Properties

Label 1.26
Level 1
Weight 26
Dimension 1
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 2
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 26 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(2\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_1(1))\).

Total New Old
Modular forms 2 2 0
Cusp forms 1 1 0
Eisenstein series 1 1 0

Trace form

\( q - 48 q^{2} - 195804 q^{3} - 33552128 q^{4} - 741989850 q^{5} + 9398592 q^{6} + 39080597192 q^{7} + 3221114880 q^{8} - 808949403027 q^{9} + 35615512800 q^{10} + 8419515299052 q^{11} + 6569640870912 q^{12}+ \cdots - 68\!\cdots\!04 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_1(1))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1.26.a \(\chi_{1}(1, \cdot)\) 1.26.a.a 1 1