Properties

Label 1.16.a.a
Level $1$
Weight $16$
Character orbit 1.a
Self dual yes
Analytic conductor $1.427$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1,16,Mod(1,1)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1, base_ring=CyclotomicField(1))
 
chi = DirichletCharacter(H, H._module([]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1.1");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 1.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.42693505100\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 216 q^{2} - 3348 q^{3} + 13888 q^{4} + 52110 q^{5} - 723168 q^{6} + 2822456 q^{7} - 4078080 q^{8} - 3139803 q^{9} + 11255760 q^{10} + 20586852 q^{11} - 46497024 q^{12} - 190073338 q^{13} + 609650496 q^{14}+ \cdots - 64638659670156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
216.000 −3348.00 13888.0 52110.0 −723168. 2.82246e6 −4.07808e6 −3.13980e6 1.12558e7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1.16.a.a 1
3.b odd 2 1 9.16.a.a 1
4.b odd 2 1 16.16.a.d 1
5.b even 2 1 25.16.a.a 1
5.c odd 4 2 25.16.b.a 2
7.b odd 2 1 49.16.a.a 1
7.c even 3 2 49.16.c.c 2
7.d odd 6 2 49.16.c.b 2
8.b even 2 1 64.16.a.i 1
8.d odd 2 1 64.16.a.c 1
11.b odd 2 1 121.16.a.a 1
12.b even 2 1 144.16.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1.16.a.a 1 1.a even 1 1 trivial
9.16.a.a 1 3.b odd 2 1
16.16.a.d 1 4.b odd 2 1
25.16.a.a 1 5.b even 2 1
25.16.b.a 2 5.c odd 4 2
49.16.a.a 1 7.b odd 2 1
49.16.c.b 2 7.d odd 6 2
49.16.c.c 2 7.c even 3 2
64.16.a.c 1 8.d odd 2 1
64.16.a.i 1 8.b even 2 1
121.16.a.a 1 11.b odd 2 1
144.16.a.f 1 12.b even 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{16}^{\mathrm{new}}(\Gamma_0(1))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 216 \) Copy content Toggle raw display
$3$ \( T + 3348 \) Copy content Toggle raw display
$5$ \( T - 52110 \) Copy content Toggle raw display
$7$ \( T - 2822456 \) Copy content Toggle raw display
$11$ \( T - 20586852 \) Copy content Toggle raw display
$13$ \( T + 190073338 \) Copy content Toggle raw display
$17$ \( T - 1646527986 \) Copy content Toggle raw display
$19$ \( T - 1563257180 \) Copy content Toggle raw display
$23$ \( T - 9451116072 \) Copy content Toggle raw display
$29$ \( T + 36902568330 \) Copy content Toggle raw display
$31$ \( T - 71588483552 \) Copy content Toggle raw display
$37$ \( T + 1033652081554 \) Copy content Toggle raw display
$41$ \( T - 1641974018202 \) Copy content Toggle raw display
$43$ \( T + 492403109308 \) Copy content Toggle raw display
$47$ \( T + 3410684952624 \) Copy content Toggle raw display
$53$ \( T - 6797151655902 \) Copy content Toggle raw display
$59$ \( T - 9858856815540 \) Copy content Toggle raw display
$61$ \( T - 4931842626902 \) Copy content Toggle raw display
$67$ \( T + 28837826625364 \) Copy content Toggle raw display
$71$ \( T - 125050114914552 \) Copy content Toggle raw display
$73$ \( T + 82171455513478 \) Copy content Toggle raw display
$79$ \( T + 25413078694480 \) Copy content Toggle raw display
$83$ \( T + 281736730890468 \) Copy content Toggle raw display
$89$ \( T - 715618564776810 \) Copy content Toggle raw display
$97$ \( T - 612786136081826 \) Copy content Toggle raw display
show more
show less