Properties

Label 1.22.a
Level $1$
Weight $22$
Character orbit 1.a
Rep. character $\chi_{1}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $1$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 1.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(1\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(1))\).

Total New Old
Modular forms 2 2 0
Cusp forms 1 1 0
Eisenstein series 1 1 0

Trace form

\( q - 288 q^{2} - 128844 q^{3} - 2014208 q^{4} + 21640950 q^{5} + 37107072 q^{6} - 768078808 q^{7} + 1184071680 q^{8} + 6140423133 q^{9} - 6232593600 q^{10} - 94724929188 q^{11} + 259518615552 q^{12} - 80621789794 q^{13}+ \cdots - 58\!\cdots\!04 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1.22.a.a 1.a 1.a $1$ $2.795$ \(\Q\) None 1.22.a.a \(-288\) \(-128844\) \(21640950\) \(-768078808\) $+$ $\mathrm{SU}(2)$ \(q-288q^{2}-128844q^{3}-2014208q^{4}+\cdots\)