Properties

Label 1.16.a
Level $1$
Weight $16$
Character orbit 1.a
Rep. character $\chi_{1}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $1$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 1.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(1\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_0(1))\).

Total New Old
Modular forms 2 2 0
Cusp forms 1 1 0
Eisenstein series 1 1 0

Trace form

\( q + 216 q^{2} - 3348 q^{3} + 13888 q^{4} + 52110 q^{5} - 723168 q^{6} + 2822456 q^{7} - 4078080 q^{8} - 3139803 q^{9} + 11255760 q^{10} + 20586852 q^{11} - 46497024 q^{12} - 190073338 q^{13} + 609650496 q^{14}+ \cdots - 64638659670156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_0(1))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1.16.a.a 1.a 1.a $1$ $1.427$ \(\Q\) None 1.16.a.a \(216\) \(-3348\) \(52110\) \(2822456\) $+$ $\mathrm{SU}(2)$ \(q+6^{3}q^{2}-3348q^{3}+13888q^{4}+52110q^{5}+\cdots\)