Properties

Label 1.38.a
Level $1$
Weight $38$
Character orbit 1.a
Rep. character $\chi_{1}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $3$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1 \)
Weight: \( k \) \(=\) \( 38 \)
Character orbit: \([\chi]\) \(=\) 1.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(3\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{38}(\Gamma_0(1))\).

Total New Old
Modular forms 3 3 0
Cusp forms 2 2 0
Eisenstein series 1 1 0

Trace form

\( 2 q - 194400 q^{2} + 13991400 q^{3} + 37720269824 q^{4} + 5529584385900 q^{5} - 22506543847296 q^{6} - 34\!\cdots\!00 q^{7} - 34\!\cdots\!00 q^{8} - 89\!\cdots\!14 q^{9} - 90\!\cdots\!00 q^{10} - 26\!\cdots\!56 q^{11}+ \cdots + 12\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{38}^{\mathrm{new}}(\Gamma_0(1))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1.38.a.a 1.a 1.a $2$ $8.671$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 1.38.a.a \(-194400\) \(13991400\) \(55\!\cdots\!00\) \(-34\!\cdots\!00\) $+$ $\mathrm{SU}(2)$ \(q+(-97200-\beta )q^{2}+(6995700+72\beta )q^{3}+\cdots\)