\!40\)\(q^{57} + \)\(10\!\cdots\!80\)\(q^{58} + \)\(19\!\cdots\!60\)\(q^{59} + \)\(59\!\cdots\!00\)\(q^{60} + \)\(87\!\cdots\!86\)\(q^{61} - \)\(12\!\cdots\!16\)\(q^{62} + \)\(41\!\cdots\!36\)\(q^{63} - \)\(28\!\cdots\!64\)\(q^{64} + \)\(23\!\cdots\!00\)\(q^{65} - \)\(70\!\cdots\!88\)\(q^{66} + \)\(11\!\cdots\!52\)\(q^{67} + \)\(95\!\cdots\!84\)\(q^{68} + \)\(11\!\cdots\!48\)\(q^{69} + \)\(59\!\cdots\!00\)\(q^{70} - \)\(14\!\cdots\!84\)\(q^{71} - \)\(17\!\cdots\!60\)\(q^{72} + \)\(45\!\cdots\!06\)\(q^{73} - \)\(25\!\cdots\!08\)\(q^{74} - \)\(24\!\cdots\!00\)\(q^{75} + \)\(26\!\cdots\!40\)\(q^{76} - \)\(42\!\cdots\!96\)\(q^{77} + \)\(33\!\cdots\!32\)\(q^{78} - \)\(52\!\cdots\!20\)\(q^{79} + \)\(71\!\cdots\!00\)\(q^{80} - \)\(31\!\cdots\!97\)\(q^{81} - \)\(57\!\cdots\!96\)\(q^{82} - \)\(61\!\cdots\!44\)\(q^{83} - \)\(41\!\cdots\!88\)\(q^{84} - \)\(10\!\cdots\!00\)\(q^{85} - \)\(47\!\cdots\!44\)\(q^{86} + \)\(13\!\cdots\!40\)\(q^{87} + \)\(18\!\cdots\!60\)\(q^{88} - \)\(14\!\cdots\!10\)\(q^{89} - \)\(87\!\cdots\!00\)\(q^{90} + \)\(25\!\cdots\!96\)\(q^{91} - \)\(67\!\cdots\!48\)\(q^{92} + \)\(34\!\cdots\!92\)\(q^{93} - \)\(53\!\cdots\!08\)\(q^{94} - \)\(33\!\cdots\!00\)\(q^{95} + \)\(95\!\cdots\!96\)\(q^{96} + \)\(11\!\cdots\!82\)\(q^{97} - \)\(38\!\cdots\!16\)\(q^{98} + \)\(45\!\cdots\!28\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.66420e6 −1.79660 −0.898301 0.439381i \(-0.855198\pi\)
−0.898301 + 0.439381i \(0.855198\pi\)
\(3\) −7.98359e9 −1.32194 −0.660971 0.750411i \(-0.729855\pi\)
−0.660971 + 0.750411i \(0.729855\pi\)
\(4\) 4.89893e12 2.22778
\(5\) 3.47255e13 0.162841 0.0814204 0.996680i \(-0.474054\pi\)
0.0814204 + 0.996680i \(0.474054\pi\)
\(6\) 2.12699e16 2.37500
\(7\) 1.66807e17 0.790139 0.395069 0.918651i \(-0.370721\pi\)
0.395069 + 0.918651i \(0.370721\pi\)
\(8\) −7.19310e18 −2.20583
\(9\) 2.72647e19 0.747532
\(10\) −9.25156e19 −0.292560
\(11\) −1.73703e21 −0.778498 −0.389249 0.921133i \(-0.627265\pi\)
−0.389249 + 0.921133i \(0.627265\pi\)
\(12\) −3.91111e22 −2.94499
\(13\) 9.18003e22 1.33969 0.669846 0.742500i \(-0.266360\pi\)
0.669846 + 0.742500i \(0.266360\pi\)
\(14\) −4.44406e23 −1.41956
\(15\) −2.77234e23 −0.215266
\(16\) 8.39097e24 1.73521
\(17\) 2.02868e25 1.21063 0.605314 0.795987i \(-0.293047\pi\)
0.605314 + 0.795987i \(0.293047\pi\)
\(18\) −7.26386e25 −1.34302
\(19\) −1.01896e26 −0.621884 −0.310942 0.950429i \(-0.600644\pi\)
−0.310942 + 0.950429i \(0.600644\pi\)
\(20\) 1.70118e26 0.362773
\(21\) −1.33172e27 −1.04452
\(22\) 4.62780e27 1.39865
\(23\) −1.07819e28 −1.31001 −0.655006 0.755624i \(-0.727334\pi\)
−0.655006 + 0.755624i \(0.727334\pi\)
\(24\) 5.74267e28 2.91597
\(25\) −4.42689e28 −0.973483
\(26\) −2.44574e29 −2.40689
\(27\) 7.35151e28 0.333749
\(28\) 8.17174e29 1.76025
\(29\) −8.13688e29 −0.853688 −0.426844 0.904325i \(-0.640375\pi\)
−0.426844 + 0.904325i \(0.640375\pi\)
\(30\) 7.38607e29 0.386747
\(31\) 2.07038e30 0.553522 0.276761 0.960939i \(-0.410739\pi\)
0.276761 + 0.960939i \(0.410739\pi\)
\(32\) −6.53743e30 −0.911659
\(33\) 1.38677e31 1.02913
\(34\) −5.40481e31 −2.17502
\(35\) 5.79244e30 0.128667
\(36\) 1.33568e32 1.66533
\(37\) −3.24660e30 −0.0230831 −0.0115415 0.999933i \(-0.503674\pi\)
−0.0115415 + 0.999933i \(0.503674\pi\)
\(38\) 2.71472e32 1.11728
\(39\) −7.32896e32 −1.77100
\(40\) −2.49784e32 −0.359198
\(41\) −1.06315e33 −0.921566 −0.460783 0.887513i \(-0.652431\pi\)
−0.460783 + 0.887513i \(0.652431\pi\)
\(42\) 3.54796e33 1.87658
\(43\) 1.71944e33 0.561415 0.280707 0.959793i \(-0.409431\pi\)
0.280707 + 0.959793i \(0.409431\pi\)
\(44\) −8.50960e33 −1.73432
\(45\) 9.46781e32 0.121729
\(46\) 2.87252e34 2.35357
\(47\) −9.87145e33 −0.520445 −0.260223 0.965549i \(-0.583796\pi\)
−0.260223 + 0.965549i \(0.583796\pi\)
\(48\) −6.69901e34 −2.29385
\(49\) −1.67432e34 −0.375680
\(50\) 1.17941e35 1.74896
\(51\) −1.61962e35 −1.60038
\(52\) 4.49723e35 2.98454
\(53\) −1.57415e35 −0.706952 −0.353476 0.935444i \(-0.615000\pi\)
−0.353476 + 0.935444i \(0.615000\pi\)
\(54\) −1.95859e35 −0.599613
\(55\) −6.03192e34 −0.126771
\(56\) −1.19986e36 −1.74291
\(57\) 8.13498e35 0.822095
\(58\) 2.16783e36 1.53374
\(59\) −1.93994e36 −0.966768 −0.483384 0.875408i \(-0.660592\pi\)
−0.483384 + 0.875408i \(0.660592\pi\)
\(60\) −1.35815e36 −0.479565
\(61\) 6.18066e36 1.55515 0.777576 0.628788i \(-0.216449\pi\)
0.777576 + 0.628788i \(0.216449\pi\)
\(62\) −5.51589e36 −0.994458
\(63\) 4.54794e36 0.590654
\(64\) −1.03493e36 −0.0973241
\(65\) 3.18781e36 0.218157
\(66\) −3.69464e37 −1.84894
\(67\) −4.06657e37 −1.49518 −0.747592 0.664158i \(-0.768790\pi\)
−0.747592 + 0.664158i \(0.768790\pi\)
\(68\) 9.93837e37 2.69701
\(69\) 8.60784e37 1.73176
\(70\) −1.54322e37 −0.231163
\(71\) −6.45010e37 −0.722388 −0.361194 0.932491i \(-0.617631\pi\)
−0.361194 + 0.932491i \(0.617631\pi\)
\(72\) −1.96118e38 −1.64892
\(73\) 3.02798e37 0.191882 0.0959409 0.995387i \(-0.469414\pi\)
0.0959409 + 0.995387i \(0.469414\pi\)
\(74\) 8.64959e36 0.0414711
\(75\) 3.53425e38 1.28689
\(76\) −4.99183e38 −1.38542
\(77\) −2.89748e38 −0.615122
\(78\) 1.95258e39 3.18178
\(79\) −1.38169e39 −1.73402 −0.867011 0.498289i \(-0.833962\pi\)
−0.867011 + 0.498289i \(0.833962\pi\)
\(80\) 2.91380e38 0.282563
\(81\) −1.58134e39 −1.18873
\(82\) 2.83245e39 1.65569
\(83\) 1.09468e39 0.499100 0.249550 0.968362i \(-0.419717\pi\)
0.249550 + 0.968362i \(0.419717\pi\)
\(84\) −6.52399e39 −2.32695
\(85\) 7.04469e38 0.197140
\(86\) −4.58093e39 −1.00864
\(87\) 6.49615e39 1.12853
\(88\) 1.24946e40 1.71723
\(89\) 6.39870e38 0.0697585 0.0348792 0.999392i \(-0.488895\pi\)
0.0348792 + 0.999392i \(0.488895\pi\)
\(90\) −2.52241e39 −0.218698
\(91\) 1.53129e40 1.05854
\(92\) −5.28199e40 −2.91841
\(93\) −1.65290e40 −0.731724
\(94\) 2.62995e40 0.935032
\(95\) −3.53840e39 −0.101268
\(96\) 5.21922e40 1.20516
\(97\) 3.04505e39 0.0568556 0.0284278 0.999596i \(-0.490950\pi\)
0.0284278 + 0.999596i \(0.490950\pi\)
\(98\) 4.46072e40 0.674948
\(99\) −4.73597e40 −0.581952
\(100\) −2.16870e41 −2.16870
\(101\) 1.41851e41 1.15676 0.578380 0.815768i \(-0.303685\pi\)
0.578380 + 0.815768i \(0.303685\pi\)
\(102\) 4.31498e41 2.87525
\(103\) −1.44731e41 −0.789582 −0.394791 0.918771i \(-0.629183\pi\)
−0.394791 + 0.918771i \(0.629183\pi\)
\(104\) −6.60328e41 −2.95513
\(105\) −4.62445e40 −0.170090
\(106\) 4.19384e41 1.27011
\(107\) −2.29714e41 −0.573878 −0.286939 0.957949i \(-0.592638\pi\)
−0.286939 + 0.957949i \(0.592638\pi\)
\(108\) 3.60145e41 0.743517
\(109\) 1.95590e41 0.334274 0.167137 0.985934i \(-0.446548\pi\)
0.167137 + 0.985934i \(0.446548\pi\)
\(110\) 1.60702e41 0.227757
\(111\) 2.59195e40 0.0305145
\(112\) 1.39967e42 1.37106
\(113\) −9.94546e41 −0.811926 −0.405963 0.913889i \(-0.633064\pi\)
−0.405963 + 0.913889i \(0.633064\pi\)
\(114\) −2.16732e42 −1.47698
\(115\) −3.74407e41 −0.213323
\(116\) −3.98620e42 −1.90183
\(117\) 2.50291e42 1.00146
\(118\) 5.16839e42 1.73690
\(119\) 3.38398e42 0.956565
\(120\) 1.99417e42 0.474839
\(121\) −1.96124e42 −0.393941
\(122\) −1.64665e43 −2.79399
\(123\) 8.48777e42 1.21826
\(124\) 1.01426e43 1.23312
\(125\) −3.11639e42 −0.321363
\(126\) −1.21166e43 −1.06117
\(127\) −8.67945e41 −0.0646422 −0.0323211 0.999478i \(-0.510290\pi\)
−0.0323211 + 0.999478i \(0.510290\pi\)
\(128\) 1.71332e43 1.08651
\(129\) −1.37273e43 −0.742158
\(130\) −8.49296e42 −0.391941
\(131\) −3.86168e43 −1.52305 −0.761526 0.648134i \(-0.775549\pi\)
−0.761526 + 0.648134i \(0.775549\pi\)
\(132\) 6.79371e43 2.29267
\(133\) −1.69970e43 −0.491375
\(134\) 1.08341e44 2.68625
\(135\) 2.55285e42 0.0543479
\(136\) −1.45925e44 −2.67044
\(137\) 1.03048e44 1.62282 0.811409 0.584478i \(-0.198701\pi\)
0.811409 + 0.584478i \(0.198701\pi\)
\(138\) −2.29330e44 −3.11128
\(139\) 9.05865e42 0.105989 0.0529944 0.998595i \(-0.483123\pi\)
0.0529944 + 0.998595i \(0.483123\pi\)
\(140\) 2.83768e43 0.286641
\(141\) 7.88096e43 0.687998
\(142\) 1.71844e44 1.29784
\(143\) −1.59460e44 −1.04295
\(144\) 2.28777e44 1.29713
\(145\) −2.82557e43 −0.139015
\(146\) −8.06713e43 −0.344735
\(147\) 1.33671e44 0.496628
\(148\) −1.59049e43 −0.0514239
\(149\) −7.42911e43 −0.209227 −0.104614 0.994513i \(-0.533361\pi\)
−0.104614 + 0.994513i \(0.533361\pi\)
\(150\) −9.41593e44 −2.31203
\(151\) −1.02392e44 −0.219402 −0.109701 0.993965i \(-0.534989\pi\)
−0.109701 + 0.993965i \(0.534989\pi\)
\(152\) 7.32949e44 1.37177
\(153\) 5.53114e44 0.904983
\(154\) 7.71947e44 1.10513
\(155\) 7.18948e43 0.0901359
\(156\) −3.59041e45 −3.94539
\(157\) −2.17395e44 −0.209559 −0.104780 0.994495i \(-0.533414\pi\)
−0.104780 + 0.994495i \(0.533414\pi\)
\(158\) 3.68109e45 3.11535
\(159\) 1.25673e45 0.934550
\(160\) −2.27015e44 −0.148455
\(161\) −1.79849e45 −1.03509
\(162\) 4.21301e45 2.13567
\(163\) −4.01604e45 −1.79453 −0.897267 0.441488i \(-0.854451\pi\)
−0.897267 + 0.441488i \(0.854451\pi\)
\(164\) −5.20831e45 −2.05304
\(165\) 4.81564e44 0.167584
\(166\) −2.91645e45 −0.896684
\(167\) 2.44064e44 0.0663462 0.0331731 0.999450i \(-0.489439\pi\)
0.0331731 + 0.999450i \(0.489439\pi\)
\(168\) 9.57916e45 2.30402
\(169\) 3.73184e45 0.794777
\(170\) −1.87685e45 −0.354182
\(171\) −2.77817e45 −0.464878
\(172\) 8.42342e45 1.25071
\(173\) 6.55042e45 0.863623 0.431811 0.901964i \(-0.357875\pi\)
0.431811 + 0.901964i \(0.357875\pi\)
\(174\) −1.73070e46 −2.02751
\(175\) −7.38434e45 −0.769187
\(176\) −1.45754e46 −1.35086
\(177\) 1.54877e46 1.27801
\(178\) −1.70474e45 −0.125328
\(179\) 6.15457e45 0.403376 0.201688 0.979450i \(-0.435357\pi\)
0.201688 + 0.979450i \(0.435357\pi\)
\(180\) 4.63821e45 0.271184
\(181\) 2.92877e46 1.52853 0.764265 0.644903i \(-0.223102\pi\)
0.764265 + 0.644903i \(0.223102\pi\)
\(182\) −4.07966e46 −1.90178
\(183\) −4.93438e46 −2.05582
\(184\) 7.75553e46 2.88966
\(185\) −1.12740e44 −0.00375886
\(186\) 4.40366e46 1.31462
\(187\) −3.52388e46 −0.942472
\(188\) −4.83596e46 −1.15944
\(189\) 1.22628e46 0.263708
\(190\) 9.42699e45 0.181938
\(191\) 3.00845e46 0.521386 0.260693 0.965422i \(-0.416049\pi\)
0.260693 + 0.965422i \(0.416049\pi\)
\(192\) 8.26244e45 0.128657
\(193\) −1.09658e47 −1.53503 −0.767515 0.641031i \(-0.778507\pi\)
−0.767515 + 0.641031i \(0.778507\pi\)
\(194\) −8.11261e45 −0.102147
\(195\) −2.54502e46 −0.288391
\(196\) −8.20238e46 −0.836932
\(197\) 1.17853e47 1.08338 0.541691 0.840578i \(-0.317784\pi\)
0.541691 + 0.840578i \(0.317784\pi\)
\(198\) 1.26176e47 1.04554
\(199\) −3.68209e46 −0.275173 −0.137587 0.990490i \(-0.543935\pi\)
−0.137587 + 0.990490i \(0.543935\pi\)
\(200\) 3.18430e47 2.14733
\(201\) 3.24658e47 1.97655
\(202\) −3.77918e47 −2.07824
\(203\) −1.35729e47 −0.674532
\(204\) −7.93439e47 −3.56529
\(205\) −3.69185e46 −0.150068
\(206\) 3.85591e47 1.41856
\(207\) −2.93966e47 −0.979275
\(208\) 7.70293e47 2.32465
\(209\) 1.76997e47 0.484135
\(210\) 1.23204e47 0.305584
\(211\) −2.90275e47 −0.653160 −0.326580 0.945170i \(-0.605896\pi\)
−0.326580 + 0.945170i \(0.605896\pi\)
\(212\) −7.71164e47 −1.57493
\(213\) 5.14950e47 0.954955
\(214\) 6.12003e47 1.03103
\(215\) 5.97084e46 0.0914212
\(216\) −5.28801e47 −0.736191
\(217\) 3.45352e47 0.437359
\(218\) −5.21090e47 −0.600558
\(219\) −2.41741e47 −0.253657
\(220\) −2.95500e47 −0.282418
\(221\) 1.86234e48 1.62187
\(222\) −6.90548e46 −0.0548223
\(223\) −2.40281e48 −1.73968 −0.869841 0.493331i \(-0.835779\pi\)
−0.869841 + 0.493331i \(0.835779\pi\)
\(224\) −1.09049e48 −0.720337
\(225\) −1.20698e48 −0.727709
\(226\) 2.64967e48 1.45871
\(227\) −7.19443e45 −0.00361798 −0.00180899 0.999998i \(-0.500576\pi\)
−0.00180899 + 0.999998i \(0.500576\pi\)
\(228\) 3.98527e48 1.83144
\(229\) −2.92838e48 −1.23027 −0.615135 0.788422i \(-0.710899\pi\)
−0.615135 + 0.788422i \(0.710899\pi\)
\(230\) 9.97495e47 0.383257
\(231\) 2.31323e48 0.813155
\(232\) 5.85294e48 1.88309
\(233\) −4.34377e48 −1.27959 −0.639795 0.768546i \(-0.720981\pi\)
−0.639795 + 0.768546i \(0.720981\pi\)
\(234\) −6.66825e48 −1.79923
\(235\) −3.42791e47 −0.0847497
\(236\) −9.50364e48 −2.15374
\(237\) 1.10308e49 2.29228
\(238\) −9.01558e48 −1.71857
\(239\) 8.86442e48 1.55058 0.775289 0.631607i \(-0.217604\pi\)
0.775289 + 0.631607i \(0.217604\pi\)
\(240\) −2.32626e48 −0.373532
\(241\) −9.74066e48 −1.43628 −0.718140 0.695899i \(-0.755006\pi\)
−0.718140 + 0.695899i \(0.755006\pi\)
\(242\) 5.22514e48 0.707754
\(243\) 9.94346e48 1.23768
\(244\) 3.02786e49 3.46453
\(245\) −5.81415e47 −0.0611761
\(246\) −2.26131e49 −2.18872
\(247\) −9.35410e48 −0.833133
\(248\) −1.48924e49 −1.22097
\(249\) −8.73950e48 −0.659782
\(250\) 8.30268e48 0.577362
\(251\) −2.46125e48 −0.157705 −0.0788524 0.996886i \(-0.525126\pi\)
−0.0788524 + 0.996886i \(0.525126\pi\)
\(252\) 2.22800e49 1.31585
\(253\) 1.87285e49 1.01984
\(254\) 2.31238e48 0.116136
\(255\) −5.62420e48 −0.260607
\(256\) −4.33705e49 −1.85470
\(257\) −3.77351e49 −1.48976 −0.744880 0.667199i \(-0.767493\pi\)
−0.744880 + 0.667199i \(0.767493\pi\)
\(258\) 3.65723e49 1.33336
\(259\) −5.41554e47 −0.0182388
\(260\) 1.56169e49 0.486004
\(261\) −2.21850e49 −0.638159
\(262\) 1.02883e50 2.73632
\(263\) 6.07205e49 1.49363 0.746814 0.665033i \(-0.231583\pi\)
0.746814 + 0.665033i \(0.231583\pi\)
\(264\) −9.97520e49 −2.27008
\(265\) −5.46630e48 −0.115121
\(266\) 4.52833e49 0.882804
\(267\) −5.10846e48 −0.0922167
\(268\) −1.99218e50 −3.33093
\(269\) 2.38634e49 0.369667 0.184833 0.982770i \(-0.440825\pi\)
0.184833 + 0.982770i \(0.440825\pi\)
\(270\) −6.80129e48 −0.0976415
\(271\) 3.94573e49 0.525118 0.262559 0.964916i \(-0.415433\pi\)
0.262559 + 0.964916i \(0.415433\pi\)
\(272\) 1.70226e50 2.10070
\(273\) −1.22252e50 −1.39933
\(274\) −2.74542e50 −2.91556
\(275\) 7.68964e49 0.757855
\(276\) 4.21692e50 3.85797
\(277\) 7.70224e49 0.654307 0.327154 0.944971i \(-0.393911\pi\)
0.327154 + 0.944971i \(0.393911\pi\)
\(278\) −2.41340e49 −0.190420
\(279\) 5.64482e49 0.413775
\(280\) −4.16656e49 −0.283817
\(281\) −2.59982e50 −1.64613 −0.823063 0.567950i \(-0.807737\pi\)
−0.823063 + 0.567950i \(0.807737\pi\)
\(282\) −2.09964e50 −1.23606
\(283\) 1.82242e50 0.997760 0.498880 0.866671i \(-0.333745\pi\)
0.498880 + 0.866671i \(0.333745\pi\)
\(284\) −3.15986e50 −1.60932
\(285\) 2.82491e49 0.133871
\(286\) 4.24833e50 1.87376
\(287\) −1.77341e50 −0.728165
\(288\) −1.78241e50 −0.681494
\(289\) 1.30749e50 0.465622
\(290\) 7.52788e49 0.249755
\(291\) −2.43104e49 −0.0751598
\(292\) 1.48338e50 0.427470
\(293\) 3.62144e50 0.972960 0.486480 0.873692i \(-0.338281\pi\)
0.486480 + 0.873692i \(0.338281\pi\)
\(294\) −3.56125e50 −0.892242
\(295\) −6.73654e49 −0.157429
\(296\) 2.33531e49 0.0509172
\(297\) −1.27698e50 −0.259823
\(298\) 1.97926e50 0.375898
\(299\) −9.89783e50 −1.75501
\(300\) 1.73140e51 2.86690
\(301\) 2.86814e50 0.443596
\(302\) 2.72793e50 0.394177
\(303\) −1.13248e51 −1.52917
\(304\) −8.55008e50 −1.07910
\(305\) 2.14626e50 0.253242
\(306\) −1.47361e51 −1.62589
\(307\) 3.93346e50 0.405917 0.202959 0.979187i \(-0.434944\pi\)
0.202959 + 0.979187i \(0.434944\pi\)
\(308\) −1.41946e51 −1.37035
\(309\) 1.15547e51 1.04378
\(310\) −1.91542e50 −0.161938
\(311\) 6.24856e50 0.494529 0.247264 0.968948i \(-0.420468\pi\)
0.247264 + 0.968948i \(0.420468\pi\)
\(312\) 5.27179e51 3.90651
\(313\) 8.35246e50 0.579636 0.289818 0.957082i \(-0.406405\pi\)
0.289818 + 0.957082i \(0.406405\pi\)
\(314\) 5.79183e50 0.376494
\(315\) 1.57929e50 0.0961825
\(316\) −6.76880e51 −3.86301
\(317\) 2.55951e50 0.136912 0.0684560 0.997654i \(-0.478193\pi\)
0.0684560 + 0.997654i \(0.478193\pi\)
\(318\) −3.34819e51 −1.67901
\(319\) 1.41340e51 0.664594
\(320\) −3.59384e49 −0.0158483
\(321\) 1.83394e51 0.758634
\(322\) 4.79155e51 1.85965
\(323\) −2.06715e51 −0.752871
\(324\) −7.74688e51 −2.64822
\(325\) −4.06389e51 −1.30417
\(326\) 1.06995e52 3.22406
\(327\) −1.56151e51 −0.441891
\(328\) 7.64735e51 2.03281
\(329\) −1.64662e51 −0.411224
\(330\) −1.28298e51 −0.301082
\(331\) −5.02554e51 −1.10843 −0.554215 0.832373i \(-0.686982\pi\)
−0.554215 + 0.832373i \(0.686982\pi\)
\(332\) 5.36278e51 1.11188
\(333\) −8.85176e49 −0.0172553
\(334\) −6.50235e50 −0.119198
\(335\) −1.41214e51 −0.243477
\(336\) −1.11744e52 −1.81246
\(337\) 1.26080e52 1.92413 0.962065 0.272821i \(-0.0879568\pi\)
0.962065 + 0.272821i \(0.0879568\pi\)
\(338\) −9.94236e51 −1.42790
\(339\) 7.94005e51 1.07332
\(340\) 3.45115e51 0.439183
\(341\) −3.59631e51 −0.430915
\(342\) 7.40160e51 0.835200
\(343\) −1.02271e52 −1.08698
\(344\) −1.23681e52 −1.23838
\(345\) 2.98911e51 0.282001
\(346\) −1.74516e52 −1.55159
\(347\) 5.08739e51 0.426325 0.213162 0.977017i \(-0.431624\pi\)
0.213162 + 0.977017i \(0.431624\pi\)
\(348\) 3.18242e52 2.51410
\(349\) −1.29582e52 −0.965213 −0.482606 0.875837i \(-0.660310\pi\)
−0.482606 + 0.875837i \(0.660310\pi\)
\(350\) 1.96734e52 1.38192
\(351\) 6.74871e51 0.447121
\(352\) 1.13557e52 0.709725
\(353\) 2.08258e52 1.22806 0.614031 0.789282i \(-0.289547\pi\)
0.614031 + 0.789282i \(0.289547\pi\)
\(354\) −4.12623e52 −2.29608
\(355\) −2.23983e51 −0.117634
\(356\) 3.13468e51 0.155406
\(357\) −2.70163e52 −1.26452
\(358\) −1.63970e52 −0.724706
\(359\) 1.91161e52 0.797926 0.398963 0.916967i \(-0.369370\pi\)
0.398963 + 0.916967i \(0.369370\pi\)
\(360\) −6.81028e51 −0.268512
\(361\) −1.64643e52 −0.613260
\(362\) −7.80281e52 −2.74616
\(363\) 1.56577e52 0.520767
\(364\) 7.50168e52 2.35820
\(365\) 1.05148e51 0.0312462
\(366\) 1.31462e53 3.69349
\(367\) 4.90413e52 1.30289 0.651444 0.758697i \(-0.274163\pi\)
0.651444 + 0.758697i \(0.274163\pi\)
\(368\) −9.04707e52 −2.27315
\(369\) −2.89865e52 −0.688899
\(370\) 3.00361e50 0.00675318
\(371\) −2.62578e52 −0.558590
\(372\) −8.09746e52 −1.63012
\(373\) −4.90037e52 −0.933679 −0.466840 0.884342i \(-0.654607\pi\)
−0.466840 + 0.884342i \(0.654607\pi\)
\(374\) 9.38833e52 1.69325
\(375\) 2.48800e52 0.424824
\(376\) 7.10063e52 1.14801
\(377\) −7.46968e52 −1.14368
\(378\) −3.26706e52 −0.473778
\(379\) 6.92124e52 0.950780 0.475390 0.879775i \(-0.342307\pi\)
0.475390 + 0.879775i \(0.342307\pi\)
\(380\) −1.73344e52 −0.225603
\(381\) 6.92932e51 0.0854532
\(382\) −8.01512e52 −0.936722
\(383\) −3.57815e52 −0.396354 −0.198177 0.980166i \(-0.563502\pi\)
−0.198177 + 0.980166i \(0.563502\pi\)
\(384\) −1.36785e53 −1.43631
\(385\) −1.00616e52 −0.100167
\(386\) 2.92152e53 2.75784
\(387\) 4.68801e52 0.419675
\(388\) 1.49175e52 0.126662
\(389\) −1.72457e52 −0.138904 −0.0694519 0.997585i \(-0.522125\pi\)
−0.0694519 + 0.997585i \(0.522125\pi\)
\(390\) 6.78043e52 0.518123
\(391\) −2.18731e53 −1.58594
\(392\) 1.20435e53 0.828685
\(393\) 3.08301e53 2.01339
\(394\) −3.13983e53 −1.94641
\(395\) −4.79798e52 −0.282369
\(396\) −2.32012e53 −1.29646
\(397\) 3.22268e53 1.71006 0.855030 0.518579i \(-0.173539\pi\)
0.855030 + 0.518579i \(0.173539\pi\)
\(398\) 9.80981e52 0.494376
\(399\) 1.35697e53 0.649569
\(400\) −3.71459e53 −1.68920
\(401\) −2.70239e53 −1.16759 −0.583793 0.811902i \(-0.698432\pi\)
−0.583793 + 0.811902i \(0.698432\pi\)
\(402\) −8.64954e53 −3.55107
\(403\) 1.90061e53 0.741549
\(404\) 6.94916e53 2.57700
\(405\) −5.49128e52 −0.193573
\(406\) 3.61608e53 1.21187
\(407\) 5.63944e51 0.0179701
\(408\) 1.16501e54 3.53016
\(409\) 2.13137e52 0.0614231 0.0307116 0.999528i \(-0.490223\pi\)
0.0307116 + 0.999528i \(0.490223\pi\)
\(410\) 9.83581e52 0.269613
\(411\) −8.22697e53 −2.14527
\(412\) −7.09026e53 −1.75901
\(413\) −3.23595e53 −0.763881
\(414\) 7.83184e53 1.75937
\(415\) 3.80134e52 0.0812738
\(416\) −6.00138e53 −1.22134
\(417\) −7.23205e52 −0.140111
\(418\) −4.71555e53 −0.869798
\(419\) −2.93657e53 −0.515767 −0.257883 0.966176i \(-0.583025\pi\)
−0.257883 + 0.966176i \(0.583025\pi\)
\(420\) −2.26549e53 −0.378923
\(421\) 1.15034e54 1.83250 0.916249 0.400609i \(-0.131201\pi\)
0.916249 + 0.400609i \(0.131201\pi\)
\(422\) 7.73351e53 1.17347
\(423\) −2.69142e53 −0.389049
\(424\) 1.13230e54 1.55941
\(425\) −8.98074e53 −1.17853
\(426\) −1.37193e54 −1.71567
\(427\) 1.03097e54 1.22879
\(428\) −1.12535e54 −1.27847
\(429\) 1.27306e54 1.37872
\(430\) −1.59075e53 −0.164247
\(431\) −1.01552e53 −0.0999783 −0.0499892 0.998750i \(-0.515919\pi\)
−0.0499892 + 0.998750i \(0.515919\pi\)
\(432\) 6.16863e53 0.579124
\(433\) −8.64049e52 −0.0773636 −0.0386818 0.999252i \(-0.512316\pi\)
−0.0386818 + 0.999252i \(0.512316\pi\)
\(434\) −9.20088e53 −0.785760
\(435\) 2.25582e53 0.183770
\(436\) 9.58181e53 0.744689
\(437\) 1.09864e54 0.814675
\(438\) 6.44047e53 0.455720
\(439\) −1.09372e54 −0.738553 −0.369277 0.929319i \(-0.620395\pi\)
−0.369277 + 0.929319i \(0.620395\pi\)
\(440\) 4.33882e53 0.279635
\(441\) −4.56498e53 −0.280833
\(442\) −4.96163e54 −2.91386
\(443\) −3.38590e54 −1.89845 −0.949223 0.314604i \(-0.898128\pi\)
−0.949223 + 0.314604i \(0.898128\pi\)
\(444\) 1.26978e53 0.0679794
\(445\) 2.22198e52 0.0113595
\(446\) 6.40157e54 3.12552
\(447\) 5.93110e53 0.276586
\(448\) −1.72633e53 −0.0768996
\(449\) 1.99320e54 0.848205 0.424103 0.905614i \(-0.360590\pi\)
0.424103 + 0.905614i \(0.360590\pi\)
\(450\) 3.21563e54 1.30740
\(451\) 1.84673e54 0.717437
\(452\) −4.87221e54 −1.80879
\(453\) 8.17458e53 0.290036
\(454\) 1.91674e52 0.00650007
\(455\) 5.31748e53 0.172374
\(456\) −5.85157e54 −1.81340
\(457\) −1.51405e54 −0.448600 −0.224300 0.974520i \(-0.572010\pi\)
−0.224300 + 0.974520i \(0.572010\pi\)
\(458\) 7.80179e54 2.21031
\(459\) 1.49139e54 0.404046
\(460\) −1.83420e54 −0.475237
\(461\) −6.81127e54 −1.68795 −0.843974 0.536383i \(-0.819790\pi\)
−0.843974 + 0.536383i \(0.819790\pi\)
\(462\) −6.16291e54 −1.46092
\(463\) 1.14829e54 0.260400 0.130200 0.991488i \(-0.458438\pi\)
0.130200 + 0.991488i \(0.458438\pi\)
\(464\) −6.82763e54 −1.48133
\(465\) −5.73979e53 −0.119154
\(466\) 1.15727e55 2.29891
\(467\) 2.77911e54 0.528335 0.264167 0.964477i \(-0.414903\pi\)
0.264167 + 0.964477i \(0.414903\pi\)
\(468\) 1.22616e55 2.23104
\(469\) −6.78330e54 −1.18140
\(470\) 9.13263e53 0.152261
\(471\) 1.73559e54 0.277025
\(472\) 1.39542e55 2.13252
\(473\) −2.98672e54 −0.437060
\(474\) −2.93883e55 −4.11831
\(475\) 4.51083e54 0.605393
\(476\) 1.65779e55 2.13101
\(477\) −4.29187e54 −0.528469
\(478\) −2.36166e55 −2.78577
\(479\) 5.54208e54 0.626318 0.313159 0.949701i \(-0.398613\pi\)
0.313159 + 0.949701i \(0.398613\pi\)
\(480\) 1.81240e54 0.196249
\(481\) −2.98039e53 −0.0309242
\(482\) 2.59511e55 2.58042
\(483\) 1.43584e55 1.36833
\(484\) −9.60799e54 −0.877612
\(485\) 1.05741e53 0.00925841
\(486\) −2.64914e55 −2.22362
\(487\) −1.88066e54 −0.151345 −0.0756723 0.997133i \(-0.524110\pi\)
−0.0756723 + 0.997133i \(0.524110\pi\)
\(488\) −4.44581e55 −3.43040
\(489\) 3.20624e55 2.37227
\(490\) 1.54901e54 0.109909
\(491\) −1.63929e55 −1.11554 −0.557769 0.829996i \(-0.688342\pi\)
−0.557769 + 0.829996i \(0.688342\pi\)
\(492\) 4.15810e55 2.71400
\(493\) −1.65071e55 −1.03350
\(494\) 2.49212e55 1.49681
\(495\) −1.64459e54 −0.0947655
\(496\) 1.73725e55 0.960477
\(497\) −1.07592e55 −0.570787
\(498\) 2.32838e55 1.18536
\(499\) −3.46878e54 −0.169479 −0.0847395 0.996403i \(-0.527006\pi\)
−0.0847395 + 0.996403i \(0.527006\pi\)
\(500\) −1.52670e55 −0.715926
\(501\) −1.94851e54 −0.0877059
\(502\) 6.55727e54 0.283333
\(503\) 1.93714e53 0.00803557 0.00401778 0.999992i \(-0.498721\pi\)
0.00401778 + 0.999992i \(0.498721\pi\)
\(504\) −3.27137e55 −1.30288
\(505\) 4.92583e54 0.188368
\(506\) −4.98965e55 −1.83225
\(507\) −2.97935e55 −1.05065
\(508\) −4.25200e54 −0.144008
\(509\) −1.25363e54 −0.0407807 −0.0203904 0.999792i \(-0.506491\pi\)
−0.0203904 + 0.999792i \(0.506491\pi\)
\(510\) 1.49840e55 0.468208
\(511\) 5.05086e54 0.151613
\(512\) 7.78712e55 2.24565
\(513\) −7.49091e54 −0.207553
\(514\) 1.00534e56 2.67650
\(515\) −5.02584e54 −0.128576
\(516\) −6.72491e55 −1.65336
\(517\) 1.71470e55 0.405165
\(518\) 1.44281e54 0.0327679
\(519\) −5.22959e55 −1.14166
\(520\) −2.29302e55 −0.481215
\(521\) 2.35880e55 0.475902 0.237951 0.971277i \(-0.423524\pi\)
0.237951 + 0.971277i \(0.423524\pi\)
\(522\) 5.91052e55 1.14652
\(523\) 7.86347e55 1.46666 0.733330 0.679873i \(-0.237965\pi\)
0.733330 + 0.679873i \(0.237965\pi\)
\(524\) −1.89181e56 −3.39302
\(525\) 5.89536e55 1.01682
\(526\) −1.61771e56 −2.68345
\(527\) 4.20013e55 0.670109
\(528\) 1.16364e56 1.78576
\(529\) 4.85103e55 0.716131
\(530\) 1.45633e55 0.206826
\(531\) −5.28919e55 −0.722690
\(532\) −8.32670e55 −1.09467
\(533\) −9.75976e55 −1.23461
\(534\) 1.36100e55 0.165677
\(535\) −7.97692e54 −0.0934508
\(536\) 2.92512e56 3.29811
\(537\) −4.91355e55 −0.533240
\(538\) −6.35768e55 −0.664144
\(539\) 2.90834e55 0.292466
\(540\) 1.25062e55 0.121075
\(541\) 1.45744e56 1.35846 0.679232 0.733924i \(-0.262313\pi\)
0.679232 + 0.733924i \(0.262313\pi\)
\(542\) −1.05122e56 −0.943428
\(543\) −2.33821e56 −2.02063
\(544\) −1.32624e56 −1.10368
\(545\) 6.79195e54 0.0544335
\(546\) 3.25703e56 2.51404
\(547\) −1.05313e56 −0.782967 −0.391483 0.920185i \(-0.628038\pi\)
−0.391483 + 0.920185i \(0.628038\pi\)
\(548\) 5.04828e56 3.61528
\(549\) 1.68514e56 1.16253
\(550\) −2.04867e56 −1.36156
\(551\) 8.29118e55 0.530895
\(552\) −6.19170e56 −3.81996
\(553\) −2.30475e56 −1.37012
\(554\) −2.05203e56 −1.17553
\(555\) 9.00068e53 0.00496900
\(556\) 4.43777e55 0.236119
\(557\) 6.40305e55 0.328364 0.164182 0.986430i \(-0.447502\pi\)
0.164182 + 0.986430i \(0.447502\pi\)
\(558\) −1.50389e56 −0.743389
\(559\) 1.57845e56 0.752123
\(560\) 4.86042e55 0.223264
\(561\) 2.81332e56 1.24589
\(562\) 6.92643e56 2.95743
\(563\) −1.09202e56 −0.449581 −0.224791 0.974407i \(-0.572170\pi\)
−0.224791 + 0.974407i \(0.572170\pi\)
\(564\) 3.86083e56 1.53271
\(565\) −3.45361e55 −0.132215
\(566\) −4.85528e56 −1.79258
\(567\) −2.63778e56 −0.939260
\(568\) 4.63962e56 1.59346
\(569\) −2.43585e56 −0.806954 −0.403477 0.914990i \(-0.632198\pi\)
−0.403477 + 0.914990i \(0.632198\pi\)
\(570\) −7.52612e55 −0.240512
\(571\) −9.71845e55 −0.299610 −0.149805 0.988716i \(-0.547865\pi\)
−0.149805 + 0.988716i \(0.547865\pi\)
\(572\) −7.81183e56 −2.32346
\(573\) −2.40183e56 −0.689242
\(574\) 4.72471e56 1.30822
\(575\) 4.77303e56 1.27527
\(576\) −2.82170e55 −0.0727529
\(577\) −6.34210e56 −1.57808 −0.789040 0.614342i \(-0.789422\pi\)
−0.789040 + 0.614342i \(0.789422\pi\)
\(578\) −3.48342e56 −0.836537
\(579\) 8.75467e56 2.02922
\(580\) −1.38423e56 −0.309695
\(581\) 1.82600e56 0.394358
\(582\) 6.47677e55 0.135032
\(583\) 2.73434e56 0.550361
\(584\) −2.17805e56 −0.423258
\(585\) 8.69147e55 0.163079
\(586\) −9.64824e56 −1.74802
\(587\) 9.71961e56 1.70047 0.850233 0.526407i \(-0.176461\pi\)
0.850233 + 0.526407i \(0.176461\pi\)
\(588\) 6.54844e56 1.10638
\(589\) −2.10964e56 −0.344226
\(590\) 1.79475e56 0.282838
\(591\) −9.40888e56 −1.43217
\(592\) −2.72421e55 −0.0400540
\(593\) −3.07788e56 −0.437150 −0.218575 0.975820i \(-0.570141\pi\)
−0.218575 + 0.975820i \(0.570141\pi\)
\(594\) 3.40213e56 0.466798
\(595\) 1.17510e56 0.155768
\(596\) −3.63947e56 −0.466112
\(597\) 2.93963e56 0.363763
\(598\) 2.63698e57 3.15306
\(599\) 9.26416e56 1.07043 0.535213 0.844717i \(-0.320231\pi\)
0.535213 + 0.844717i \(0.320231\pi\)
\(600\) −2.54222e57 −2.83865
\(601\) −1.47276e57 −1.58930 −0.794648 0.607071i \(-0.792345\pi\)
−0.794648 + 0.607071i \(0.792345\pi\)
\(602\) −7.64130e56 −0.796964
\(603\) −1.10874e57 −1.11770
\(604\) −5.01613e56 −0.488778
\(605\) −6.81050e55 −0.0641496
\(606\) 3.01714e57 2.74731
\(607\) −1.51826e57 −1.33652 −0.668262 0.743926i \(-0.732962\pi\)
−0.668262 + 0.743926i \(0.732962\pi\)
\(608\) 6.66139e56 0.566946
\(609\) 1.08360e57 0.891692
\(610\) −5.71807e56 −0.454976
\(611\) −9.06202e56 −0.697237
\(612\) 2.70967e57 2.01610
\(613\) −9.13614e56 −0.657390 −0.328695 0.944436i \(-0.606609\pi\)
−0.328695 + 0.944436i \(0.606609\pi\)
\(614\) −1.04795e57 −0.729272
\(615\) 2.94742e56 0.198382
\(616\) 2.08419e57 1.35685
\(617\) 2.58224e57 1.62611 0.813057 0.582184i \(-0.197802\pi\)
0.813057 + 0.582184i \(0.197802\pi\)
\(618\) −3.07840e57 −1.87526
\(619\) 2.63907e57 1.55522 0.777610 0.628747i \(-0.216432\pi\)
0.777610 + 0.628747i \(0.216432\pi\)
\(620\) 3.52208e56 0.200803
\(621\) −7.92633e56 −0.437215
\(622\) −1.66474e57 −0.888471
\(623\) 1.06735e56 0.0551189
\(624\) −6.14971e57 −3.07305
\(625\) 1.90490e57 0.921152
\(626\) −2.22526e57 −1.04137
\(627\) −1.41307e57 −0.639999
\(628\) −1.06500e57 −0.466851
\(629\) −6.58632e55 −0.0279450
\(630\) −4.20755e56 −0.172802
\(631\) −5.93300e56 −0.235870 −0.117935 0.993021i \(-0.537627\pi\)
−0.117935 + 0.993021i \(0.537627\pi\)
\(632\) 9.93861e57 3.82495
\(633\) 2.31744e57 0.863440
\(634\) −6.81904e56 −0.245976
\(635\) −3.01398e55 −0.0105264
\(636\) 6.15666e57 2.08197
\(637\) −1.53703e57 −0.503296
\(638\) −3.76558e57 −1.19401
\(639\) −1.75860e57 −0.540008
\(640\) 5.94959e56 0.176928
\(641\) −3.05943e56 −0.0881152 −0.0440576 0.999029i \(-0.514029\pi\)
−0.0440576 + 0.999029i \(0.514029\pi\)
\(642\) −4.88598e57 −1.36296
\(643\) 8.49375e56 0.229496 0.114748 0.993395i \(-0.463394\pi\)
0.114748 + 0.993395i \(0.463394\pi\)
\(644\) −8.81070e57 −2.30595
\(645\) −4.76687e56 −0.120854
\(646\) 5.50730e57 1.35261
\(647\) −1.01048e57 −0.240431 −0.120215 0.992748i \(-0.538359\pi\)
−0.120215 + 0.992748i \(0.538359\pi\)
\(648\) 1.13747e58 2.62213
\(649\) 3.36974e57 0.752627
\(650\) 1.08270e58 2.34307
\(651\) −2.75715e57 −0.578163
\(652\) −1.96743e58 −3.99782
\(653\) −7.06012e57 −1.39025 −0.695123 0.718891i \(-0.744650\pi\)
−0.695123 + 0.718891i \(0.744650\pi\)
\(654\) 4.16017e57 0.793903
\(655\) −1.34099e57 −0.248015
\(656\) −8.92088e57 −1.59911
\(657\) 8.25569e56 0.143438
\(658\) 4.38693e57 0.738805
\(659\) 7.62589e57 1.24491 0.622457 0.782654i \(-0.286135\pi\)
0.622457 + 0.782654i \(0.286135\pi\)
\(660\) 2.35915e57 0.373340
\(661\) 4.22569e57 0.648288 0.324144 0.946008i \(-0.394924\pi\)
0.324144 + 0.946008i \(0.394924\pi\)
\(662\) 1.33890e58 1.99141
\(663\) −1.48681e58 −2.14402
\(664\) −7.87416e57 −1.10093
\(665\) −5.90228e56 −0.0800158
\(666\) 2.35829e56 0.0310009
\(667\) 8.77312e57 1.11834
\(668\) 1.19565e57 0.147805
\(669\) 1.91831e58 2.29976
\(670\) 3.76221e57 0.437431
\(671\) −1.07360e58 −1.21068
\(672\) 8.70600e57 0.952244
\(673\) −3.42146e57 −0.362996 −0.181498 0.983391i \(-0.558095\pi\)
−0.181498 + 0.983391i \(0.558095\pi\)
\(674\) −3.35903e58 −3.45689
\(675\) −3.25443e57 −0.324898
\(676\) 1.82820e58 1.77059
\(677\) −2.44766e57 −0.229976 −0.114988 0.993367i \(-0.536683\pi\)
−0.114988 + 0.993367i \(0.536683\pi\)
\(678\) −2.11539e58 −1.92833
\(679\) 5.07934e56 0.0449238
\(680\) −5.06732e57 −0.434856
\(681\) 5.74374e55 0.00478276
\(682\) 9.58128e57 0.774183
\(683\) −4.22496e57 −0.331283 −0.165641 0.986186i \(-0.552969\pi\)
−0.165641 + 0.986186i \(0.552969\pi\)
\(684\) −1.36101e58 −1.03564
\(685\) 3.57841e57 0.264261
\(686\) 2.72469e58 1.95287
\(687\) 2.33790e58 1.62635
\(688\) 1.44278e58 0.974173
\(689\) −1.44507e58 −0.947099
\(690\) −7.96359e57 −0.506644
\(691\) 6.48155e57 0.400294 0.200147 0.979766i \(-0.435858\pi\)
0.200147 + 0.979766i \(0.435858\pi\)
\(692\) 3.20901e58 1.92396
\(693\) −7.89991e57 −0.459823
\(694\) −1.35538e58 −0.765936
\(695\) 3.14566e56 0.0172593
\(696\) −4.67274e58 −2.48933
\(697\) −2.15680e58 −1.11567
\(698\) 3.45232e58 1.73410
\(699\) 3.46789e58 1.69154
\(700\) −3.61754e58 −1.71358
\(701\) −5.02893e57 −0.231343 −0.115671 0.993288i \(-0.536902\pi\)
−0.115671 + 0.993288i \(0.536902\pi\)
\(702\) −1.79799e58 −0.803297
\(703\) 3.30816e56 0.0143550
\(704\) 1.79770e57 0.0757667
\(705\) 2.73670e57 0.112034
\(706\) −5.54841e58 −2.20634
\(707\) 2.36616e58 0.914001
\(708\) 7.58732e58 2.84712
\(709\) 1.43455e58 0.522961 0.261481 0.965209i \(-0.415789\pi\)
0.261481 + 0.965209i \(0.415789\pi\)
\(710\) 5.96735e57 0.211342
\(711\) −3.76713e58 −1.29624
\(712\) −4.60265e57 −0.153875
\(713\) −2.23226e58 −0.725120
\(714\) 7.19767e58 2.27185
\(715\) −5.53732e57 −0.169835
\(716\) 3.01508e58 0.898632
\(717\) −7.07699e58 −2.04977
\(718\) −5.09290e58 −1.43355
\(719\) −3.86957e58 −1.05857 −0.529286 0.848444i \(-0.677540\pi\)
−0.529286 + 0.848444i \(0.677540\pi\)
\(720\) 7.94441e57 0.211225
\(721\) −2.41420e58 −0.623880
\(722\) 4.38641e58 1.10178
\(723\) 7.77654e58 1.89868
\(724\) 1.43478e59 3.40522
\(725\) 3.60211e58 0.831050
\(726\) −4.17153e58 −0.935611
\(727\) −2.07033e57 −0.0451423 −0.0225711 0.999745i \(-0.507185\pi\)
−0.0225711 + 0.999745i \(0.507185\pi\)
\(728\) −1.10147e59 −2.33496
\(729\) −2.17083e58 −0.447416
\(730\) −2.80135e57 −0.0561369
\(731\) 3.48820e58 0.679665
\(732\) −2.41732e59 −4.57991
\(733\) 8.41125e58 1.54963 0.774817 0.632185i \(-0.217842\pi\)
0.774817 + 0.632185i \(0.217842\pi\)
\(734\) −1.30656e59 −2.34077
\(735\) 4.64178e57 0.0808713
\(736\) 7.04860e58 1.19428
\(737\) 7.06375e58 1.16400
\(738\) 7.72259e58 1.23768
\(739\) −4.41017e58 −0.687455 −0.343728 0.939069i \(-0.611690\pi\)
−0.343728 + 0.939069i \(0.611690\pi\)
\(740\) −5.52304e56 −0.00837391
\(741\) 7.46793e58 1.10135
\(742\) 6.99561e58 1.00356
\(743\) −7.66450e58 −1.06958 −0.534790 0.844985i \(-0.679609\pi\)
−0.534790 + 0.844985i \(0.679609\pi\)
\(744\) 1.18895e59 1.61405
\(745\) −2.57979e57 −0.0340707
\(746\) 1.30556e59 1.67745
\(747\) 2.98462e58 0.373093
\(748\) −1.72633e59 −2.09962
\(749\) −3.83178e58 −0.453443
\(750\) −6.62852e58 −0.763239
\(751\) −4.55998e58 −0.510910 −0.255455 0.966821i \(-0.582225\pi\)
−0.255455 + 0.966821i \(0.582225\pi\)
\(752\) −8.28310e58 −0.903082
\(753\) 1.96496e58 0.208477
\(754\) 1.99007e59 2.05474
\(755\) −3.55562e57 −0.0357275
\(756\) 6.00747e58 0.587482
\(757\) −1.30493e59 −1.24200 −0.621000 0.783811i \(-0.713273\pi\)
−0.621000 + 0.783811i \(0.713273\pi\)
\(758\) −1.84396e59 −1.70817
\(759\) −1.49521e59 −1.34817
\(760\) 2.54520e58 0.223380
\(761\) 4.11390e58 0.351454 0.175727 0.984439i \(-0.443772\pi\)
0.175727 + 0.984439i \(0.443772\pi\)
\(762\) −1.84611e58 −0.153525
\(763\) 3.26257e58 0.264123
\(764\) 1.47382e59 1.16153
\(765\) 1.92072e58 0.147368
\(766\) 9.53290e58 0.712091
\(767\) −1.78087e59 −1.29517
\(768\) 3.46252e59 2.45181
\(769\) 9.93012e58 0.684644 0.342322 0.939583i \(-0.388787\pi\)
0.342322 + 0.939583i \(0.388787\pi\)
\(770\) 2.68062e58 0.179960
\(771\) 3.01261e59 1.96938
\(772\) −5.37209e59 −3.41970
\(773\) −2.82910e58 −0.175375 −0.0876877 0.996148i \(-0.527948\pi\)
−0.0876877 + 0.996148i \(0.527948\pi\)
\(774\) −1.24898e59 −0.753989
\(775\) −9.16532e58 −0.538844
\(776\) −2.19033e58 −0.125414
\(777\) 4.32355e57 0.0241107
\(778\) 4.59460e58 0.249555
\(779\) 1.08331e59 0.573107
\(780\) −1.24679e59 −0.642470
\(781\) 1.12040e59 0.562377
\(782\) 5.82742e59 2.84930
\(783\) −5.98184e58 −0.284917
\(784\) −1.40492e59 −0.651885
\(785\) −7.54914e57 −0.0341248
\(786\) −8.21374e59 −3.61725
\(787\) 8.05210e57 0.0345484 0.0172742 0.999851i \(-0.494501\pi\)
0.0172742 + 0.999851i \(0.494501\pi\)
\(788\) 5.77352e59 2.41353
\(789\) −4.84768e59 −1.97449
\(790\) 1.27828e59 0.507305
\(791\) −1.65897e59 −0.641535
\(792\) 3.40663e59 1.28368
\(793\) 5.67386e59 2.08343
\(794\) −8.58585e59 −3.07230
\(795\) 4.36407e58 0.152183
\(796\) −1.80383e59 −0.613024
\(797\) 3.46651e59 1.14814 0.574072 0.818805i \(-0.305363\pi\)
0.574072 + 0.818805i \(0.305363\pi\)
\(798\) −3.61523e59 −1.16702
\(799\) −2.00260e59 −0.630066
\(800\) 2.89405e59 0.887484
\(801\) 1.74459e58 0.0521467
\(802\) 7.19971e59 2.09769
\(803\) −5.25969e58 −0.149380
\(804\) 1.59048e60 4.40330
\(805\) −6.24536e58 −0.168555
\(806\) −5.06361e59 −1.33227
\(807\) −1.90516e59 −0.488678
\(808\) −1.02034e60 −2.55161
\(809\) −8.54307e57 −0.0208290 −0.0104145 0.999946i \(-0.503315\pi\)
−0.0104145 + 0.999946i \(0.503315\pi\)
\(810\) 1.46299e59 0.347774
\(811\) 4.76651e59 1.10477 0.552387 0.833588i \(-0.313717\pi\)
0.552387 + 0.833588i \(0.313717\pi\)
\(812\) −6.64925e59 −1.50271
\(813\) −3.15011e59 −0.694176
\(814\) −1.50246e58 −0.0322851
\(815\) −1.39459e59 −0.292223
\(816\) −1.35902e60 −2.77700
\(817\) −1.75204e59 −0.349135
\(818\) −5.67841e58 −0.110353
\(819\) 4.17502e59 0.791295
\(820\) −1.80861e59 −0.334319
\(821\) 3.33204e59 0.600725 0.300362 0.953825i \(-0.402892\pi\)
0.300362 + 0.953825i \(0.402892\pi\)
\(822\) 2.19183e60 3.85420
\(823\) −1.98842e59 −0.341045 −0.170522 0.985354i \(-0.554546\pi\)
−0.170522 + 0.985354i \(0.554546\pi\)
\(824\) 1.04106e60 1.74168
\(825\) −6.13910e59 −1.00184
\(826\) 8.62121e59 1.37239
\(827\) 1.09198e60 1.69572 0.847858 0.530223i \(-0.177892\pi\)
0.847858 + 0.530223i \(0.177892\pi\)
\(828\) −1.44012e60 −2.18161
\(829\) −1.17320e60 −1.73382 −0.866908 0.498468i \(-0.833896\pi\)
−0.866908 + 0.498468i \(0.833896\pi\)
\(830\) −1.01275e59 −0.146017
\(831\) −6.14915e59 −0.864956
\(832\) −9.50067e58 −0.130384
\(833\) −3.39666e59 −0.454809
\(834\) 1.92676e59 0.251724
\(835\) 8.47524e57 0.0108039
\(836\) 8.67096e59 1.07855
\(837\) 1.52204e59 0.184737
\(838\) 7.82362e59 0.926628
\(839\) −7.71620e57 −0.00891832 −0.00445916 0.999990i \(-0.501419\pi\)
−0.00445916 + 0.999990i \(0.501419\pi\)
\(840\) 3.32641e59 0.375189
\(841\) −2.46397e59 −0.271217
\(842\) −3.06474e60 −3.29227
\(843\) 2.07559e60 2.17608
\(844\) −1.42204e60 −1.45509
\(845\) 1.29590e59 0.129422
\(846\) 7.17049e59 0.698966
\(847\) −3.27148e59 −0.311268
\(848\) −1.32086e60 −1.22671
\(849\) −1.45494e60 −1.31898
\(850\) 2.39265e60 2.11734
\(851\) 3.50046e58 0.0302391
\(852\) 2.52270e60 2.12743
\(853\) 1.20917e60 0.995476 0.497738 0.867327i \(-0.334164\pi\)
0.497738 + 0.867327i \(0.334164\pi\)
\(854\) −2.74672e60 −2.20764
\(855\) −9.64734e58 −0.0757011
\(856\) 1.65235e60 1.26587
\(857\) −2.11243e59 −0.158007 −0.0790035 0.996874i \(-0.525174\pi\)
−0.0790035 + 0.996874i \(0.525174\pi\)
\(858\) −3.39169e60 −2.47701
\(859\) −2.05262e58 −0.0146369 −0.00731843 0.999973i \(-0.502330\pi\)
−0.00731843 + 0.999973i \(0.502330\pi\)
\(860\) 2.92507e59 0.203666
\(861\) 1.41582e60 0.962592
\(862\) 2.70556e59 0.179621
\(863\) 2.59149e60 1.68008 0.840038 0.542527i \(-0.182532\pi\)
0.840038 + 0.542527i \(0.182532\pi\)
\(864\) −4.80600e59 −0.304265
\(865\) 2.27467e59 0.140633
\(866\) 2.30200e59 0.138991
\(867\) −1.04385e60 −0.615525
\(868\) 1.69186e60 0.974338
\(869\) 2.40003e60 1.34993
\(870\) −6.00995e59 −0.330162
\(871\) −3.73312e60 −2.00309
\(872\) −1.40690e60 −0.737351
\(873\) 8.30223e58 0.0425014
\(874\) −2.92699e60 −1.46365
\(875\) −5.19835e59 −0.253922
\(876\) −1.18427e60 −0.565090
\(877\) −9.21584e59 −0.429579 −0.214790 0.976660i \(-0.568907\pi\)
−0.214790 + 0.976660i \(0.568907\pi\)
\(878\) 2.91388e60 1.32689
\(879\) −2.89121e60 −1.28620
\(880\) −5.06137e59 −0.219975
\(881\) −2.25005e60 −0.955403 −0.477702 0.878522i \(-0.658530\pi\)
−0.477702 + 0.878522i \(0.658530\pi\)
\(882\) 1.21620e60 0.504545
\(883\) −1.37181e59 −0.0556033 −0.0278017 0.999613i \(-0.508851\pi\)
−0.0278017 + 0.999613i \(0.508851\pi\)
\(884\) 9.12345e60 3.61317
\(885\) 5.37818e59 0.208112
\(886\) 9.02072e60 3.41075
\(887\) −3.21287e60 −1.18702 −0.593511 0.804826i \(-0.702259\pi\)
−0.593511 + 0.804826i \(0.702259\pi\)
\(888\) −1.86442e59 −0.0673096
\(889\) −1.44779e59 −0.0510763
\(890\) −5.91980e58 −0.0204085
\(891\) 2.74684e60 0.925423
\(892\) −1.17712e61 −3.87562
\(893\) 1.00586e60 0.323656
\(894\) −1.58016e60 −0.496916
\(895\) 2.13720e59 0.0656861
\(896\) 2.85793e60 0.858495
\(897\) 7.90202e60 2.32003
\(898\) −5.31028e60 −1.52389
\(899\) −1.68464e60 −0.472535
\(900\) −5.91291e60 −1.62117
\(901\) −3.19344e60 −0.855857
\(902\) −4.92005e60 −1.28895
\(903\) −2.28981e60 −0.586408
\(904\) 7.15386e60 1.79097
\(905\) 1.01703e60 0.248907
\(906\) −2.17787e60 −0.521079
\(907\) 7.56461e60 1.76945 0.884723 0.466118i \(-0.154348\pi\)
0.884723 + 0.466118i \(0.154348\pi\)
\(908\) −3.52450e58 −0.00806005
\(909\) 3.86752e60 0.864714
\(910\) −1.41668e60 −0.309687
\(911\) 1.56837e60 0.335214 0.167607 0.985854i \(-0.446396\pi\)
0.167607 + 0.985854i \(0.446396\pi\)
\(912\) 6.82604e60 1.42651
\(913\) −1.90150e60 −0.388548
\(914\) 4.03374e60 0.805955
\(915\) −1.71349e60 −0.334772
\(916\) −1.43460e61 −2.74077
\(917\) −6.44154e60 −1.20342
\(918\) −3.97335e60 −0.725909
\(919\) 3.58150e60 0.639878 0.319939 0.947438i \(-0.396338\pi\)
0.319939 + 0.947438i \(0.396338\pi\)
\(920\) 2.69315e60 0.470554
\(921\) −3.14031e60 −0.536599
\(922\) 1.81466e61 3.03257
\(923\) −5.92121e60 −0.967778
\(924\) 1.13324e61 1.81153
\(925\) 1.43723e59 0.0224710
\(926\) −3.05927e60 −0.467835
\(927\) −3.94604e60 −0.590238
\(928\) 5.31943e60 0.778272
\(929\) 5.82803e60 0.834064 0.417032 0.908892i \(-0.363070\pi\)
0.417032 + 0.908892i \(0.363070\pi\)
\(930\) 1.52919e60 0.214073
\(931\) 1.70607e60 0.233630
\(932\) −2.12798e61 −2.85064
\(933\) −4.98859e60 −0.653739
\(934\) −7.40409e60 −0.949207
\(935\) −1.22369e60 −0.153473
\(936\) −1.80037e61 −2.20905
\(937\) 1.44921e61 1.73968 0.869840 0.493334i \(-0.164222\pi\)
0.869840 + 0.493334i \(0.164222\pi\)
\(938\) 1.80721e61 2.12251
\(939\) −6.66826e60 −0.766245
\(940\) −1.67931e60 −0.188803
\(941\) −1.35212e60 −0.148740 −0.0743700 0.997231i \(-0.523695\pi\)
−0.0743700 + 0.997231i \(0.523695\pi\)
\(942\) −4.62396e60 −0.497704
\(943\) 1.14628e61 1.20726
\(944\) −1.62780e61 −1.67755
\(945\) 4.25832e59 0.0429424
\(946\) 7.95722e60 0.785223
\(947\) −4.89192e60 −0.472395 −0.236197 0.971705i \(-0.575901\pi\)
−0.236197 + 0.971705i \(0.575901\pi\)
\(948\) 5.40393e61 5.10668
\(949\) 2.77969e60 0.257063
\(950\) −1.20178e61 −1.08765
\(951\) −2.04341e60 −0.180990
\(952\) −2.43413e61 −2.11001
\(953\) −1.87046e61 −1.58688 −0.793440 0.608648i \(-0.791712\pi\)
−0.793440 + 0.608648i \(0.791712\pi\)
\(954\) 1.14344e61 0.949448
\(955\) 1.04470e60 0.0849029
\(956\) 4.34262e61 3.45434
\(957\) −1.12840e61 −0.878555
\(958\) −1.47652e61 −1.12524
\(959\) 1.71892e61 1.28225
\(960\) 2.86917e59 0.0209506
\(961\) −9.70392e60 −0.693614
\(962\) 7.94034e59 0.0555585
\(963\) −6.26308e60 −0.428992
\(964\) −4.77188e61 −3.19971
\(965\) −3.80794e60 −0.249965
\(966\) −3.82538e61 −2.45835
\(967\) −1.23904e61 −0.779546 −0.389773 0.920911i \(-0.627447\pi\)
−0.389773 + 0.920911i \(0.627447\pi\)
\(968\) 1.41074e61 0.868964
\(969\) 1.65033e61 0.995251
\(970\) −2.81714e59 −0.0166337
\(971\) 2.22671e61 1.28727 0.643635 0.765332i \(-0.277425\pi\)
0.643635 + 0.765332i \(0.277425\pi\)
\(972\) 4.87123e61 2.75728
\(973\) 1.51104e60 0.0837459
\(974\) 5.01046e60 0.271906
\(975\) 3.24445e61 1.72404
\(976\) 5.18617e61 2.69852
\(977\) −2.30397e61 −1.17392 −0.586960 0.809616i \(-0.699675\pi\)
−0.586960 + 0.809616i \(0.699675\pi\)
\(978\) −8.54206e61 −4.26203
\(979\) −1.11147e60 −0.0543068
\(980\) −2.84831e60 −0.136287
\(981\) 5.33270e60 0.249881
\(982\) 4.36738e61 2.00418
\(983\) −1.51641e61 −0.681505 −0.340753 0.940153i \(-0.610682\pi\)
−0.340753 + 0.940153i \(0.610682\pi\)
\(984\) −6.10533e61 −2.68726
\(985\) 4.09249e60 0.176419
\(986\) 4.39783e61 1.85679
\(987\) 1.31460e61 0.543614
\(988\) −4.58251e61 −1.85604
\(989\) −1.85389e61 −0.735460
\(990\) 4.38151e60 0.170256
\(991\) 3.35177e61 1.27575 0.637873 0.770142i \(-0.279815\pi\)
0.637873 + 0.770142i \(0.279815\pi\)
\(992\) −1.35349e61 −0.504623
\(993\) 4.01218e61 1.46528
\(994\) 2.86646e61 1.02548
\(995\) −1.27862e60 −0.0448094
\(996\) −4.28142e61 −1.46985
\(997\) −3.35578e61 −1.12861 −0.564304 0.825567i \(-0.690856\pi\)
−0.564304 + 0.825567i \(0.690856\pi\)
\(998\) 9.24153e60 0.304486
\(999\) −2.38674e59 −0.00770394
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))