Properties

Label 1.104.a.a.1.8
Level 1
Weight 104
Character 1.1
Self dual Yes
Analytic conductor 67.184
Analytic rank 0
Dimension 8
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 104 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(67.1843880807\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: multiple of \( 2^{104}\cdot 3^{40}\cdot 5^{12}\cdot 7^{8}\cdot 11\cdot 13^{3}\cdot 17^{2} \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-2.30156e14\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+6.07235e15 q^{2}\) \(+6.42408e24 q^{3}\) \(+2.67322e31 q^{4}\) \(-2.83827e35 q^{5}\) \(+3.90093e40 q^{6}\) \(-2.16284e43 q^{7}\) \(+1.00747e47 q^{8}\) \(+2.73537e49 q^{9}\) \(+O(q^{10})\) \(q\)\(+6.07235e15 q^{2}\) \(+6.42408e24 q^{3}\) \(+2.67322e31 q^{4}\) \(-2.83827e35 q^{5}\) \(+3.90093e40 q^{6}\) \(-2.16284e43 q^{7}\) \(+1.00747e47 q^{8}\) \(+2.73537e49 q^{9}\) \(-1.72350e51 q^{10}\) \(+2.34754e53 q^{11}\) \(+1.71730e56 q^{12}\) \(-1.57075e57 q^{13}\) \(-1.31335e59 q^{14}\) \(-1.82333e60 q^{15}\) \(+3.40672e62 q^{16}\) \(-1.46066e63 q^{17}\) \(+1.66101e65 q^{18}\) \(+1.14769e66 q^{19}\) \(-7.58734e66 q^{20}\) \(-1.38943e68 q^{21}\) \(+1.42551e69 q^{22}\) \(+3.42022e69 q^{23}\) \(+6.47205e71 q^{24}\) \(-9.05518e71 q^{25}\) \(-9.53817e72 q^{26}\) \(+8.63299e73 q^{27}\) \(-5.78176e74 q^{28}\) \(+3.20038e74 q^{29}\) \(-1.10719e76 q^{30}\) \(+5.53588e76 q^{31}\) \(+1.04699e78 q^{32}\) \(+1.50808e78 q^{33}\) \(-8.86962e78 q^{34}\) \(+6.13873e78 q^{35}\) \(+7.31225e80 q^{36}\) \(-8.68560e79 q^{37}\) \(+6.96915e81 q^{38}\) \(-1.00907e82 q^{39}\) \(-2.85946e82 q^{40}\) \(+6.58025e82 q^{41}\) \(-8.43709e83 q^{42}\) \(-2.31883e84 q^{43}\) \(+6.27549e84 q^{44}\) \(-7.76372e84 q^{45}\) \(+2.07688e85 q^{46}\) \(-2.37719e86 q^{47}\) \(+2.18850e87 q^{48}\) \(-6.41638e86 q^{49}\) \(-5.49862e87 q^{50}\) \(-9.38338e87 q^{51}\) \(-4.19898e88 q^{52}\) \(-1.71359e88 q^{53}\) \(+5.24225e89 q^{54}\) \(-6.66295e88 q^{55}\) \(-2.17899e90 q^{56}\) \(+7.37283e90 q^{57}\) \(+1.94338e90 q^{58}\) \(-1.30001e91 q^{59}\) \(-4.87417e91 q^{60}\) \(-6.15903e91 q^{61}\) \(+3.36158e92 q^{62}\) \(-5.91616e92 q^{63}\) \(+2.90285e93 q^{64}\) \(+4.45823e92 q^{65}\) \(+9.15757e93 q^{66}\) \(+6.14223e92 q^{67}\) \(-3.90466e94 q^{68}\) \(+2.19718e94 q^{69}\) \(+3.72765e94 q^{70}\) \(+1.58406e95 q^{71}\) \(+2.75579e96 q^{72}\) \(-1.01581e96 q^{73}\) \(-5.27420e95 q^{74}\) \(-5.81713e96 q^{75}\) \(+3.06802e97 q^{76}\) \(-5.07734e96 q^{77}\) \(-6.12740e97 q^{78}\) \(+8.88387e97 q^{79}\) \(-9.66920e97 q^{80}\) \(+1.73959e98 q^{81}\) \(+3.99576e98 q^{82}\) \(-4.44747e98 q^{83}\) \(-3.71425e99 q^{84}\) \(+4.14574e98 q^{85}\) \(-1.40807e100 q^{86}\) \(+2.05595e99 q^{87}\) \(+2.36506e100 q^{88}\) \(+2.52929e100 q^{89}\) \(-4.71440e100 q^{90}\) \(+3.39729e100 q^{91}\) \(+9.14300e100 q^{92}\) \(+3.55630e101 q^{93}\) \(-1.44352e102 q^{94}\) \(-3.25745e101 q^{95}\) \(+6.72593e102 q^{96}\) \(+6.67584e101 q^{97}\) \(-3.89625e102 q^{98}\) \(+6.42137e102 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(8q \) \(\mathstrut +\mathstrut 4388929556680440q^{2} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!40\)\(q^{3} \) \(\mathstrut +\mathstrut \)\(48\!\cdots\!64\)\(q^{4} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!20\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!36\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{7} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{8} \) \(\mathstrut +\mathstrut \)\(35\!\cdots\!16\)\(q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 4388929556680440q^{2} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!40\)\(q^{3} \) \(\mathstrut +\mathstrut \)\(48\!\cdots\!64\)\(q^{4} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!20\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!36\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{7} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{8} \) \(\mathstrut +\mathstrut \)\(35\!\cdots\!16\)\(q^{9} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!20\)\(q^{10} \) \(\mathstrut -\mathstrut \)\(53\!\cdots\!44\)\(q^{11} \) \(\mathstrut +\mathstrut \)\(25\!\cdots\!80\)\(q^{12} \) \(\mathstrut -\mathstrut \)\(15\!\cdots\!20\)\(q^{13} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!08\)\(q^{14} \) \(\mathstrut -\mathstrut \)\(30\!\cdots\!60\)\(q^{15} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!88\)\(q^{16} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!20\)\(q^{17} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!40\)\(q^{18} \) \(\mathstrut +\mathstrut \)\(14\!\cdots\!00\)\(q^{19} \) \(\mathstrut +\mathstrut \)\(25\!\cdots\!60\)\(q^{20} \) \(\mathstrut -\mathstrut \)\(46\!\cdots\!04\)\(q^{21} \) \(\mathstrut -\mathstrut \)\(13\!\cdots\!20\)\(q^{22} \) \(\mathstrut +\mathstrut \)\(40\!\cdots\!20\)\(q^{23} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{24} \) \(\mathstrut -\mathstrut \)\(36\!\cdots\!00\)\(q^{25} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!84\)\(q^{26} \) \(\mathstrut +\mathstrut \)\(63\!\cdots\!20\)\(q^{27} \) \(\mathstrut +\mathstrut \)\(51\!\cdots\!80\)\(q^{28} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!00\)\(q^{29} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!60\)\(q^{30} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!36\)\(q^{31} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!40\)\(q^{32} \) \(\mathstrut +\mathstrut \)\(16\!\cdots\!80\)\(q^{33} \) \(\mathstrut -\mathstrut \)\(16\!\cdots\!32\)\(q^{34} \) \(\mathstrut -\mathstrut \)\(15\!\cdots\!80\)\(q^{35} \) \(\mathstrut +\mathstrut \)\(80\!\cdots\!28\)\(q^{36} \) \(\mathstrut -\mathstrut \)\(92\!\cdots\!40\)\(q^{37} \) \(\mathstrut +\mathstrut \)\(19\!\cdots\!20\)\(q^{38} \) \(\mathstrut -\mathstrut \)\(78\!\cdots\!08\)\(q^{39} \) \(\mathstrut +\mathstrut \)\(19\!\cdots\!00\)\(q^{40} \) \(\mathstrut +\mathstrut \)\(22\!\cdots\!76\)\(q^{41} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!80\)\(q^{42} \) \(\mathstrut +\mathstrut \)\(96\!\cdots\!00\)\(q^{43} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!48\)\(q^{44} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!60\)\(q^{45} \) \(\mathstrut +\mathstrut \)\(27\!\cdots\!96\)\(q^{46} \) \(\mathstrut -\mathstrut \)\(29\!\cdots\!20\)\(q^{47} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!20\)\(q^{48} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!44\)\(q^{49} \) \(\mathstrut -\mathstrut \)\(65\!\cdots\!00\)\(q^{50} \) \(\mathstrut -\mathstrut \)\(20\!\cdots\!84\)\(q^{51} \) \(\mathstrut -\mathstrut \)\(36\!\cdots\!00\)\(q^{52} \) \(\mathstrut +\mathstrut \)\(16\!\cdots\!40\)\(q^{53} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!00\)\(q^{54} \) \(\mathstrut -\mathstrut \)\(60\!\cdots\!60\)\(q^{55} \) \(\mathstrut -\mathstrut \)\(50\!\cdots\!00\)\(q^{56} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!40\)\(q^{57} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{58} \) \(\mathstrut -\mathstrut \)\(37\!\cdots\!00\)\(q^{59} \) \(\mathstrut -\mathstrut \)\(44\!\cdots\!80\)\(q^{60} \) \(\mathstrut +\mathstrut \)\(56\!\cdots\!56\)\(q^{61} \) \(\mathstrut +\mathstrut \)\(70\!\cdots\!80\)\(q^{62} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!60\)\(q^{63} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!04\)\(q^{64} \) \(\mathstrut +\mathstrut \)\(51\!\cdots\!40\)\(q^{65} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!52\)\(q^{66} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!20\)\(q^{67} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!40\)\(q^{68} \) \(\mathstrut +\mathstrut \)\(14\!\cdots\!52\)\(q^{69} \) \(\mathstrut +\mathstrut \)\(85\!\cdots\!20\)\(q^{70} \) \(\mathstrut +\mathstrut \)\(13\!\cdots\!96\)\(q^{71} \) \(\mathstrut +\mathstrut \)\(56\!\cdots\!60\)\(q^{72} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!20\)\(q^{73} \) \(\mathstrut +\mathstrut \)\(94\!\cdots\!88\)\(q^{74} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!00\)\(q^{75} \) \(\mathstrut +\mathstrut \)\(62\!\cdots\!00\)\(q^{76} \) \(\mathstrut +\mathstrut \)\(37\!\cdots\!00\)\(q^{77} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!00\)\(q^{78} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!00\)\(q^{79} \) \(\mathstrut -\mathstrut \)\(25\!\cdots\!80\)\(q^{80} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!32\)\(q^{81} \) \(\mathstrut -\mathstrut \)\(34\!\cdots\!20\)\(q^{82} \) \(\mathstrut -\mathstrut \)\(25\!\cdots\!40\)\(q^{83} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!32\)\(q^{84} \) \(\mathstrut -\mathstrut \)\(77\!\cdots\!80\)\(q^{85} \) \(\mathstrut -\mathstrut \)\(22\!\cdots\!44\)\(q^{86} \) \(\mathstrut -\mathstrut \)\(19\!\cdots\!40\)\(q^{87} \) \(\mathstrut -\mathstrut \)\(40\!\cdots\!40\)\(q^{88} \) \(\mathstrut -\mathstrut \)\(24\!\cdots\!00\)\(q^{89} \) \(\mathstrut +\mathstrut \)\(19\!\cdots\!40\)\(q^{90} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!76\)\(q^{91} \) \(\mathstrut +\mathstrut \)\(77\!\cdots\!20\)\(q^{92} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{93} \) \(\mathstrut +\mathstrut \)\(72\!\cdots\!48\)\(q^{94} \) \(\mathstrut +\mathstrut \)\(27\!\cdots\!00\)\(q^{95} \) \(\mathstrut +\mathstrut \)\(88\!\cdots\!96\)\(q^{96} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!80\)\(q^{97} \) \(\mathstrut +\mathstrut \)\(88\!\cdots\!20\)\(q^{98} \) \(\mathstrut -\mathstrut \)\(72\!\cdots\!88\)\(q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.07235e15 1.90683 0.953415 0.301661i \(-0.0975410\pi\)
0.953415 + 0.301661i \(0.0975410\pi\)
\(3\) 6.42408e24 1.72213 0.861066 0.508493i \(-0.169797\pi\)
0.861066 + 0.508493i \(0.169797\pi\)
\(4\) 2.67322e31 2.63600
\(5\) −2.83827e35 −0.285824 −0.142912 0.989735i \(-0.545647\pi\)
−0.142912 + 0.989735i \(0.545647\pi\)
\(6\) 3.90093e40 3.28382
\(7\) −2.16284e43 −0.649345 −0.324672 0.945827i \(-0.605254\pi\)
−0.324672 + 0.945827i \(0.605254\pi\)
\(8\) 1.00747e47 3.11958
\(9\) 2.73537e49 1.96574
\(10\) −1.72350e51 −0.545018
\(11\) 2.34754e53 0.548137 0.274068 0.961710i \(-0.411631\pi\)
0.274068 + 0.961710i \(0.411631\pi\)
\(12\) 1.71730e56 4.53955
\(13\) −1.57075e57 −0.673016 −0.336508 0.941681i \(-0.609246\pi\)
−0.336508 + 0.941681i \(0.609246\pi\)
\(14\) −1.31335e59 −1.23819
\(15\) −1.82333e60 −0.492227
\(16\) 3.40672e62 3.31251
\(17\) −1.46066e63 −0.625790 −0.312895 0.949788i \(-0.601299\pi\)
−0.312895 + 0.949788i \(0.601299\pi\)
\(18\) 1.66101e65 3.74833
\(19\) 1.14769e66 1.59960 0.799802 0.600263i \(-0.204938\pi\)
0.799802 + 0.600263i \(0.204938\pi\)
\(20\) −7.58734e66 −0.753433
\(21\) −1.38943e68 −1.11826
\(22\) 1.42551e69 1.04520
\(23\) 3.42022e69 0.254138 0.127069 0.991894i \(-0.459443\pi\)
0.127069 + 0.991894i \(0.459443\pi\)
\(24\) 6.47205e71 5.37233
\(25\) −9.05518e71 −0.918305
\(26\) −9.53817e72 −1.28333
\(27\) 8.63299e73 1.66313
\(28\) −5.78176e74 −1.71167
\(29\) 3.20038e74 0.155491 0.0777455 0.996973i \(-0.475228\pi\)
0.0777455 + 0.996973i \(0.475228\pi\)
\(30\) −1.10719e76 −0.938594
\(31\) 5.53588e76 0.867080 0.433540 0.901134i \(-0.357264\pi\)
0.433540 + 0.901134i \(0.357264\pi\)
\(32\) 1.04699e78 3.19681
\(33\) 1.50808e78 0.943964
\(34\) −8.86962e78 −1.19328
\(35\) 6.13873e78 0.185598
\(36\) 7.31225e80 5.18170
\(37\) −8.68560e79 −0.150111 −0.0750553 0.997179i \(-0.523913\pi\)
−0.0750553 + 0.997179i \(0.523913\pi\)
\(38\) 6.96915e81 3.05018
\(39\) −1.00907e82 −1.15902
\(40\) −2.85946e82 −0.891652
\(41\) 6.58025e82 0.575273 0.287636 0.957740i \(-0.407131\pi\)
0.287636 + 0.957740i \(0.407131\pi\)
\(42\) −8.43709e83 −2.13233
\(43\) −2.31883e84 −1.74439 −0.872194 0.489160i \(-0.837303\pi\)
−0.872194 + 0.489160i \(0.837303\pi\)
\(44\) 6.27549e84 1.44489
\(45\) −7.76372e84 −0.561856
\(46\) 2.07688e85 0.484598
\(47\) −2.37719e86 −1.83242 −0.916210 0.400700i \(-0.868767\pi\)
−0.916210 + 0.400700i \(0.868767\pi\)
\(48\) 2.18850e87 5.70458
\(49\) −6.41638e86 −0.578351
\(50\) −5.49862e87 −1.75105
\(51\) −9.38338e87 −1.07769
\(52\) −4.19898e88 −1.77407
\(53\) −1.71359e88 −0.271457 −0.135728 0.990746i \(-0.543337\pi\)
−0.135728 + 0.990746i \(0.543337\pi\)
\(54\) 5.24225e89 3.17131
\(55\) −6.66295e88 −0.156671
\(56\) −2.17899e90 −2.02568
\(57\) 7.37283e90 2.75473
\(58\) 1.94338e90 0.296495
\(59\) −1.30001e91 −0.822374 −0.411187 0.911551i \(-0.634886\pi\)
−0.411187 + 0.911551i \(0.634886\pi\)
\(60\) −4.87417e91 −1.29751
\(61\) −6.15903e91 −0.699884 −0.349942 0.936771i \(-0.613799\pi\)
−0.349942 + 0.936771i \(0.613799\pi\)
\(62\) 3.36158e92 1.65338
\(63\) −5.91616e92 −1.27644
\(64\) 2.90285e93 2.78327
\(65\) 4.45823e92 0.192364
\(66\) 9.15757e93 1.79998
\(67\) 6.14223e92 0.0556511 0.0278256 0.999613i \(-0.491142\pi\)
0.0278256 + 0.999613i \(0.491142\pi\)
\(68\) −3.90466e94 −1.64958
\(69\) 2.19718e94 0.437660
\(70\) 3.72765e94 0.353905
\(71\) 1.58406e95 0.724381 0.362191 0.932104i \(-0.382029\pi\)
0.362191 + 0.932104i \(0.382029\pi\)
\(72\) 2.75579e96 6.13229
\(73\) −1.01581e96 −1.11093 −0.555463 0.831541i \(-0.687459\pi\)
−0.555463 + 0.831541i \(0.687459\pi\)
\(74\) −5.27420e95 −0.286235
\(75\) −5.81713e96 −1.58144
\(76\) 3.06802e97 4.21656
\(77\) −5.07734e96 −0.355930
\(78\) −6.12740e97 −2.21006
\(79\) 8.88387e97 1.66267 0.831336 0.555769i \(-0.187576\pi\)
0.831336 + 0.555769i \(0.187576\pi\)
\(80\) −9.66920e97 −0.946795
\(81\) 1.73959e98 0.898396
\(82\) 3.99576e98 1.09695
\(83\) −4.44747e98 −0.654021 −0.327011 0.945021i \(-0.606041\pi\)
−0.327011 + 0.945021i \(0.606041\pi\)
\(84\) −3.71425e99 −2.94773
\(85\) 4.14574e98 0.178866
\(86\) −1.40807e100 −3.32625
\(87\) 2.05595e99 0.267776
\(88\) 2.36506e100 1.70996
\(89\) 2.52929e100 1.02191 0.510956 0.859607i \(-0.329292\pi\)
0.510956 + 0.859607i \(0.329292\pi\)
\(90\) −4.71440e100 −1.07136
\(91\) 3.39729e100 0.437020
\(92\) 9.14300e100 0.669909
\(93\) 3.55630e101 1.49323
\(94\) −1.44352e102 −3.49411
\(95\) −3.25745e101 −0.457206
\(96\) 6.72593e102 5.50534
\(97\) 6.67584e101 0.320451 0.160225 0.987080i \(-0.448778\pi\)
0.160225 + 0.987080i \(0.448778\pi\)
\(98\) −3.89625e102 −1.10282
\(99\) 6.42137e102 1.07749
\(100\) −2.42065e103 −2.42065
\(101\) 8.99196e102 0.538646 0.269323 0.963050i \(-0.413200\pi\)
0.269323 + 0.963050i \(0.413200\pi\)
\(102\) −5.69792e103 −2.05498
\(103\) 6.61718e103 1.44396 0.721981 0.691912i \(-0.243232\pi\)
0.721981 + 0.691912i \(0.243232\pi\)
\(104\) −1.58248e104 −2.09953
\(105\) 3.94357e103 0.319625
\(106\) −1.04055e104 −0.517622
\(107\) −4.76733e104 −1.46221 −0.731106 0.682263i \(-0.760996\pi\)
−0.731106 + 0.682263i \(0.760996\pi\)
\(108\) 2.30779e105 4.38403
\(109\) −3.85797e104 −0.455926 −0.227963 0.973670i \(-0.573207\pi\)
−0.227963 + 0.973670i \(0.573207\pi\)
\(110\) −4.04597e104 −0.298744
\(111\) −5.57970e104 −0.258510
\(112\) −7.36819e105 −2.15096
\(113\) −2.60806e105 −0.481701 −0.240851 0.970562i \(-0.577426\pi\)
−0.240851 + 0.970562i \(0.577426\pi\)
\(114\) 4.47704e106 5.25281
\(115\) −9.70750e104 −0.0726388
\(116\) 8.55534e105 0.409875
\(117\) −4.29659e106 −1.32298
\(118\) −7.89414e106 −1.56813
\(119\) 3.15917e106 0.406353
\(120\) −1.83694e107 −1.53554
\(121\) −1.28311e107 −0.699546
\(122\) −3.73998e107 −1.33456
\(123\) 4.22721e107 0.990696
\(124\) 1.47986e108 2.28563
\(125\) 5.36886e107 0.548298
\(126\) −3.59250e108 −2.43396
\(127\) 3.81611e108 1.72079 0.860397 0.509624i \(-0.170215\pi\)
0.860397 + 0.509624i \(0.170215\pi\)
\(128\) 7.00941e108 2.11042
\(129\) −1.48963e109 −3.00407
\(130\) 2.70719e108 0.366806
\(131\) 3.01807e108 0.275587 0.137793 0.990461i \(-0.455999\pi\)
0.137793 + 0.990461i \(0.455999\pi\)
\(132\) 4.03143e109 2.48829
\(133\) −2.48226e109 −1.03870
\(134\) 3.72978e108 0.106117
\(135\) −2.45028e109 −0.475364
\(136\) −1.47156e110 −1.95220
\(137\) 6.13919e109 0.558472 0.279236 0.960222i \(-0.409919\pi\)
0.279236 + 0.960222i \(0.409919\pi\)
\(138\) 1.33420e110 0.834543
\(139\) −3.55156e110 −1.53164 −0.765820 0.643056i \(-0.777666\pi\)
−0.765820 + 0.643056i \(0.777666\pi\)
\(140\) 1.64102e110 0.489238
\(141\) −1.52713e111 −3.15567
\(142\) 9.61898e110 1.38127
\(143\) −3.68740e110 −0.368905
\(144\) 9.31862e111 6.51153
\(145\) −9.08356e109 −0.0444431
\(146\) −6.16836e111 −2.11835
\(147\) −4.12193e111 −0.995998
\(148\) −2.32186e111 −0.395692
\(149\) 9.90515e111 1.19335 0.596675 0.802483i \(-0.296488\pi\)
0.596675 + 0.802483i \(0.296488\pi\)
\(150\) −3.53236e112 −3.01554
\(151\) −1.40577e112 −0.852318 −0.426159 0.904648i \(-0.640134\pi\)
−0.426159 + 0.904648i \(0.640134\pi\)
\(152\) 1.15626e113 4.99010
\(153\) −3.99543e112 −1.23014
\(154\) −3.08314e112 −0.678698
\(155\) −1.57123e112 −0.247833
\(156\) −2.69746e113 −3.05519
\(157\) −1.75912e112 −0.143371 −0.0716857 0.997427i \(-0.522838\pi\)
−0.0716857 + 0.997427i \(0.522838\pi\)
\(158\) 5.39460e113 3.17044
\(159\) −1.10083e113 −0.467485
\(160\) −2.97163e113 −0.913726
\(161\) −7.39738e112 −0.165023
\(162\) 1.05634e114 1.71309
\(163\) 5.67002e113 0.669765 0.334883 0.942260i \(-0.391303\pi\)
0.334883 + 0.942260i \(0.391303\pi\)
\(164\) 1.75905e114 1.51642
\(165\) −4.28033e113 −0.269808
\(166\) −2.70066e114 −1.24711
\(167\) 3.13107e114 1.06119 0.530597 0.847624i \(-0.321968\pi\)
0.530597 + 0.847624i \(0.321968\pi\)
\(168\) −1.39980e115 −3.48850
\(169\) −2.97983e114 −0.547049
\(170\) 2.51744e114 0.341067
\(171\) 3.13934e115 3.14441
\(172\) −6.19875e115 −4.59821
\(173\) 2.61537e115 1.43933 0.719663 0.694323i \(-0.244296\pi\)
0.719663 + 0.694323i \(0.244296\pi\)
\(174\) 1.24845e115 0.510603
\(175\) 1.95849e115 0.596296
\(176\) 7.99739e115 1.81571
\(177\) −8.35140e115 −1.41624
\(178\) 1.53587e116 1.94861
\(179\) −1.66512e116 −1.58312 −0.791559 0.611093i \(-0.790730\pi\)
−0.791559 + 0.611093i \(0.790730\pi\)
\(180\) −2.07542e116 −1.48105
\(181\) 2.26806e116 1.21677 0.608383 0.793643i \(-0.291818\pi\)
0.608383 + 0.793643i \(0.291818\pi\)
\(182\) 2.06295e116 0.833322
\(183\) −3.95662e116 −1.20529
\(184\) 3.44575e116 0.792805
\(185\) 2.46521e115 0.0429052
\(186\) 2.15951e117 2.84733
\(187\) −3.42894e116 −0.343018
\(188\) −6.35477e117 −4.83026
\(189\) −1.86718e117 −1.07995
\(190\) −1.97804e117 −0.871814
\(191\) −2.97607e117 −1.00098 −0.500489 0.865743i \(-0.666847\pi\)
−0.500489 + 0.865743i \(0.666847\pi\)
\(192\) 1.86481e118 4.79316
\(193\) 4.66441e117 0.917477 0.458738 0.888571i \(-0.348302\pi\)
0.458738 + 0.888571i \(0.348302\pi\)
\(194\) 4.05380e117 0.611045
\(195\) 2.86400e117 0.331277
\(196\) −1.71524e118 −1.52454
\(197\) −1.03884e118 −0.710456 −0.355228 0.934780i \(-0.615597\pi\)
−0.355228 + 0.934780i \(0.615597\pi\)
\(198\) 3.89928e118 2.05460
\(199\) 1.79886e118 0.731248 0.365624 0.930763i \(-0.380856\pi\)
0.365624 + 0.930763i \(0.380856\pi\)
\(200\) −9.12279e118 −2.86473
\(201\) 3.94582e117 0.0958386
\(202\) 5.46023e118 1.02711
\(203\) −6.92192e117 −0.100967
\(204\) −2.50839e119 −2.84080
\(205\) −1.86766e118 −0.164427
\(206\) 4.01819e119 2.75339
\(207\) 9.35554e118 0.499570
\(208\) −5.35112e119 −2.22937
\(209\) 2.69423e119 0.876802
\(210\) 2.39468e119 0.609471
\(211\) −1.36386e118 −0.0271784 −0.0135892 0.999908i \(-0.504326\pi\)
−0.0135892 + 0.999908i \(0.504326\pi\)
\(212\) −4.58082e119 −0.715561
\(213\) 1.01761e120 1.24748
\(214\) −2.89489e120 −2.78819
\(215\) 6.58147e119 0.498588
\(216\) 8.69744e120 5.18828
\(217\) −1.19732e120 −0.563034
\(218\) −2.34270e120 −0.869374
\(219\) −6.52565e120 −1.91316
\(220\) −1.78116e120 −0.412984
\(221\) 2.29433e120 0.421167
\(222\) −3.38819e120 −0.492935
\(223\) 9.08196e120 1.04828 0.524142 0.851631i \(-0.324386\pi\)
0.524142 + 0.851631i \(0.324386\pi\)
\(224\) −2.26446e121 −2.07583
\(225\) −2.47692e121 −1.80515
\(226\) −1.58371e121 −0.918523
\(227\) −9.69741e120 −0.448048 −0.224024 0.974584i \(-0.571919\pi\)
−0.224024 + 0.974584i \(0.571919\pi\)
\(228\) 1.97092e122 7.26148
\(229\) −1.97339e121 −0.580344 −0.290172 0.956975i \(-0.593713\pi\)
−0.290172 + 0.956975i \(0.593713\pi\)
\(230\) −5.89474e120 −0.138510
\(231\) −3.26173e121 −0.612958
\(232\) 3.22428e121 0.485067
\(233\) −2.49838e121 −0.301182 −0.150591 0.988596i \(-0.548118\pi\)
−0.150591 + 0.988596i \(0.548118\pi\)
\(234\) −2.60904e122 −2.52269
\(235\) 6.74712e121 0.523750
\(236\) −3.47523e122 −2.16778
\(237\) 5.70707e122 2.86334
\(238\) 1.91836e122 0.774847
\(239\) 9.67351e121 0.314842 0.157421 0.987532i \(-0.449682\pi\)
0.157421 + 0.987532i \(0.449682\pi\)
\(240\) −6.21157e122 −1.63051
\(241\) 5.26856e122 1.11639 0.558193 0.829711i \(-0.311495\pi\)
0.558193 + 0.829711i \(0.311495\pi\)
\(242\) −7.79148e122 −1.33392
\(243\) −8.37710e121 −0.115977
\(244\) −1.64645e123 −1.84490
\(245\) 1.82114e122 0.165307
\(246\) 2.56691e123 1.88909
\(247\) −1.80273e123 −1.07656
\(248\) 5.57721e123 2.70493
\(249\) −2.85710e123 −1.12631
\(250\) 3.26016e123 1.04551
\(251\) 3.48139e123 0.908983 0.454492 0.890751i \(-0.349821\pi\)
0.454492 + 0.890751i \(0.349821\pi\)
\(252\) −1.58152e124 −3.36471
\(253\) 8.02908e122 0.139302
\(254\) 2.31727e124 3.28126
\(255\) 2.66326e123 0.308031
\(256\) 1.31252e124 1.24093
\(257\) −1.41120e124 −1.09152 −0.545762 0.837940i \(-0.683760\pi\)
−0.545762 + 0.837940i \(0.683760\pi\)
\(258\) −9.04558e124 −5.72825
\(259\) 1.87856e123 0.0974735
\(260\) 1.19178e124 0.507073
\(261\) 8.75422e123 0.305655
\(262\) 1.83268e124 0.525497
\(263\) −2.05011e123 −0.0483122 −0.0241561 0.999708i \(-0.507690\pi\)
−0.0241561 + 0.999708i \(0.507690\pi\)
\(264\) 1.51934e125 2.94477
\(265\) 4.86365e123 0.0775889
\(266\) −1.50732e125 −1.98062
\(267\) 1.62484e125 1.75987
\(268\) 1.64196e124 0.146697
\(269\) 1.31086e125 0.966752 0.483376 0.875413i \(-0.339410\pi\)
0.483376 + 0.875413i \(0.339410\pi\)
\(270\) −1.48789e125 −0.906438
\(271\) −1.56703e125 −0.789147 −0.394573 0.918864i \(-0.629108\pi\)
−0.394573 + 0.918864i \(0.629108\pi\)
\(272\) −4.97604e125 −2.07293
\(273\) 2.18245e125 0.752606
\(274\) 3.72793e125 1.06491
\(275\) −2.12574e125 −0.503356
\(276\) 5.87354e125 1.15367
\(277\) 2.76619e125 0.450997 0.225499 0.974243i \(-0.427599\pi\)
0.225499 + 0.974243i \(0.427599\pi\)
\(278\) −2.15663e126 −2.92058
\(279\) 1.51427e126 1.70446
\(280\) 6.18456e125 0.578989
\(281\) 2.18795e126 1.70475 0.852376 0.522929i \(-0.175161\pi\)
0.852376 + 0.522929i \(0.175161\pi\)
\(282\) −9.27326e126 −6.01733
\(283\) 1.87218e126 1.01239 0.506193 0.862420i \(-0.331052\pi\)
0.506193 + 0.862420i \(0.331052\pi\)
\(284\) 4.23455e126 1.90947
\(285\) −2.09261e126 −0.787369
\(286\) −2.23912e126 −0.703439
\(287\) −1.42320e126 −0.373550
\(288\) 2.86389e127 6.28411
\(289\) −3.31451e126 −0.608387
\(290\) −5.51586e125 −0.0847454
\(291\) 4.28861e126 0.551859
\(292\) −2.71549e127 −2.92841
\(293\) −3.41873e126 −0.309159 −0.154580 0.987980i \(-0.549402\pi\)
−0.154580 + 0.987980i \(0.549402\pi\)
\(294\) −2.50298e127 −1.89920
\(295\) 3.68979e126 0.235054
\(296\) −8.75045e126 −0.468282
\(297\) 2.02662e127 0.911625
\(298\) 6.01475e127 2.27552
\(299\) −5.37232e126 −0.171039
\(300\) −1.55505e128 −4.16869
\(301\) 5.01525e127 1.13271
\(302\) −8.53633e127 −1.62523
\(303\) 5.77651e127 0.927620
\(304\) 3.90984e128 5.29871
\(305\) 1.74810e127 0.200044
\(306\) −2.42617e128 −2.34567
\(307\) −1.50661e127 −0.123133 −0.0615666 0.998103i \(-0.519610\pi\)
−0.0615666 + 0.998103i \(0.519610\pi\)
\(308\) −1.35729e128 −0.938232
\(309\) 4.25093e128 2.48670
\(310\) −9.54108e127 −0.472575
\(311\) 3.45522e127 0.144983 0.0724913 0.997369i \(-0.476905\pi\)
0.0724913 + 0.997369i \(0.476905\pi\)
\(312\) −1.01660e129 −3.61567
\(313\) 8.59988e127 0.259394 0.129697 0.991554i \(-0.458600\pi\)
0.129697 + 0.991554i \(0.458600\pi\)
\(314\) −1.06820e128 −0.273385
\(315\) 1.67917e128 0.364838
\(316\) 2.37486e129 4.38281
\(317\) −6.92172e128 −1.08558 −0.542790 0.839868i \(-0.682632\pi\)
−0.542790 + 0.839868i \(0.682632\pi\)
\(318\) −6.68461e128 −0.891414
\(319\) 7.51301e127 0.0852303
\(320\) −8.23908e128 −0.795526
\(321\) −3.06257e129 −2.51812
\(322\) −4.49195e128 −0.314671
\(323\) −1.67637e129 −1.00102
\(324\) 4.65031e129 2.36817
\(325\) 1.42235e129 0.618034
\(326\) 3.44303e129 1.27713
\(327\) −2.47839e129 −0.785166
\(328\) 6.62938e129 1.79461
\(329\) 5.14149e129 1.18987
\(330\) −2.59917e129 −0.514478
\(331\) −1.41905e129 −0.240357 −0.120179 0.992752i \(-0.538347\pi\)
−0.120179 + 0.992752i \(0.538347\pi\)
\(332\) −1.18891e130 −1.72400
\(333\) −2.37583e129 −0.295078
\(334\) 1.90130e130 2.02352
\(335\) −1.74333e128 −0.0159064
\(336\) −4.73339e130 −3.70424
\(337\) −1.22765e129 −0.0824394 −0.0412197 0.999150i \(-0.513124\pi\)
−0.0412197 + 0.999150i \(0.513124\pi\)
\(338\) −1.80946e130 −1.04313
\(339\) −1.67544e130 −0.829554
\(340\) 1.10825e130 0.471491
\(341\) 1.29957e130 0.475279
\(342\) 1.90632e131 5.99585
\(343\) 3.78727e130 1.02489
\(344\) −2.33614e131 −5.44176
\(345\) −6.23618e129 −0.125094
\(346\) 1.58815e131 2.74455
\(347\) −1.12977e131 −1.68277 −0.841383 0.540439i \(-0.818258\pi\)
−0.841383 + 0.540439i \(0.818258\pi\)
\(348\) 5.49602e130 0.705858
\(349\) −8.78345e130 −0.973095 −0.486548 0.873654i \(-0.661744\pi\)
−0.486548 + 0.873654i \(0.661744\pi\)
\(350\) 1.18926e131 1.13704
\(351\) −1.35603e131 −1.11932
\(352\) 2.45784e131 1.75229
\(353\) 8.51890e130 0.524791 0.262395 0.964960i \(-0.415488\pi\)
0.262395 + 0.964960i \(0.415488\pi\)
\(354\) −5.07126e131 −2.70053
\(355\) −4.49600e130 −0.207046
\(356\) 6.76136e131 2.69376
\(357\) 2.02947e131 0.699794
\(358\) −1.01112e132 −3.01874
\(359\) −2.80558e131 −0.725534 −0.362767 0.931880i \(-0.618168\pi\)
−0.362767 + 0.931880i \(0.618168\pi\)
\(360\) −7.82168e131 −1.75276
\(361\) 8.02404e131 1.55874
\(362\) 1.37724e132 2.32017
\(363\) −8.24279e131 −1.20471
\(364\) 9.08172e131 1.15199
\(365\) 2.88315e131 0.317530
\(366\) −2.40260e132 −2.29829
\(367\) −1.42800e132 −1.18693 −0.593465 0.804859i \(-0.702241\pi\)
−0.593465 + 0.804859i \(0.702241\pi\)
\(368\) 1.16517e132 0.841835
\(369\) 1.79994e132 1.13084
\(370\) 1.49696e131 0.0818130
\(371\) 3.70623e131 0.176269
\(372\) 9.50678e132 3.93615
\(373\) 2.12769e132 0.767192 0.383596 0.923501i \(-0.374685\pi\)
0.383596 + 0.923501i \(0.374685\pi\)
\(374\) −2.08217e132 −0.654078
\(375\) 3.44900e132 0.944241
\(376\) −2.39494e133 −5.71638
\(377\) −5.02701e131 −0.104648
\(378\) −1.13382e133 −2.05928
\(379\) 5.03313e132 0.797846 0.398923 0.916984i \(-0.369384\pi\)
0.398923 + 0.916984i \(0.369384\pi\)
\(380\) −8.70789e132 −1.20520
\(381\) 2.45150e133 2.96344
\(382\) −1.80717e133 −1.90870
\(383\) −3.06972e132 −0.283375 −0.141688 0.989911i \(-0.545253\pi\)
−0.141688 + 0.989911i \(0.545253\pi\)
\(384\) 4.50290e133 3.63442
\(385\) 1.44109e132 0.101733
\(386\) 2.83239e133 1.74947
\(387\) −6.34284e133 −3.42901
\(388\) 1.78460e133 0.844709
\(389\) 2.00588e133 0.831575 0.415788 0.909462i \(-0.363506\pi\)
0.415788 + 0.909462i \(0.363506\pi\)
\(390\) 1.73912e133 0.631689
\(391\) −4.99576e132 −0.159037
\(392\) −6.46428e133 −1.80421
\(393\) 1.93884e133 0.474597
\(394\) −6.30819e133 −1.35472
\(395\) −2.52148e133 −0.475232
\(396\) 1.71658e134 2.84028
\(397\) 1.69968e133 0.246977 0.123489 0.992346i \(-0.460592\pi\)
0.123489 + 0.992346i \(0.460592\pi\)
\(398\) 1.09233e134 1.39437
\(399\) −1.59463e134 −1.78877
\(400\) −3.08485e134 −3.04189
\(401\) 1.71989e134 1.49130 0.745651 0.666337i \(-0.232139\pi\)
0.745651 + 0.666337i \(0.232139\pi\)
\(402\) 2.39604e133 0.182748
\(403\) −8.69550e133 −0.583559
\(404\) 2.40375e134 1.41987
\(405\) −4.93742e133 −0.256783
\(406\) −4.20323e133 −0.192527
\(407\) −2.03898e133 −0.0822811
\(408\) −9.45344e134 −3.36195
\(409\) 3.22329e134 1.01053 0.505265 0.862964i \(-0.331395\pi\)
0.505265 + 0.862964i \(0.331395\pi\)
\(410\) −1.13411e134 −0.313534
\(411\) 3.94387e134 0.961763
\(412\) 1.76892e135 3.80629
\(413\) 2.81172e134 0.534004
\(414\) 5.68101e134 0.952595
\(415\) 1.26231e134 0.186935
\(416\) −1.64456e135 −2.15151
\(417\) −2.28155e135 −2.63769
\(418\) 1.63603e135 1.67191
\(419\) −1.14412e135 −1.03383 −0.516917 0.856036i \(-0.672920\pi\)
−0.516917 + 0.856036i \(0.672920\pi\)
\(420\) 1.05421e135 0.842533
\(421\) 1.87609e135 1.32655 0.663277 0.748374i \(-0.269165\pi\)
0.663277 + 0.748374i \(0.269165\pi\)
\(422\) −8.28185e133 −0.0518246
\(423\) −6.50249e135 −3.60206
\(424\) −1.72639e135 −0.846832
\(425\) 1.32265e135 0.574666
\(426\) 6.17931e135 2.37873
\(427\) 1.33210e135 0.454466
\(428\) −1.27441e136 −3.85440
\(429\) −2.36882e135 −0.635303
\(430\) 3.99650e135 0.950723
\(431\) 7.69548e135 1.62426 0.812132 0.583474i \(-0.198307\pi\)
0.812132 + 0.583474i \(0.198307\pi\)
\(432\) 2.94101e136 5.50915
\(433\) −3.63186e135 −0.603953 −0.301976 0.953315i \(-0.597646\pi\)
−0.301976 + 0.953315i \(0.597646\pi\)
\(434\) −7.27056e135 −1.07361
\(435\) −5.83535e134 −0.0765368
\(436\) −1.03132e136 −1.20182
\(437\) 3.92533e135 0.406521
\(438\) −3.96260e136 −3.64808
\(439\) 2.27855e136 1.86524 0.932620 0.360859i \(-0.117516\pi\)
0.932620 + 0.360859i \(0.117516\pi\)
\(440\) −6.71269e135 −0.488747
\(441\) −1.75511e136 −1.13689
\(442\) 1.39320e136 0.803094
\(443\) 2.02196e136 1.03748 0.518740 0.854932i \(-0.326401\pi\)
0.518740 + 0.854932i \(0.326401\pi\)
\(444\) −1.49158e136 −0.681434
\(445\) −7.17881e135 −0.292087
\(446\) 5.51488e136 1.99890
\(447\) 6.36315e136 2.05511
\(448\) −6.27840e136 −1.80730
\(449\) 2.46399e136 0.632341 0.316171 0.948702i \(-0.397603\pi\)
0.316171 + 0.948702i \(0.397603\pi\)
\(450\) −1.50408e137 −3.44211
\(451\) 1.54474e136 0.315328
\(452\) −6.97193e136 −1.26977
\(453\) −9.03079e136 −1.46780
\(454\) −5.88861e136 −0.854351
\(455\) −9.64244e135 −0.124911
\(456\) 7.42788e137 8.59361
\(457\) −2.78919e136 −0.288266 −0.144133 0.989558i \(-0.546039\pi\)
−0.144133 + 0.989558i \(0.546039\pi\)
\(458\) −1.19831e137 −1.10662
\(459\) −1.26098e137 −1.04077
\(460\) −2.59503e136 −0.191476
\(461\) 1.22798e136 0.0810205 0.0405102 0.999179i \(-0.487102\pi\)
0.0405102 + 0.999179i \(0.487102\pi\)
\(462\) −1.98064e137 −1.16881
\(463\) 2.40728e137 1.27088 0.635441 0.772149i \(-0.280818\pi\)
0.635441 + 0.772149i \(0.280818\pi\)
\(464\) 1.09028e137 0.515065
\(465\) −1.00937e137 −0.426800
\(466\) −1.51710e137 −0.574303
\(467\) 2.49513e137 0.845812 0.422906 0.906174i \(-0.361010\pi\)
0.422906 + 0.906174i \(0.361010\pi\)
\(468\) −1.14857e138 −3.48737
\(469\) −1.32847e136 −0.0361368
\(470\) 4.09709e137 0.998702
\(471\) −1.13007e137 −0.246905
\(472\) −1.30972e138 −2.56546
\(473\) −5.44353e137 −0.956163
\(474\) 3.46553e138 5.45991
\(475\) −1.03925e138 −1.46892
\(476\) 8.44516e137 1.07115
\(477\) −4.68731e137 −0.533614
\(478\) 5.87410e137 0.600350
\(479\) 1.49339e138 1.37055 0.685274 0.728285i \(-0.259682\pi\)
0.685274 + 0.728285i \(0.259682\pi\)
\(480\) −1.90900e138 −1.57356
\(481\) 1.36429e137 0.101027
\(482\) 3.19926e138 2.12876
\(483\) −4.75214e137 −0.284192
\(484\) −3.43003e138 −1.84401
\(485\) −1.89478e137 −0.0915926
\(486\) −5.08687e137 −0.221148
\(487\) 1.78412e138 0.697721 0.348860 0.937175i \(-0.386569\pi\)
0.348860 + 0.937175i \(0.386569\pi\)
\(488\) −6.20502e138 −2.18334
\(489\) 3.64247e138 1.15342
\(490\) 1.10586e138 0.315212
\(491\) −7.24097e138 −1.85823 −0.929115 0.369790i \(-0.879430\pi\)
−0.929115 + 0.369790i \(0.879430\pi\)
\(492\) 1.13003e139 2.61148
\(493\) −4.67466e137 −0.0973046
\(494\) −1.09468e139 −2.05282
\(495\) −1.82256e138 −0.307974
\(496\) 1.88592e139 2.87221
\(497\) −3.42607e138 −0.470373
\(498\) −1.73493e139 −2.14768
\(499\) −1.04278e139 −1.16416 −0.582082 0.813130i \(-0.697762\pi\)
−0.582082 + 0.813130i \(0.697762\pi\)
\(500\) 1.43522e139 1.44531
\(501\) 2.01143e139 1.82752
\(502\) 2.11402e139 1.73328
\(503\) −7.60937e138 −0.563116 −0.281558 0.959544i \(-0.590851\pi\)
−0.281558 + 0.959544i \(0.590851\pi\)
\(504\) −5.96033e139 −3.98197
\(505\) −2.55216e138 −0.153958
\(506\) 4.87554e138 0.265626
\(507\) −1.91427e139 −0.942091
\(508\) 1.02013e140 4.53602
\(509\) −1.47324e138 −0.0591980 −0.0295990 0.999562i \(-0.509423\pi\)
−0.0295990 + 0.999562i \(0.509423\pi\)
\(510\) 1.61722e139 0.587362
\(511\) 2.19704e139 0.721374
\(512\) 8.61709e138 0.255834
\(513\) 9.90796e139 2.66036
\(514\) −8.56931e139 −2.08135
\(515\) −1.87814e139 −0.412719
\(516\) −3.98213e140 −7.91873
\(517\) −5.58055e139 −1.00442
\(518\) 1.14073e139 0.185865
\(519\) 1.68014e140 2.47871
\(520\) 4.49152e139 0.600096
\(521\) 1.28966e140 1.56075 0.780374 0.625313i \(-0.215029\pi\)
0.780374 + 0.625313i \(0.215029\pi\)
\(522\) 5.31587e139 0.582832
\(523\) −7.41732e139 −0.736903 −0.368451 0.929647i \(-0.620112\pi\)
−0.368451 + 0.929647i \(0.620112\pi\)
\(524\) 8.06799e139 0.726447
\(525\) 1.25815e140 1.02690
\(526\) −1.24490e139 −0.0921232
\(527\) −8.08602e139 −0.542610
\(528\) 5.13759e140 3.12689
\(529\) −1.69422e140 −0.935414
\(530\) 2.95338e139 0.147949
\(531\) −3.55602e140 −1.61657
\(532\) −6.63564e140 −2.73800
\(533\) −1.03360e140 −0.387168
\(534\) 9.86658e140 3.35577
\(535\) 1.35310e140 0.417936
\(536\) 6.18809e139 0.173608
\(537\) −1.06968e141 −2.72634
\(538\) 7.96002e140 1.84343
\(539\) −1.50627e140 −0.317016
\(540\) −6.55014e140 −1.25306
\(541\) 1.69600e140 0.294962 0.147481 0.989065i \(-0.452883\pi\)
0.147481 + 0.989065i \(0.452883\pi\)
\(542\) −9.51553e140 −1.50477
\(543\) 1.45702e141 2.09543
\(544\) −1.52929e141 −2.00053
\(545\) 1.09500e140 0.130315
\(546\) 1.32526e141 1.43509
\(547\) 3.25568e140 0.320844 0.160422 0.987049i \(-0.448715\pi\)
0.160422 + 0.987049i \(0.448715\pi\)
\(548\) 1.64114e141 1.47213
\(549\) −1.68472e141 −1.37579
\(550\) −1.29082e141 −0.959815
\(551\) 3.67304e140 0.248724
\(552\) 2.21358e141 1.36531
\(553\) −1.92144e141 −1.07965
\(554\) 1.67973e141 0.859976
\(555\) 1.58367e140 0.0738885
\(556\) −9.49411e141 −4.03741
\(557\) 3.01092e141 1.16723 0.583615 0.812031i \(-0.301638\pi\)
0.583615 + 0.812031i \(0.301638\pi\)
\(558\) 9.19515e141 3.25011
\(559\) 3.64231e141 1.17400
\(560\) 2.09129e141 0.614796
\(561\) −2.20278e141 −0.590723
\(562\) 1.32860e142 3.25067
\(563\) −2.26836e141 −0.506443 −0.253221 0.967408i \(-0.581490\pi\)
−0.253221 + 0.967408i \(0.581490\pi\)
\(564\) −4.08236e142 −8.31835
\(565\) 7.40239e140 0.137682
\(566\) 1.13685e142 1.93045
\(567\) −3.76245e141 −0.583369
\(568\) 1.59589e142 2.25977
\(569\) 2.47710e141 0.320377 0.160189 0.987086i \(-0.448790\pi\)
0.160189 + 0.987086i \(0.448790\pi\)
\(570\) −1.27071e142 −1.50138
\(571\) 2.61303e140 0.0282088 0.0141044 0.999901i \(-0.495510\pi\)
0.0141044 + 0.999901i \(0.495510\pi\)
\(572\) −9.85725e141 −0.972434
\(573\) −1.91185e142 −1.72382
\(574\) −8.64219e141 −0.712298
\(575\) −3.09707e141 −0.233376
\(576\) 7.94035e142 5.47119
\(577\) 1.49135e142 0.939779 0.469889 0.882725i \(-0.344294\pi\)
0.469889 + 0.882725i \(0.344294\pi\)
\(578\) −2.01268e142 −1.16009
\(579\) 2.99645e142 1.58002
\(580\) −2.42824e141 −0.117152
\(581\) 9.61918e141 0.424685
\(582\) 2.60420e142 1.05230
\(583\) −4.02272e141 −0.148795
\(584\) −1.02339e143 −3.46563
\(585\) 1.21949e142 0.378138
\(586\) −2.07597e142 −0.589514
\(587\) 3.23347e141 0.0841021 0.0420510 0.999115i \(-0.486611\pi\)
0.0420510 + 0.999115i \(0.486611\pi\)
\(588\) −1.10189e143 −2.62545
\(589\) 6.35345e142 1.38699
\(590\) 2.24057e142 0.448209
\(591\) −6.67358e142 −1.22350
\(592\) −2.95894e142 −0.497243
\(593\) 1.18014e141 0.0181810 0.00909050 0.999959i \(-0.497106\pi\)
0.00909050 + 0.999959i \(0.497106\pi\)
\(594\) 1.23064e143 1.73831
\(595\) −8.96657e141 −0.116146
\(596\) 2.64787e143 3.14568
\(597\) 1.15560e143 1.25931
\(598\) −3.26226e142 −0.326143
\(599\) −1.75272e143 −1.60780 −0.803899 0.594766i \(-0.797245\pi\)
−0.803899 + 0.594766i \(0.797245\pi\)
\(600\) −5.86056e143 −4.93344
\(601\) 8.75727e142 0.676602 0.338301 0.941038i \(-0.390148\pi\)
0.338301 + 0.941038i \(0.390148\pi\)
\(602\) 3.04544e143 2.15988
\(603\) 1.68013e142 0.109396
\(604\) −3.75794e143 −2.24671
\(605\) 3.64181e142 0.199947
\(606\) 3.50770e143 1.76881
\(607\) −2.73108e143 −1.26508 −0.632539 0.774528i \(-0.717987\pi\)
−0.632539 + 0.774528i \(0.717987\pi\)
\(608\) 1.20161e144 5.11364
\(609\) −4.44670e142 −0.173879
\(610\) 1.06151e143 0.381450
\(611\) 3.73399e143 1.23325
\(612\) −1.06807e144 −3.24265
\(613\) −4.94136e143 −1.37921 −0.689607 0.724184i \(-0.742217\pi\)
−0.689607 + 0.724184i \(0.742217\pi\)
\(614\) −9.14868e142 −0.234794
\(615\) −1.19980e143 −0.283165
\(616\) −5.11525e143 −1.11035
\(617\) −9.09473e143 −1.81595 −0.907975 0.419024i \(-0.862372\pi\)
−0.907975 + 0.419024i \(0.862372\pi\)
\(618\) 2.58132e144 4.74171
\(619\) −4.19400e143 −0.708860 −0.354430 0.935083i \(-0.615325\pi\)
−0.354430 + 0.935083i \(0.615325\pi\)
\(620\) −4.20026e143 −0.653287
\(621\) 2.95267e143 0.422666
\(622\) 2.09813e143 0.276457
\(623\) −5.47045e143 −0.663573
\(624\) −3.43760e144 −3.83928
\(625\) 7.40527e143 0.761588
\(626\) 5.22215e143 0.494620
\(627\) 1.73080e144 1.50997
\(628\) −4.70252e143 −0.377928
\(629\) 1.26867e143 0.0939377
\(630\) 1.01965e144 0.695685
\(631\) −4.19504e142 −0.0263769 −0.0131885 0.999913i \(-0.504198\pi\)
−0.0131885 + 0.999913i \(0.504198\pi\)
\(632\) 8.95020e144 5.18684
\(633\) −8.76156e142 −0.0468048
\(634\) −4.20311e144 −2.07002
\(635\) −1.08312e144 −0.491845
\(636\) −2.94276e144 −1.23229
\(637\) 1.00785e144 0.389240
\(638\) 4.56217e143 0.162520
\(639\) 4.33299e144 1.42395
\(640\) −1.98946e144 −0.603208
\(641\) −2.63806e144 −0.738067 −0.369033 0.929416i \(-0.620311\pi\)
−0.369033 + 0.929416i \(0.620311\pi\)
\(642\) −1.85970e145 −4.80164
\(643\) 4.23252e144 1.00863 0.504317 0.863519i \(-0.331744\pi\)
0.504317 + 0.863519i \(0.331744\pi\)
\(644\) −1.97749e144 −0.435002
\(645\) 4.22799e144 0.858635
\(646\) −1.01795e145 −1.90877
\(647\) 1.01709e145 1.76113 0.880564 0.473928i \(-0.157164\pi\)
0.880564 + 0.473928i \(0.157164\pi\)
\(648\) 1.75258e145 2.80262
\(649\) −3.05183e144 −0.450774
\(650\) 8.63699e144 1.17849
\(651\) −7.69170e144 −0.969619
\(652\) 1.51572e145 1.76550
\(653\) −1.38607e145 −1.49196 −0.745981 0.665967i \(-0.768019\pi\)
−0.745981 + 0.665967i \(0.768019\pi\)
\(654\) −1.50497e145 −1.49718
\(655\) −8.56612e143 −0.0787693
\(656\) 2.24171e145 1.90560
\(657\) −2.77861e145 −2.18379
\(658\) 3.12209e145 2.26888
\(659\) −7.27509e143 −0.0488922 −0.0244461 0.999701i \(-0.507782\pi\)
−0.0244461 + 0.999701i \(0.507782\pi\)
\(660\) −1.14423e145 −0.711214
\(661\) 7.66825e144 0.440881 0.220440 0.975400i \(-0.429251\pi\)
0.220440 + 0.975400i \(0.429251\pi\)
\(662\) −8.61699e144 −0.458320
\(663\) 1.47390e145 0.725305
\(664\) −4.48068e145 −2.04027
\(665\) 7.04534e144 0.296884
\(666\) −1.44269e145 −0.562665
\(667\) 1.09460e144 0.0395162
\(668\) 8.37006e145 2.79731
\(669\) 5.83433e145 1.80528
\(670\) −1.05861e144 −0.0303309
\(671\) −1.44586e145 −0.383632
\(672\) −1.45471e146 −3.57486
\(673\) 5.62431e145 1.28025 0.640123 0.768273i \(-0.278883\pi\)
0.640123 + 0.768273i \(0.278883\pi\)
\(674\) −7.45472e144 −0.157198
\(675\) −7.81733e145 −1.52726
\(676\) −7.96576e145 −1.44202
\(677\) 4.97394e145 0.834419 0.417209 0.908810i \(-0.363008\pi\)
0.417209 + 0.908810i \(0.363008\pi\)
\(678\) −1.01739e146 −1.58182
\(679\) −1.44388e145 −0.208083
\(680\) 4.17669e145 0.557987
\(681\) −6.22970e145 −0.771598
\(682\) 7.89143e145 0.906276
\(683\) −9.66317e145 −1.02909 −0.514545 0.857463i \(-0.672039\pi\)
−0.514545 + 0.857463i \(0.672039\pi\)
\(684\) 8.39217e146 8.28867
\(685\) −1.74247e145 −0.159625
\(686\) 2.29976e146 1.95430
\(687\) −1.26772e146 −0.999429
\(688\) −7.89959e146 −5.77830
\(689\) 2.69164e145 0.182695
\(690\) −3.78683e145 −0.238532
\(691\) −8.71251e144 −0.0509359 −0.0254680 0.999676i \(-0.508108\pi\)
−0.0254680 + 0.999676i \(0.508108\pi\)
\(692\) 6.99148e146 3.79407
\(693\) −1.38884e146 −0.699666
\(694\) −6.86039e146 −3.20875
\(695\) 1.00803e146 0.437779
\(696\) 2.07130e146 0.835349
\(697\) −9.61149e145 −0.360000
\(698\) −5.33362e146 −1.85553
\(699\) −1.60498e146 −0.518675
\(700\) 5.23549e146 1.57184
\(701\) 1.95548e146 0.545475 0.272738 0.962088i \(-0.412071\pi\)
0.272738 + 0.962088i \(0.412071\pi\)
\(702\) −8.23429e146 −2.13435
\(703\) −9.96835e145 −0.240118
\(704\) 6.81454e146 1.52561
\(705\) 4.33441e146 0.901966
\(706\) 5.17298e146 1.00069
\(707\) −1.94482e146 −0.349767
\(708\) −2.23252e147 −3.73321
\(709\) 2.04480e146 0.317958 0.158979 0.987282i \(-0.449180\pi\)
0.158979 + 0.987282i \(0.449180\pi\)
\(710\) −2.73013e146 −0.394801
\(711\) 2.43006e147 3.26838
\(712\) 2.54817e147 3.18793
\(713\) 1.89339e146 0.220358
\(714\) 1.23237e147 1.33439
\(715\) 1.04658e146 0.105442
\(716\) −4.45123e147 −4.17310
\(717\) 6.21434e146 0.542199
\(718\) −1.70364e147 −1.38347
\(719\) −2.59082e147 −1.95839 −0.979194 0.202925i \(-0.934955\pi\)
−0.979194 + 0.202925i \(0.934955\pi\)
\(720\) −2.64488e147 −1.86115
\(721\) −1.43119e147 −0.937630
\(722\) 4.87248e147 2.97224
\(723\) 3.38457e147 1.92256
\(724\) 6.06303e147 3.20740
\(725\) −2.89800e146 −0.142788
\(726\) −5.00531e147 −2.29718
\(727\) −1.53001e147 −0.654144 −0.327072 0.944999i \(-0.606062\pi\)
−0.327072 + 0.944999i \(0.606062\pi\)
\(728\) 3.42266e147 1.36332
\(729\) −2.95882e147 −1.09812
\(730\) 1.75075e147 0.605475
\(731\) 3.38701e147 1.09162
\(732\) −1.05769e148 −3.17716
\(733\) −2.07608e147 −0.581284 −0.290642 0.956832i \(-0.593869\pi\)
−0.290642 + 0.956832i \(0.593869\pi\)
\(734\) −8.67131e147 −2.26328
\(735\) 1.16992e147 0.284680
\(736\) 3.58092e147 0.812432
\(737\) 1.44191e146 0.0305044
\(738\) 1.09299e148 2.15632
\(739\) 9.03589e147 1.66258 0.831290 0.555840i \(-0.187603\pi\)
0.831290 + 0.555840i \(0.187603\pi\)
\(740\) 6.59006e146 0.113098
\(741\) −1.15809e148 −1.85398
\(742\) 2.25055e147 0.336115
\(743\) −1.31649e148 −1.83440 −0.917201 0.398425i \(-0.869557\pi\)
−0.917201 + 0.398425i \(0.869557\pi\)
\(744\) 3.58285e148 4.65824
\(745\) −2.81135e147 −0.341088
\(746\) 1.29201e148 1.46291
\(747\) −1.21655e148 −1.28564
\(748\) −9.16633e147 −0.904198
\(749\) 1.03110e148 0.949480
\(750\) 2.09435e148 1.80051
\(751\) −1.42830e147 −0.114647 −0.0573235 0.998356i \(-0.518257\pi\)
−0.0573235 + 0.998356i \(0.518257\pi\)
\(752\) −8.09843e148 −6.06991
\(753\) 2.23647e148 1.56539
\(754\) −3.05258e147 −0.199546
\(755\) 3.98996e147 0.243613
\(756\) −4.99138e148 −2.84674
\(757\) −1.00223e148 −0.533987 −0.266994 0.963698i \(-0.586030\pi\)
−0.266994 + 0.963698i \(0.586030\pi\)
\(758\) 3.05629e148 1.52136
\(759\) 5.15795e147 0.239897
\(760\) −3.28177e148 −1.42629
\(761\) −1.21467e148 −0.493342 −0.246671 0.969099i \(-0.579337\pi\)
−0.246671 + 0.969099i \(0.579337\pi\)
\(762\) 1.48864e149 5.65077
\(763\) 8.34418e147 0.296053
\(764\) −7.95571e148 −2.63858
\(765\) 1.13401e148 0.351604
\(766\) −1.86404e148 −0.540348
\(767\) 2.04200e148 0.553471
\(768\) 8.43175e148 2.13705
\(769\) 2.62336e148 0.621800 0.310900 0.950443i \(-0.399370\pi\)
0.310900 + 0.950443i \(0.399370\pi\)
\(770\) 8.75080e147 0.193988
\(771\) −9.06567e148 −1.87975
\(772\) 1.24690e149 2.41847
\(773\) 5.95078e148 1.07977 0.539884 0.841740i \(-0.318468\pi\)
0.539884 + 0.841740i \(0.318468\pi\)
\(774\) −3.85160e149 −6.53855
\(775\) −5.01284e148 −0.796244
\(776\) 6.72568e148 0.999672
\(777\) 1.20680e148 0.167862
\(778\) 1.21804e149 1.58567
\(779\) 7.55206e148 0.920209
\(780\) 7.65612e148 0.873247
\(781\) 3.71864e148 0.397060
\(782\) −3.03360e148 −0.303257
\(783\) 2.76289e148 0.258602
\(784\) −2.18588e149 −1.91579
\(785\) 4.99286e147 0.0409790
\(786\) 1.17733e149 0.904975
\(787\) −2.18892e149 −1.57591 −0.787956 0.615732i \(-0.788861\pi\)
−0.787956 + 0.615732i \(0.788861\pi\)
\(788\) −2.77705e149 −1.87276
\(789\) −1.31701e148 −0.0832001
\(790\) −1.53113e149 −0.906187
\(791\) 5.64082e148 0.312790
\(792\) 6.46931e149 3.36133
\(793\) 9.67433e148 0.471033
\(794\) 1.03211e149 0.470943
\(795\) 3.12445e148 0.133618
\(796\) 4.80876e149 1.92757
\(797\) −4.44733e149 −1.67107 −0.835537 0.549433i \(-0.814844\pi\)
−0.835537 + 0.549433i \(0.814844\pi\)
\(798\) −9.68313e149 −3.41088
\(799\) 3.47226e149 1.14671
\(800\) −9.48066e149 −2.93565
\(801\) 6.91853e149 2.00881
\(802\) 1.04438e150 2.84366
\(803\) −2.38465e149 −0.608940
\(804\) 1.05481e149 0.252631
\(805\) 2.09958e148 0.0471676
\(806\) −5.28022e149 −1.11275
\(807\) 8.42109e149 1.66487
\(808\) 9.05909e149 1.68035
\(809\) 2.32924e149 0.405383 0.202691 0.979243i \(-0.435031\pi\)
0.202691 + 0.979243i \(0.435031\pi\)
\(810\) −2.99818e149 −0.489642
\(811\) −2.31909e149 −0.355421 −0.177710 0.984083i \(-0.556869\pi\)
−0.177710 + 0.984083i \(0.556869\pi\)
\(812\) −1.85038e149 −0.266150
\(813\) −1.00667e150 −1.35902
\(814\) −1.23814e149 −0.156896
\(815\) −1.60931e149 −0.191435
\(816\) −3.19665e150 −3.56987
\(817\) −2.66129e150 −2.79033
\(818\) 1.95729e150 1.92691
\(819\) 9.29283e149 0.859067
\(820\) −4.99266e149 −0.433430
\(821\) −1.03815e150 −0.846421 −0.423211 0.906031i \(-0.639097\pi\)
−0.423211 + 0.906031i \(0.639097\pi\)
\(822\) 2.39485e150 1.83392
\(823\) −6.33395e149 −0.455600 −0.227800 0.973708i \(-0.573153\pi\)
−0.227800 + 0.973708i \(0.573153\pi\)
\(824\) 6.66659e150 4.50456
\(825\) −1.36559e150 −0.866847
\(826\) 1.70738e150 1.01826
\(827\) −1.60869e150 −0.901444 −0.450722 0.892664i \(-0.648834\pi\)
−0.450722 + 0.892664i \(0.648834\pi\)
\(828\) 2.50095e150 1.31687
\(829\) 1.85985e150 0.920277 0.460138 0.887847i \(-0.347800\pi\)
0.460138 + 0.887847i \(0.347800\pi\)
\(830\) 7.66522e149 0.356453
\(831\) 1.77702e150 0.776677
\(832\) −4.55966e150 −1.87319
\(833\) 9.37212e149 0.361926
\(834\) −1.38544e151 −5.02962
\(835\) −8.88683e149 −0.303315
\(836\) 7.20229e150 2.31125
\(837\) 4.77912e150 1.44207
\(838\) −6.94752e150 −1.97135
\(839\) −5.46889e150 −1.45935 −0.729673 0.683796i \(-0.760328\pi\)
−0.729673 + 0.683796i \(0.760328\pi\)
\(840\) 3.97302e150 0.997096
\(841\) −4.13394e150 −0.975823
\(842\) 1.13923e151 2.52952
\(843\) 1.40556e151 2.93581
\(844\) −3.64591e149 −0.0716423
\(845\) 8.45757e149 0.156360
\(846\) −3.94854e151 −6.86852
\(847\) 2.77516e150 0.454247
\(848\) −5.83773e150 −0.899203
\(849\) 1.20270e151 1.74346
\(850\) 8.03160e150 1.09579
\(851\) −2.97066e149 −0.0381488
\(852\) 2.72031e151 3.28836
\(853\) 6.42324e150 0.730935 0.365467 0.930824i \(-0.380909\pi\)
0.365467 + 0.930824i \(0.380909\pi\)
\(854\) 8.08898e150 0.866590
\(855\) −8.91031e150 −0.898748
\(856\) −4.80292e151 −4.56149
\(857\) −1.30840e150 −0.117011 −0.0585057 0.998287i \(-0.518634\pi\)
−0.0585057 + 0.998287i \(0.518634\pi\)
\(858\) −1.43843e151 −1.21142
\(859\) −3.61292e150 −0.286556 −0.143278 0.989682i \(-0.545764\pi\)
−0.143278 + 0.989682i \(0.545764\pi\)
\(860\) 1.75937e151 1.31428
\(861\) −9.14278e150 −0.643303
\(862\) 4.67297e151 3.09720
\(863\) −1.74253e151 −1.08799 −0.543993 0.839089i \(-0.683088\pi\)
−0.543993 + 0.839089i \(0.683088\pi\)
\(864\) 9.03862e151 5.31673
\(865\) −7.42314e150 −0.411394
\(866\) −2.20540e151 −1.15164
\(867\) −2.12927e151 −1.04772
\(868\) −3.20071e151 −1.48416
\(869\) 2.08552e151 0.911372
\(870\) −3.54343e150 −0.145943
\(871\) −9.64794e149 −0.0374541
\(872\) −3.88678e151 −1.42230
\(873\) 1.82609e151 0.629923
\(874\) 2.38360e151 0.775166
\(875\) −1.16120e151 −0.356034
\(876\) −1.74445e152 −5.04310
\(877\) 2.37084e151 0.646283 0.323142 0.946351i \(-0.395261\pi\)
0.323142 + 0.946351i \(0.395261\pi\)
\(878\) 1.38361e152 3.55670
\(879\) −2.19622e151 −0.532413
\(880\) −2.26988e151 −0.518973
\(881\) 1.12244e151 0.242049 0.121025 0.992650i \(-0.461382\pi\)
0.121025 + 0.992650i \(0.461382\pi\)
\(882\) −1.06577e152 −2.16785
\(883\) −8.50352e150 −0.163163 −0.0815817 0.996667i \(-0.525997\pi\)
−0.0815817 + 0.996667i \(0.525997\pi\)
\(884\) 6.13326e151 1.11020
\(885\) 2.37036e151 0.404795
\(886\) 1.22780e152 1.97830
\(887\) 7.81398e151 1.18797 0.593986 0.804476i \(-0.297554\pi\)
0.593986 + 0.804476i \(0.297554\pi\)
\(888\) −5.62136e151 −0.806444
\(889\) −8.25363e151 −1.11739
\(890\) −4.35923e151 −0.556960
\(891\) 4.08374e151 0.492444
\(892\) 2.42781e152 2.76328
\(893\) −2.72827e152 −2.93115
\(894\) 3.86393e152 3.91874
\(895\) 4.72605e151 0.452493
\(896\) −1.51602e152 −1.37039
\(897\) −3.45122e151 −0.294552
\(898\) 1.49622e152 1.20577
\(899\) 1.77169e151 0.134823
\(900\) −6.62137e152 −4.75838
\(901\) 2.50297e151 0.169875
\(902\) 9.38019e151 0.601277
\(903\) 3.22184e152 1.95068
\(904\) −2.62753e152 −1.50271
\(905\) −6.43736e151 −0.347781
\(906\) −5.48381e152 −2.79885
\(907\) −2.30723e152 −1.11254 −0.556271 0.831001i \(-0.687768\pi\)
−0.556271 + 0.831001i \(0.687768\pi\)
\(908\) −2.59234e152 −1.18106
\(909\) 2.45963e152 1.05884
\(910\) −5.85523e151 −0.238184
\(911\) 4.80563e151 0.184737 0.0923685 0.995725i \(-0.470556\pi\)
0.0923685 + 0.995725i \(0.470556\pi\)
\(912\) 2.51172e153 9.12507
\(913\) −1.04406e152 −0.358493
\(914\) −1.69369e152 −0.549675
\(915\) 1.12300e152 0.344502
\(916\) −5.27531e152 −1.52979
\(917\) −6.52761e151 −0.178951
\(918\) −7.65713e152 −1.98458
\(919\) −5.78053e152 −1.41651 −0.708254 0.705958i \(-0.750517\pi\)
−0.708254 + 0.705958i \(0.750517\pi\)
\(920\) −9.77998e151 −0.226603
\(921\) −9.67861e151 −0.212052
\(922\) 7.45675e151 0.154492
\(923\) −2.48817e152 −0.487520
\(924\) −8.71933e152 −1.61576
\(925\) 7.86497e151 0.137847
\(926\) 1.46178e153 2.42336
\(927\) 1.81004e153 2.83846
\(928\) 3.35076e152 0.497075
\(929\) 7.00190e152 0.982667 0.491334 0.870971i \(-0.336510\pi\)
0.491334 + 0.870971i \(0.336510\pi\)
\(930\) −6.12927e152 −0.813836
\(931\) −7.36399e152 −0.925134
\(932\) −6.67873e152 −0.793916
\(933\) 2.21966e152 0.249679
\(934\) 1.51513e153 1.61282
\(935\) 9.73227e151 0.0980429
\(936\) −4.32867e153 −4.12713
\(937\) 4.71217e152 0.425238 0.212619 0.977135i \(-0.431801\pi\)
0.212619 + 0.977135i \(0.431801\pi\)
\(938\) −8.06692e151 −0.0689067
\(939\) 5.52464e152 0.446710
\(940\) 1.80366e153 1.38061
\(941\) −2.36978e153 −1.71729 −0.858644 0.512572i \(-0.828693\pi\)
−0.858644 + 0.512572i \(0.828693\pi\)
\(942\) −6.86219e152 −0.470805
\(943\) 2.25059e152 0.146199
\(944\) −4.42878e153 −2.72412
\(945\) 5.29956e152 0.308675
\(946\) −3.30550e153 −1.82324
\(947\) 7.71500e152 0.403007 0.201503 0.979488i \(-0.435417\pi\)
0.201503 + 0.979488i \(0.435417\pi\)
\(948\) 1.52563e154 7.54778
\(949\) 1.59559e153 0.747672
\(950\) −6.31070e153 −2.80099
\(951\) −4.44657e153 −1.86951
\(952\) 3.18275e153 1.26765
\(953\) 2.70635e153 1.02117 0.510586 0.859826i \(-0.329428\pi\)
0.510586 + 0.859826i \(0.329428\pi\)
\(954\) −2.84630e153 −1.01751
\(955\) 8.44690e152 0.286104
\(956\) 2.58595e153 0.829924
\(957\) 4.82642e152 0.146778
\(958\) 9.06839e153 2.61340
\(959\) −1.32781e153 −0.362641
\(960\) −5.29285e153 −1.37000
\(961\) −1.01159e153 −0.248172
\(962\) 8.28448e152 0.192641
\(963\) −1.30404e154 −2.87433
\(964\) 1.40840e154 2.94280
\(965\) −1.32389e153 −0.262237
\(966\) −2.88567e153 −0.541906
\(967\) −7.05479e153 −1.25609 −0.628045 0.778177i \(-0.716144\pi\)
−0.628045 + 0.778177i \(0.716144\pi\)
\(968\) −1.29269e154 −2.18229
\(969\) −1.07692e154 −1.72388
\(970\) −1.15058e153 −0.174652
\(971\) 1.03219e154 1.48584 0.742918 0.669383i \(-0.233441\pi\)
0.742918 + 0.669383i \(0.233441\pi\)
\(972\) −2.23939e153 −0.305715
\(973\) 7.68145e153 0.994562
\(974\) 1.08338e154 1.33044
\(975\) 9.13727e153 1.06434
\(976\) −2.09821e154 −2.31837
\(977\) 6.20051e153 0.649916 0.324958 0.945728i \(-0.394650\pi\)
0.324958 + 0.945728i \(0.394650\pi\)
\(978\) 2.21183e154 2.19939
\(979\) 5.93760e153 0.560147
\(980\) 4.86832e153 0.435749
\(981\) −1.05530e154 −0.896233
\(982\) −4.39697e154 −3.54333
\(983\) 2.83564e153 0.216843 0.108421 0.994105i \(-0.465420\pi\)
0.108421 + 0.994105i \(0.465420\pi\)
\(984\) 4.25877e154 3.09056
\(985\) 2.94850e153 0.203065
\(986\) −2.83862e153 −0.185543
\(987\) 3.30294e154 2.04912
\(988\) −4.81911e154 −2.83782
\(989\) −7.93089e153 −0.443316
\(990\) −1.10672e154 −0.587254
\(991\) 2.99812e154 1.51027 0.755137 0.655566i \(-0.227570\pi\)
0.755137 + 0.655566i \(0.227570\pi\)
\(992\) 5.79599e154 2.77189
\(993\) −9.11611e153 −0.413927
\(994\) −2.08043e154 −0.896922
\(995\) −5.10566e153 −0.209008
\(996\) −7.63766e154 −2.96896
\(997\) −1.67081e154 −0.616773 −0.308387 0.951261i \(-0.599789\pi\)
−0.308387 + 0.951261i \(0.599789\pi\)
\(998\) −6.33212e154 −2.21986
\(999\) −7.49827e153 −0.249654
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))