Properties

Label 1.104.a.a.1.7
Level 1
Weight 104
Character 1.1
Self dual Yes
Analytic conductor 67.184
Analytic rank 0
Dimension 8
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 104 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(67.1843880807\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: multiple of \( 2^{104}\cdot 3^{40}\cdot 5^{12}\cdot 7^{8}\cdot 11\cdot 13^{3}\cdot 17^{2} \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-2.04878e14\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+5.46569e15 q^{2}\) \(-5.92176e24 q^{3}\) \(+1.97326e31 q^{4}\) \(+6.19706e35 q^{5}\) \(-3.23665e40 q^{6}\) \(+6.38506e43 q^{7}\) \(+5.24235e46 q^{8}\) \(+2.11521e49 q^{9}\) \(+O(q^{10})\) \(q\)\(+5.46569e15 q^{2}\) \(-5.92176e24 q^{3}\) \(+1.97326e31 q^{4}\) \(+6.19706e35 q^{5}\) \(-3.23665e40 q^{6}\) \(+6.38506e43 q^{7}\) \(+5.24235e46 q^{8}\) \(+2.11521e49 q^{9}\) \(+3.38712e51 q^{10}\) \(-3.56369e53 q^{11}\) \(-1.16852e56 q^{12}\) \(-1.22872e57 q^{13}\) \(+3.48988e59 q^{14}\) \(-3.66975e60 q^{15}\) \(+8.64183e61 q^{16}\) \(+1.95760e63 q^{17}\) \(+1.15611e65 q^{18}\) \(-1.27427e65 q^{19}\) \(+1.22284e67 q^{20}\) \(-3.78108e68 q^{21}\) \(-1.94780e69 q^{22}\) \(+1.72828e70 q^{23}\) \(-3.10439e71 q^{24}\) \(-6.02041e71 q^{25}\) \(-6.71578e72 q^{26}\) \(-4.28550e73 q^{27}\) \(+1.25994e75 q^{28}\) \(+5.38742e74 q^{29}\) \(-2.00577e76 q^{30}\) \(+4.50113e76 q^{31}\) \(-5.93010e76 q^{32}\) \(+2.11033e78 q^{33}\) \(+1.06996e79 q^{34}\) \(+3.95686e79 q^{35}\) \(+4.17385e80 q^{36}\) \(+2.11547e80 q^{37}\) \(-6.96479e80 q^{38}\) \(+7.27616e81 q^{39}\) \(+3.24871e82 q^{40}\) \(+1.19842e83 q^{41}\) \(-2.06662e84 q^{42}\) \(+1.22330e84 q^{43}\) \(-7.03208e84 q^{44}\) \(+1.31081e85 q^{45}\) \(+9.44625e85 q^{46}\) \(+1.73935e85 q^{47}\) \(-5.11749e86 q^{48}\) \(+2.96748e87 q^{49}\) \(-3.29057e87 q^{50}\) \(-1.15924e88 q^{51}\) \(-2.42457e88 q^{52}\) \(+8.89924e88 q^{53}\) \(-2.34232e89 q^{54}\) \(-2.20844e89 q^{55}\) \(+3.34727e90 q^{56}\) \(+7.54594e89 q^{57}\) \(+2.94460e90 q^{58}\) \(-2.03072e91 q^{59}\) \(-7.24136e91 q^{60}\) \(-2.35768e91 q^{61}\) \(+2.46018e92 q^{62}\) \(+1.35057e93 q^{63}\) \(-1.20051e93 q^{64}\) \(-7.61442e92 q^{65}\) \(+1.15344e94 q^{66}\) \(-5.83119e93 q^{67}\) \(+3.86284e94 q^{68}\) \(-1.02345e95 q^{69}\) \(+2.16270e95 q^{70}\) \(-1.13221e94 q^{71}\) \(+1.10886e96 q^{72}\) \(+1.69770e96 q^{73}\) \(+1.15625e96 q^{74}\) \(+3.56514e96 q^{75}\) \(-2.51447e96 q^{76}\) \(-2.27544e97 q^{77}\) \(+3.97692e97 q^{78}\) \(+4.56875e96 q^{79}\) \(+5.35540e97 q^{80}\) \(-4.05580e97 q^{81}\) \(+6.55017e98 q^{82}\) \(-4.40271e98 q^{83}\) \(-7.46105e99 q^{84}\) \(+1.21313e99 q^{85}\) \(+6.68618e99 q^{86}\) \(-3.19030e99 q^{87}\) \(-1.86821e100 q^{88}\) \(-4.93939e99 q^{89}\) \(+7.16446e100 q^{90}\) \(-7.84542e100 q^{91}\) \(+3.41034e101 q^{92}\) \(-2.66546e101 q^{93}\) \(+9.50676e100 q^{94}\) \(-7.89675e100 q^{95}\) \(+3.51167e101 q^{96}\) \(-2.79258e101 q^{97}\) \(+1.62193e103 q^{98}\) \(-7.53794e102 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(8q \) \(\mathstrut +\mathstrut 4388929556680440q^{2} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!40\)\(q^{3} \) \(\mathstrut +\mathstrut \)\(48\!\cdots\!64\)\(q^{4} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!20\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!36\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{7} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{8} \) \(\mathstrut +\mathstrut \)\(35\!\cdots\!16\)\(q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 4388929556680440q^{2} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!40\)\(q^{3} \) \(\mathstrut +\mathstrut \)\(48\!\cdots\!64\)\(q^{4} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!20\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!36\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{7} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{8} \) \(\mathstrut +\mathstrut \)\(35\!\cdots\!16\)\(q^{9} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!20\)\(q^{10} \) \(\mathstrut -\mathstrut \)\(53\!\cdots\!44\)\(q^{11} \) \(\mathstrut +\mathstrut \)\(25\!\cdots\!80\)\(q^{12} \) \(\mathstrut -\mathstrut \)\(15\!\cdots\!20\)\(q^{13} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!08\)\(q^{14} \) \(\mathstrut -\mathstrut \)\(30\!\cdots\!60\)\(q^{15} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!88\)\(q^{16} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!20\)\(q^{17} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!40\)\(q^{18} \) \(\mathstrut +\mathstrut \)\(14\!\cdots\!00\)\(q^{19} \) \(\mathstrut +\mathstrut \)\(25\!\cdots\!60\)\(q^{20} \) \(\mathstrut -\mathstrut \)\(46\!\cdots\!04\)\(q^{21} \) \(\mathstrut -\mathstrut \)\(13\!\cdots\!20\)\(q^{22} \) \(\mathstrut +\mathstrut \)\(40\!\cdots\!20\)\(q^{23} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{24} \) \(\mathstrut -\mathstrut \)\(36\!\cdots\!00\)\(q^{25} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!84\)\(q^{26} \) \(\mathstrut +\mathstrut \)\(63\!\cdots\!20\)\(q^{27} \) \(\mathstrut +\mathstrut \)\(51\!\cdots\!80\)\(q^{28} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!00\)\(q^{29} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!60\)\(q^{30} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!36\)\(q^{31} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!40\)\(q^{32} \) \(\mathstrut +\mathstrut \)\(16\!\cdots\!80\)\(q^{33} \) \(\mathstrut -\mathstrut \)\(16\!\cdots\!32\)\(q^{34} \) \(\mathstrut -\mathstrut \)\(15\!\cdots\!80\)\(q^{35} \) \(\mathstrut +\mathstrut \)\(80\!\cdots\!28\)\(q^{36} \) \(\mathstrut -\mathstrut \)\(92\!\cdots\!40\)\(q^{37} \) \(\mathstrut +\mathstrut \)\(19\!\cdots\!20\)\(q^{38} \) \(\mathstrut -\mathstrut \)\(78\!\cdots\!08\)\(q^{39} \) \(\mathstrut +\mathstrut \)\(19\!\cdots\!00\)\(q^{40} \) \(\mathstrut +\mathstrut \)\(22\!\cdots\!76\)\(q^{41} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!80\)\(q^{42} \) \(\mathstrut +\mathstrut \)\(96\!\cdots\!00\)\(q^{43} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!48\)\(q^{44} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!60\)\(q^{45} \) \(\mathstrut +\mathstrut \)\(27\!\cdots\!96\)\(q^{46} \) \(\mathstrut -\mathstrut \)\(29\!\cdots\!20\)\(q^{47} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!20\)\(q^{48} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!44\)\(q^{49} \) \(\mathstrut -\mathstrut \)\(65\!\cdots\!00\)\(q^{50} \) \(\mathstrut -\mathstrut \)\(20\!\cdots\!84\)\(q^{51} \) \(\mathstrut -\mathstrut \)\(36\!\cdots\!00\)\(q^{52} \) \(\mathstrut +\mathstrut \)\(16\!\cdots\!40\)\(q^{53} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!00\)\(q^{54} \) \(\mathstrut -\mathstrut \)\(60\!\cdots\!60\)\(q^{55} \) \(\mathstrut -\mathstrut \)\(50\!\cdots\!00\)\(q^{56} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!40\)\(q^{57} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{58} \) \(\mathstrut -\mathstrut \)\(37\!\cdots\!00\)\(q^{59} \) \(\mathstrut -\mathstrut \)\(44\!\cdots\!80\)\(q^{60} \) \(\mathstrut +\mathstrut \)\(56\!\cdots\!56\)\(q^{61} \) \(\mathstrut +\mathstrut \)\(70\!\cdots\!80\)\(q^{62} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!60\)\(q^{63} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!04\)\(q^{64} \) \(\mathstrut +\mathstrut \)\(51\!\cdots\!40\)\(q^{65} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!52\)\(q^{66} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!20\)\(q^{67} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!40\)\(q^{68} \) \(\mathstrut +\mathstrut \)\(14\!\cdots\!52\)\(q^{69} \) \(\mathstrut +\mathstrut \)\(85\!\cdots\!20\)\(q^{70} \) \(\mathstrut +\mathstrut \)\(13\!\cdots\!96\)\(q^{71} \) \(\mathstrut +\mathstrut \)\(56\!\cdots\!60\)\(q^{72} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!20\)\(q^{73} \) \(\mathstrut +\mathstrut \)\(94\!\cdots\!88\)\(q^{74} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!00\)\(q^{75} \) \(\mathstrut +\mathstrut \)\(62\!\cdots\!00\)\(q^{76} \) \(\mathstrut +\mathstrut \)\(37\!\cdots\!00\)\(q^{77} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!00\)\(q^{78} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!00\)\(q^{79} \) \(\mathstrut -\mathstrut \)\(25\!\cdots\!80\)\(q^{80} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!32\)\(q^{81} \) \(\mathstrut -\mathstrut \)\(34\!\cdots\!20\)\(q^{82} \) \(\mathstrut -\mathstrut \)\(25\!\cdots\!40\)\(q^{83} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!32\)\(q^{84} \) \(\mathstrut -\mathstrut \)\(77\!\cdots\!80\)\(q^{85} \) \(\mathstrut -\mathstrut \)\(22\!\cdots\!44\)\(q^{86} \) \(\mathstrut -\mathstrut \)\(19\!\cdots\!40\)\(q^{87} \) \(\mathstrut -\mathstrut \)\(40\!\cdots\!40\)\(q^{88} \) \(\mathstrut -\mathstrut \)\(24\!\cdots\!00\)\(q^{89} \) \(\mathstrut +\mathstrut \)\(19\!\cdots\!40\)\(q^{90} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!76\)\(q^{91} \) \(\mathstrut +\mathstrut \)\(77\!\cdots\!20\)\(q^{92} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{93} \) \(\mathstrut +\mathstrut \)\(72\!\cdots\!48\)\(q^{94} \) \(\mathstrut +\mathstrut \)\(27\!\cdots\!00\)\(q^{95} \) \(\mathstrut +\mathstrut \)\(88\!\cdots\!96\)\(q^{96} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!80\)\(q^{97} \) \(\mathstrut +\mathstrut \)\(88\!\cdots\!20\)\(q^{98} \) \(\mathstrut -\mathstrut \)\(72\!\cdots\!88\)\(q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.46569e15 1.71633 0.858164 0.513376i \(-0.171605\pi\)
0.858164 + 0.513376i \(0.171605\pi\)
\(3\) −5.92176e24 −1.58747 −0.793736 0.608262i \(-0.791867\pi\)
−0.793736 + 0.608262i \(0.791867\pi\)
\(4\) 1.97326e31 1.94578
\(5\) 6.19706e35 0.624066 0.312033 0.950071i \(-0.398990\pi\)
0.312033 + 0.950071i \(0.398990\pi\)
\(6\) −3.23665e40 −2.72462
\(7\) 6.38506e43 1.91697 0.958487 0.285137i \(-0.0920392\pi\)
0.958487 + 0.285137i \(0.0920392\pi\)
\(8\) 5.24235e46 1.62327
\(9\) 2.11521e49 1.52007
\(10\) 3.38712e51 1.07110
\(11\) −3.56369e53 −0.832103 −0.416051 0.909341i \(-0.636586\pi\)
−0.416051 + 0.909341i \(0.636586\pi\)
\(12\) −1.16852e56 −3.08888
\(13\) −1.22872e57 −0.526464 −0.263232 0.964733i \(-0.584788\pi\)
−0.263232 + 0.964733i \(0.584788\pi\)
\(14\) 3.48988e59 3.29016
\(15\) −3.66975e60 −0.990688
\(16\) 8.64183e61 0.840285
\(17\) 1.95760e63 0.838694 0.419347 0.907826i \(-0.362259\pi\)
0.419347 + 0.907826i \(0.362259\pi\)
\(18\) 1.15611e65 2.60894
\(19\) −1.27427e65 −0.177604 −0.0888019 0.996049i \(-0.528304\pi\)
−0.0888019 + 0.996049i \(0.528304\pi\)
\(20\) 1.22284e67 1.21430
\(21\) −3.78108e68 −3.04314
\(22\) −1.94780e69 −1.42816
\(23\) 1.72828e70 1.28419 0.642097 0.766623i \(-0.278065\pi\)
0.642097 + 0.766623i \(0.278065\pi\)
\(24\) −3.10439e71 −2.57690
\(25\) −6.02041e71 −0.610542
\(26\) −6.71578e72 −0.903585
\(27\) −4.28550e73 −0.825596
\(28\) 1.25994e75 3.73001
\(29\) 5.38742e74 0.261748 0.130874 0.991399i \(-0.458222\pi\)
0.130874 + 0.991399i \(0.458222\pi\)
\(30\) −2.00577e76 −1.70035
\(31\) 4.50113e76 0.705009 0.352505 0.935810i \(-0.385330\pi\)
0.352505 + 0.935810i \(0.385330\pi\)
\(32\) −5.93010e76 −0.181067
\(33\) 2.11033e78 1.32094
\(34\) 1.06996e79 1.43947
\(35\) 3.95686e79 1.19632
\(36\) 4.17385e80 2.95772
\(37\) 2.11547e80 0.365611 0.182805 0.983149i \(-0.441482\pi\)
0.182805 + 0.983149i \(0.441482\pi\)
\(38\) −6.96479e80 −0.304826
\(39\) 7.27616e81 0.835747
\(40\) 3.24871e82 1.01303
\(41\) 1.19842e83 1.04770 0.523852 0.851809i \(-0.324494\pi\)
0.523852 + 0.851809i \(0.324494\pi\)
\(42\) −2.06662e84 −5.22303
\(43\) 1.22330e84 0.920254 0.460127 0.887853i \(-0.347804\pi\)
0.460127 + 0.887853i \(0.347804\pi\)
\(44\) −7.03208e84 −1.61909
\(45\) 1.31081e85 0.948624
\(46\) 9.44625e85 2.20410
\(47\) 1.73935e85 0.134075 0.0670375 0.997750i \(-0.478645\pi\)
0.0670375 + 0.997750i \(0.478645\pi\)
\(48\) −5.11749e86 −1.33393
\(49\) 2.96748e87 2.67479
\(50\) −3.29057e87 −1.04789
\(51\) −1.15924e88 −1.33140
\(52\) −2.42457e88 −1.02438
\(53\) 8.89924e88 1.40976 0.704881 0.709326i \(-0.251000\pi\)
0.704881 + 0.709326i \(0.251000\pi\)
\(54\) −2.34232e89 −1.41699
\(55\) −2.20844e89 −0.519287
\(56\) 3.34727e90 3.11177
\(57\) 7.54594e89 0.281941
\(58\) 2.94460e90 0.449246
\(59\) −2.03072e91 −1.28461 −0.642305 0.766449i \(-0.722022\pi\)
−0.642305 + 0.766449i \(0.722022\pi\)
\(60\) −7.24136e91 −1.92766
\(61\) −2.35768e91 −0.267916 −0.133958 0.990987i \(-0.542769\pi\)
−0.133958 + 0.990987i \(0.542769\pi\)
\(62\) 2.46018e92 1.21003
\(63\) 1.35057e93 2.91393
\(64\) −1.20051e93 −1.15106
\(65\) −7.61442e92 −0.328548
\(66\) 1.15344e94 2.26717
\(67\) −5.83119e93 −0.528330 −0.264165 0.964478i \(-0.585096\pi\)
−0.264165 + 0.964478i \(0.585096\pi\)
\(68\) 3.86284e94 1.63192
\(69\) −1.02345e95 −2.03862
\(70\) 2.16270e95 2.05327
\(71\) −1.13221e94 −0.0517754 −0.0258877 0.999665i \(-0.508241\pi\)
−0.0258877 + 0.999665i \(0.508241\pi\)
\(72\) 1.10886e96 2.46749
\(73\) 1.69770e96 1.85667 0.928334 0.371748i \(-0.121241\pi\)
0.928334 + 0.371748i \(0.121241\pi\)
\(74\) 1.15625e96 0.627508
\(75\) 3.56514e96 0.969218
\(76\) −2.51447e96 −0.345578
\(77\) −2.27544e97 −1.59512
\(78\) 3.97692e97 1.43442
\(79\) 4.56875e96 0.0855071 0.0427536 0.999086i \(-0.486387\pi\)
0.0427536 + 0.999086i \(0.486387\pi\)
\(80\) 5.35540e97 0.524394
\(81\) −4.05580e97 −0.209459
\(82\) 6.55017e98 1.79820
\(83\) −4.40271e98 −0.647438 −0.323719 0.946153i \(-0.604933\pi\)
−0.323719 + 0.946153i \(0.604933\pi\)
\(84\) −7.46105e99 −5.92129
\(85\) 1.21313e99 0.523401
\(86\) 6.68618e99 1.57946
\(87\) −3.19030e99 −0.415518
\(88\) −1.86821e100 −1.35073
\(89\) −4.93939e99 −0.199567 −0.0997834 0.995009i \(-0.531815\pi\)
−0.0997834 + 0.995009i \(0.531815\pi\)
\(90\) 7.16446e100 1.62815
\(91\) −7.84542e100 −1.00922
\(92\) 3.41034e101 2.49876
\(93\) −2.66546e101 −1.11918
\(94\) 9.50676e100 0.230117
\(95\) −7.89675e100 −0.110837
\(96\) 3.51167e101 0.287438
\(97\) −2.79258e101 −0.134048 −0.0670240 0.997751i \(-0.521350\pi\)
−0.0670240 + 0.997751i \(0.521350\pi\)
\(98\) 1.62193e103 4.59081
\(99\) −7.53794e102 −1.26485
\(100\) −1.18798e103 −1.18798
\(101\) −1.93439e103 −1.15876 −0.579380 0.815058i \(-0.696705\pi\)
−0.579380 + 0.815058i \(0.696705\pi\)
\(102\) −6.33606e103 −2.28513
\(103\) 5.36250e103 1.17017 0.585087 0.810971i \(-0.301061\pi\)
0.585087 + 0.810971i \(0.301061\pi\)
\(104\) −6.44135e103 −0.854594
\(105\) −2.34316e104 −1.89912
\(106\) 4.86405e104 2.41961
\(107\) 3.95193e104 1.21212 0.606058 0.795420i \(-0.292750\pi\)
0.606058 + 0.795420i \(0.292750\pi\)
\(108\) −8.45639e104 −1.60643
\(109\) 8.53955e104 1.00918 0.504592 0.863358i \(-0.331643\pi\)
0.504592 + 0.863358i \(0.331643\pi\)
\(110\) −1.20707e105 −0.891267
\(111\) −1.25273e105 −0.580397
\(112\) 5.51787e105 1.61080
\(113\) 3.04693e105 0.562759 0.281379 0.959597i \(-0.409208\pi\)
0.281379 + 0.959597i \(0.409208\pi\)
\(114\) 4.12438e105 0.483904
\(115\) 1.07103e106 0.801422
\(116\) 1.06308e106 0.509305
\(117\) −2.59899e106 −0.800262
\(118\) −1.10993e107 −2.20481
\(119\) 1.24994e107 1.60775
\(120\) −1.92381e107 −1.60816
\(121\) −5.64209e106 −0.307605
\(122\) −1.28864e107 −0.459832
\(123\) −7.09673e107 −1.66320
\(124\) 8.88190e107 1.37179
\(125\) −9.84166e107 −1.00508
\(126\) 7.38181e108 5.00126
\(127\) 1.65440e107 0.0746020 0.0373010 0.999304i \(-0.488124\pi\)
0.0373010 + 0.999304i \(0.488124\pi\)
\(128\) −5.96022e108 −1.79452
\(129\) −7.24409e108 −1.46088
\(130\) −4.16181e108 −0.563897
\(131\) 1.13774e109 1.03889 0.519446 0.854503i \(-0.326138\pi\)
0.519446 + 0.854503i \(0.326138\pi\)
\(132\) 4.16423e109 2.57026
\(133\) −8.13632e108 −0.340462
\(134\) −3.18715e109 −0.906787
\(135\) −2.65575e109 −0.515226
\(136\) 1.02624e110 1.36143
\(137\) −1.51469e110 −1.37789 −0.688943 0.724815i \(-0.741925\pi\)
−0.688943 + 0.724815i \(0.741925\pi\)
\(138\) −5.59384e110 −3.49895
\(139\) −2.07034e109 −0.0892853 −0.0446427 0.999003i \(-0.514215\pi\)
−0.0446427 + 0.999003i \(0.514215\pi\)
\(140\) 7.80791e110 2.32777
\(141\) −1.03000e110 −0.212840
\(142\) −6.18833e109 −0.0888635
\(143\) 4.37876e110 0.438072
\(144\) 1.82793e111 1.27729
\(145\) 3.33862e110 0.163348
\(146\) 9.27911e111 3.18665
\(147\) −1.75727e112 −4.24615
\(148\) 4.17437e111 0.711399
\(149\) −5.24925e111 −0.632419 −0.316209 0.948689i \(-0.602410\pi\)
−0.316209 + 0.948689i \(0.602410\pi\)
\(150\) 1.94860e112 1.66350
\(151\) −2.47519e112 −1.50071 −0.750355 0.661036i \(-0.770117\pi\)
−0.750355 + 0.661036i \(0.770117\pi\)
\(152\) −6.68018e111 −0.288299
\(153\) 4.14072e112 1.27487
\(154\) −1.24368e113 −2.73775
\(155\) 2.78938e112 0.439972
\(156\) 1.43577e113 1.62618
\(157\) −4.05697e112 −0.330651 −0.165325 0.986239i \(-0.552867\pi\)
−0.165325 + 0.986239i \(0.552867\pi\)
\(158\) 2.49714e112 0.146758
\(159\) −5.26992e113 −2.23796
\(160\) −3.67492e112 −0.112998
\(161\) 1.10352e114 2.46177
\(162\) −2.21678e113 −0.359500
\(163\) 4.69441e113 0.554523 0.277262 0.960794i \(-0.410573\pi\)
0.277262 + 0.960794i \(0.410573\pi\)
\(164\) 2.36478e114 2.03860
\(165\) 1.30779e114 0.824354
\(166\) −2.40639e114 −1.11122
\(167\) 2.39699e114 0.812395 0.406198 0.913785i \(-0.366854\pi\)
0.406198 + 0.913785i \(0.366854\pi\)
\(168\) −1.98217e115 −4.93985
\(169\) −3.93736e114 −0.722836
\(170\) 6.63062e114 0.898327
\(171\) −2.69535e114 −0.269970
\(172\) 2.41389e115 1.79061
\(173\) 2.38070e115 1.31018 0.655089 0.755552i \(-0.272631\pi\)
0.655089 + 0.755552i \(0.272631\pi\)
\(174\) −1.74372e115 −0.713165
\(175\) −3.84407e115 −1.17039
\(176\) −3.07968e115 −0.699204
\(177\) 1.20254e116 2.03928
\(178\) −2.69972e115 −0.342522
\(179\) −2.35520e115 −0.223922 −0.111961 0.993713i \(-0.535713\pi\)
−0.111961 + 0.993713i \(0.535713\pi\)
\(180\) 2.58656e116 1.84581
\(181\) −1.24792e116 −0.669485 −0.334743 0.942310i \(-0.608649\pi\)
−0.334743 + 0.942310i \(0.608649\pi\)
\(182\) −4.28807e116 −1.73215
\(183\) 1.39616e116 0.425309
\(184\) 9.06024e116 2.08460
\(185\) 1.31097e116 0.228165
\(186\) −1.45686e117 −1.92088
\(187\) −6.97627e116 −0.697880
\(188\) 3.43219e116 0.260881
\(189\) −2.73632e117 −1.58265
\(190\) −4.31612e116 −0.190232
\(191\) 8.62903e116 0.290231 0.145115 0.989415i \(-0.453645\pi\)
0.145115 + 0.989415i \(0.453645\pi\)
\(192\) 7.10912e117 1.82727
\(193\) −6.94577e117 −1.36622 −0.683108 0.730318i \(-0.739372\pi\)
−0.683108 + 0.730318i \(0.739372\pi\)
\(194\) −1.52634e117 −0.230070
\(195\) 4.50908e117 0.521561
\(196\) 5.85560e118 5.20455
\(197\) −2.26547e118 −1.54935 −0.774673 0.632362i \(-0.782085\pi\)
−0.774673 + 0.632362i \(0.782085\pi\)
\(198\) −4.12001e118 −2.17090
\(199\) 2.10252e118 0.854688 0.427344 0.904089i \(-0.359449\pi\)
0.427344 + 0.904089i \(0.359449\pi\)
\(200\) −3.15610e118 −0.991075
\(201\) 3.45309e118 0.838709
\(202\) −1.05728e119 −1.98881
\(203\) 3.43990e118 0.501764
\(204\) −2.28748e119 −2.59062
\(205\) 7.42665e118 0.653837
\(206\) 2.93098e119 2.00840
\(207\) 3.65567e119 1.95206
\(208\) −1.06184e119 −0.442380
\(209\) 4.54112e118 0.147785
\(210\) −1.28070e120 −3.25952
\(211\) −9.06808e119 −1.80704 −0.903522 0.428541i \(-0.859028\pi\)
−0.903522 + 0.428541i \(0.859028\pi\)
\(212\) 1.75605e120 2.74309
\(213\) 6.70469e118 0.0821920
\(214\) 2.16000e120 2.08039
\(215\) 7.58087e119 0.574299
\(216\) −2.24661e120 −1.34017
\(217\) 2.87400e120 1.35148
\(218\) 4.66745e120 1.73209
\(219\) −1.00534e121 −2.94741
\(220\) −4.35782e120 −1.01042
\(221\) −2.40533e120 −0.441542
\(222\) −6.84705e120 −0.996151
\(223\) 1.09411e121 1.26288 0.631438 0.775427i \(-0.282465\pi\)
0.631438 + 0.775427i \(0.282465\pi\)
\(224\) −3.78641e120 −0.347100
\(225\) −1.27344e121 −0.928066
\(226\) 1.66536e121 0.965879
\(227\) −3.83836e120 −0.177343 −0.0886714 0.996061i \(-0.528262\pi\)
−0.0886714 + 0.996061i \(0.528262\pi\)
\(228\) 1.48901e121 0.548596
\(229\) −3.29523e121 −0.969077 −0.484538 0.874770i \(-0.661012\pi\)
−0.484538 + 0.874770i \(0.661012\pi\)
\(230\) 5.85390e121 1.37550
\(231\) 1.34746e122 2.53221
\(232\) 2.82427e121 0.424889
\(233\) −7.31322e121 −0.881614 −0.440807 0.897602i \(-0.645308\pi\)
−0.440807 + 0.897602i \(0.645308\pi\)
\(234\) −1.42053e122 −1.37351
\(235\) 1.07789e121 0.0836717
\(236\) −4.00713e122 −2.49957
\(237\) −2.70550e121 −0.135740
\(238\) 6.83177e122 2.75943
\(239\) 6.15769e121 0.200413 0.100207 0.994967i \(-0.468050\pi\)
0.100207 + 0.994967i \(0.468050\pi\)
\(240\) −3.17134e122 −0.832460
\(241\) −4.32197e122 −0.915807 −0.457904 0.889002i \(-0.651399\pi\)
−0.457904 + 0.889002i \(0.651399\pi\)
\(242\) −3.08379e122 −0.527952
\(243\) 8.36510e122 1.15811
\(244\) −4.65231e122 −0.521306
\(245\) 1.83896e123 1.66924
\(246\) −3.87885e123 −2.85460
\(247\) 1.56572e122 0.0935020
\(248\) 2.35965e123 1.14442
\(249\) 2.60718e123 1.02779
\(250\) −5.37914e123 −1.72505
\(251\) −1.94705e123 −0.508372 −0.254186 0.967155i \(-0.581808\pi\)
−0.254186 + 0.967155i \(0.581808\pi\)
\(252\) 2.66503e124 5.66988
\(253\) −6.15906e123 −1.06858
\(254\) 9.04247e122 0.128041
\(255\) −7.18389e123 −0.830884
\(256\) −2.04021e124 −1.92893
\(257\) −3.00208e123 −0.232202 −0.116101 0.993237i \(-0.537040\pi\)
−0.116101 + 0.993237i \(0.537040\pi\)
\(258\) −3.95940e124 −2.50735
\(259\) 1.35074e124 0.700866
\(260\) −1.50252e124 −0.639283
\(261\) 1.13955e124 0.397875
\(262\) 6.21853e124 1.78308
\(263\) −5.66843e124 −1.33580 −0.667901 0.744250i \(-0.732807\pi\)
−0.667901 + 0.744250i \(0.732807\pi\)
\(264\) 1.10631e125 2.14425
\(265\) 5.51491e124 0.879784
\(266\) −4.44706e124 −0.584344
\(267\) 2.92499e124 0.316807
\(268\) −1.15064e125 −1.02801
\(269\) −3.93115e124 −0.289919 −0.144960 0.989438i \(-0.546305\pi\)
−0.144960 + 0.989438i \(0.546305\pi\)
\(270\) −1.45155e125 −0.884297
\(271\) 3.30250e125 1.66312 0.831561 0.555433i \(-0.187447\pi\)
0.831561 + 0.555433i \(0.187447\pi\)
\(272\) 1.69172e125 0.704743
\(273\) 4.64587e125 1.60210
\(274\) −8.27881e125 −2.36491
\(275\) 2.14549e125 0.508033
\(276\) −2.01952e126 −3.96672
\(277\) 1.15206e126 1.87830 0.939150 0.343506i \(-0.111615\pi\)
0.939150 + 0.343506i \(0.111615\pi\)
\(278\) −1.13159e125 −0.153243
\(279\) 9.52083e125 1.07166
\(280\) 2.07432e126 1.94195
\(281\) −2.15165e126 −1.67647 −0.838234 0.545310i \(-0.816412\pi\)
−0.838234 + 0.545310i \(0.816412\pi\)
\(282\) −5.62968e125 −0.365304
\(283\) −2.99134e126 −1.61757 −0.808787 0.588102i \(-0.799875\pi\)
−0.808787 + 0.588102i \(0.799875\pi\)
\(284\) −2.23415e125 −0.100744
\(285\) 4.67627e125 0.175950
\(286\) 2.39330e126 0.751875
\(287\) 7.65196e126 2.00842
\(288\) −1.25434e126 −0.275234
\(289\) −1.61584e126 −0.296592
\(290\) 1.82478e126 0.280359
\(291\) 1.65370e126 0.212798
\(292\) 3.35000e127 3.61267
\(293\) 1.40475e127 1.27033 0.635164 0.772377i \(-0.280932\pi\)
0.635164 + 0.772377i \(0.280932\pi\)
\(294\) −9.60469e127 −7.28779
\(295\) −1.25845e127 −0.801681
\(296\) 1.10900e127 0.593486
\(297\) 1.52722e127 0.686980
\(298\) −2.86908e127 −1.08544
\(299\) −2.12356e127 −0.676082
\(300\) 7.03494e127 1.88589
\(301\) 7.81085e127 1.76410
\(302\) −1.35286e128 −2.57571
\(303\) 1.14550e128 1.83950
\(304\) −1.10121e127 −0.149238
\(305\) −1.46107e127 −0.167197
\(306\) 2.26319e128 2.18810
\(307\) 2.10008e128 1.71637 0.858183 0.513344i \(-0.171593\pi\)
0.858183 + 0.513344i \(0.171593\pi\)
\(308\) −4.49003e128 −3.10375
\(309\) −3.17554e128 −1.85762
\(310\) 1.52459e128 0.755137
\(311\) −1.65679e128 −0.695195 −0.347598 0.937644i \(-0.613002\pi\)
−0.347598 + 0.937644i \(0.613002\pi\)
\(312\) 3.81441e128 1.35664
\(313\) 5.41792e127 0.163418 0.0817089 0.996656i \(-0.473962\pi\)
0.0817089 + 0.996656i \(0.473962\pi\)
\(314\) −2.21741e128 −0.567505
\(315\) 8.36958e128 1.81849
\(316\) 9.01532e127 0.166378
\(317\) 4.88808e128 0.766630 0.383315 0.923618i \(-0.374782\pi\)
0.383315 + 0.923618i \(0.374782\pi\)
\(318\) −2.88037e129 −3.84107
\(319\) −1.91991e128 −0.217801
\(320\) −7.43962e128 −0.718334
\(321\) −2.34024e129 −1.92420
\(322\) 6.03149e129 4.22520
\(323\) −2.49451e128 −0.148955
\(324\) −8.00314e128 −0.407561
\(325\) 7.39736e128 0.321428
\(326\) 2.56582e129 0.951744
\(327\) −5.05692e129 −1.60205
\(328\) 6.28251e129 1.70071
\(329\) 1.11059e129 0.257018
\(330\) 7.14796e129 1.41486
\(331\) −7.05139e129 −1.19435 −0.597177 0.802109i \(-0.703711\pi\)
−0.597177 + 0.802109i \(0.703711\pi\)
\(332\) −8.68768e129 −1.25977
\(333\) 4.47466e129 0.555753
\(334\) 1.31012e130 1.39434
\(335\) −3.61362e129 −0.329713
\(336\) −3.26755e130 −2.55711
\(337\) 1.99757e129 0.134141 0.0670705 0.997748i \(-0.478635\pi\)
0.0670705 + 0.997748i \(0.478635\pi\)
\(338\) −2.15204e130 −1.24062
\(339\) −1.80432e130 −0.893364
\(340\) 2.39383e130 1.01842
\(341\) −1.60407e130 −0.586640
\(342\) −1.47320e130 −0.463357
\(343\) 1.18638e131 3.21052
\(344\) 6.41296e130 1.49382
\(345\) −6.34236e130 −1.27224
\(346\) 1.30122e131 2.24870
\(347\) −2.46045e130 −0.366477 −0.183238 0.983068i \(-0.558658\pi\)
−0.183238 + 0.983068i \(0.558658\pi\)
\(348\) −6.29528e130 −0.808508
\(349\) −1.20918e131 −1.33962 −0.669812 0.742530i \(-0.733625\pi\)
−0.669812 + 0.742530i \(0.733625\pi\)
\(350\) −2.10105e131 −2.00878
\(351\) 5.26566e130 0.434646
\(352\) 2.11331e130 0.150666
\(353\) −1.23149e130 −0.0758635 −0.0379317 0.999280i \(-0.512077\pi\)
−0.0379317 + 0.999280i \(0.512077\pi\)
\(354\) 6.57273e131 3.50008
\(355\) −7.01639e129 −0.0323112
\(356\) −9.74669e130 −0.388313
\(357\) −7.40183e131 −2.55227
\(358\) −1.28728e131 −0.384323
\(359\) 1.31777e131 0.340781 0.170391 0.985377i \(-0.445497\pi\)
0.170391 + 0.985377i \(0.445497\pi\)
\(360\) 6.87170e131 1.53987
\(361\) −4.98541e131 −0.968457
\(362\) −6.82076e131 −1.14906
\(363\) 3.34111e131 0.488315
\(364\) −1.54810e132 −1.96372
\(365\) 1.05208e132 1.15868
\(366\) 7.63100e131 0.729970
\(367\) −6.40615e131 −0.532470 −0.266235 0.963908i \(-0.585780\pi\)
−0.266235 + 0.963908i \(0.585780\pi\)
\(368\) 1.49355e132 1.07909
\(369\) 2.53490e132 1.59258
\(370\) 7.16537e131 0.391606
\(371\) 5.68222e132 2.70248
\(372\) −5.25965e132 −2.17769
\(373\) −3.80510e132 −1.37202 −0.686011 0.727591i \(-0.740640\pi\)
−0.686011 + 0.727591i \(0.740640\pi\)
\(374\) −3.81301e132 −1.19779
\(375\) 5.82799e132 1.59554
\(376\) 9.11829e131 0.217640
\(377\) −6.61960e131 −0.137801
\(378\) −1.49559e133 −2.71634
\(379\) −5.26510e132 −0.834617 −0.417308 0.908765i \(-0.637027\pi\)
−0.417308 + 0.908765i \(0.637027\pi\)
\(380\) −1.55823e132 −0.215664
\(381\) −9.79699e131 −0.118429
\(382\) 4.71636e132 0.498131
\(383\) 1.46375e133 1.35124 0.675618 0.737252i \(-0.263877\pi\)
0.675618 + 0.737252i \(0.263877\pi\)
\(384\) 3.52950e133 2.84875
\(385\) −1.41010e133 −0.995459
\(386\) −3.79635e133 −2.34487
\(387\) 2.58753e133 1.39885
\(388\) −5.51047e132 −0.260828
\(389\) −3.22076e133 −1.33522 −0.667612 0.744509i \(-0.732683\pi\)
−0.667612 + 0.744509i \(0.732683\pi\)
\(390\) 2.46452e133 0.895170
\(391\) 3.38327e133 1.07705
\(392\) 1.55565e134 4.34191
\(393\) −6.73741e133 −1.64921
\(394\) −1.23824e134 −2.65919
\(395\) 2.83128e132 0.0533621
\(396\) −1.48743e134 −2.46113
\(397\) −2.68348e133 −0.389930 −0.194965 0.980810i \(-0.562459\pi\)
−0.194965 + 0.980810i \(0.562459\pi\)
\(398\) 1.14918e134 1.46693
\(399\) 4.81813e133 0.540474
\(400\) −5.20273e133 −0.513029
\(401\) 1.39476e134 1.20939 0.604694 0.796458i \(-0.293295\pi\)
0.604694 + 0.796458i \(0.293295\pi\)
\(402\) 1.88735e134 1.43950
\(403\) −5.53061e133 −0.371162
\(404\) −3.81705e134 −2.25469
\(405\) −2.51340e133 −0.130716
\(406\) 1.88014e134 0.861192
\(407\) −7.53890e133 −0.304226
\(408\) −6.07715e134 −2.16123
\(409\) −4.04437e134 −1.26795 −0.633973 0.773355i \(-0.718577\pi\)
−0.633973 + 0.773355i \(0.718577\pi\)
\(410\) 4.05918e134 1.12220
\(411\) 8.96961e134 2.18736
\(412\) 1.05816e135 2.27690
\(413\) −1.29663e135 −2.46256
\(414\) 1.99808e135 3.35038
\(415\) −2.72839e134 −0.404044
\(416\) 7.28641e133 0.0953250
\(417\) 1.22601e134 0.141738
\(418\) 2.48204e134 0.253647
\(419\) −2.74924e134 −0.248422 −0.124211 0.992256i \(-0.539640\pi\)
−0.124211 + 0.992256i \(0.539640\pi\)
\(420\) −4.62366e135 −3.69528
\(421\) 1.15484e135 0.816568 0.408284 0.912855i \(-0.366127\pi\)
0.408284 + 0.912855i \(0.366127\pi\)
\(422\) −4.95633e135 −3.10148
\(423\) 3.67909e134 0.203803
\(424\) 4.66529e135 2.28843
\(425\) −1.17855e135 −0.512058
\(426\) 3.66458e134 0.141068
\(427\) −1.50539e135 −0.513588
\(428\) 7.79817e135 2.35852
\(429\) −2.59300e135 −0.695427
\(430\) 4.14347e135 0.985686
\(431\) −4.81180e135 −1.01561 −0.507806 0.861471i \(-0.669543\pi\)
−0.507806 + 0.861471i \(0.669543\pi\)
\(432\) −3.70346e135 −0.693736
\(433\) 6.41557e134 0.106686 0.0533432 0.998576i \(-0.483012\pi\)
0.0533432 + 0.998576i \(0.483012\pi\)
\(434\) 1.57084e136 2.31959
\(435\) −1.97705e135 −0.259311
\(436\) 1.68507e136 1.96365
\(437\) −2.20230e135 −0.228078
\(438\) −5.49487e136 −5.05872
\(439\) 1.00426e136 0.822098 0.411049 0.911613i \(-0.365163\pi\)
0.411049 + 0.911613i \(0.365163\pi\)
\(440\) −1.15774e136 −0.842944
\(441\) 6.27682e136 4.06586
\(442\) −1.31468e136 −0.757831
\(443\) −2.40052e136 −1.23172 −0.615861 0.787855i \(-0.711192\pi\)
−0.615861 + 0.787855i \(0.711192\pi\)
\(444\) −2.47196e136 −1.12933
\(445\) −3.06097e135 −0.124543
\(446\) 5.98007e136 2.16751
\(447\) 3.10848e136 1.00395
\(448\) −7.66531e136 −2.20654
\(449\) −9.47948e135 −0.243275 −0.121638 0.992575i \(-0.538815\pi\)
−0.121638 + 0.992575i \(0.538815\pi\)
\(450\) −6.96023e136 −1.59286
\(451\) −4.27078e136 −0.871797
\(452\) 6.01237e136 1.09501
\(453\) 1.46575e137 2.38233
\(454\) −2.09793e136 −0.304379
\(455\) −4.86186e136 −0.629818
\(456\) 3.95585e136 0.457667
\(457\) 1.10926e137 1.14643 0.573217 0.819404i \(-0.305695\pi\)
0.573217 + 0.819404i \(0.305695\pi\)
\(458\) −1.80107e137 −1.66325
\(459\) −8.38928e136 −0.692422
\(460\) 2.11341e137 1.55939
\(461\) −1.18544e137 −0.782133 −0.391066 0.920362i \(-0.627894\pi\)
−0.391066 + 0.920362i \(0.627894\pi\)
\(462\) 7.36480e137 4.34610
\(463\) −3.53347e137 −1.86544 −0.932719 0.360605i \(-0.882570\pi\)
−0.932719 + 0.360605i \(0.882570\pi\)
\(464\) 4.65572e136 0.219943
\(465\) −1.65180e137 −0.698444
\(466\) −3.99718e137 −1.51314
\(467\) 3.17223e137 1.07534 0.537669 0.843156i \(-0.319305\pi\)
0.537669 + 0.843156i \(0.319305\pi\)
\(468\) −5.12847e137 −1.55713
\(469\) −3.72325e137 −1.01279
\(470\) 5.89140e136 0.143608
\(471\) 2.40244e137 0.524899
\(472\) −1.06457e138 −2.08527
\(473\) −4.35946e137 −0.765745
\(474\) −1.47875e137 −0.232975
\(475\) 7.67164e136 0.108435
\(476\) 2.46645e138 3.12834
\(477\) 1.88237e138 2.14294
\(478\) 3.36560e137 0.343975
\(479\) 1.95693e138 1.79596 0.897978 0.440040i \(-0.145036\pi\)
0.897978 + 0.440040i \(0.145036\pi\)
\(480\) 2.17620e137 0.179380
\(481\) −2.59931e137 −0.192481
\(482\) −2.36225e138 −1.57183
\(483\) −6.53477e138 −3.90799
\(484\) −1.11333e138 −0.598533
\(485\) −1.73058e137 −0.0836548
\(486\) 4.57211e138 1.98769
\(487\) 3.20001e138 1.25144 0.625721 0.780047i \(-0.284805\pi\)
0.625721 + 0.780047i \(0.284805\pi\)
\(488\) −1.23598e138 −0.434901
\(489\) −2.77992e138 −0.880291
\(490\) 1.00512e139 2.86497
\(491\) −3.24959e137 −0.0833934 −0.0416967 0.999130i \(-0.513276\pi\)
−0.0416967 + 0.999130i \(0.513276\pi\)
\(492\) −1.40037e139 −3.23623
\(493\) 1.05464e138 0.219527
\(494\) 8.55774e137 0.160480
\(495\) −4.67131e138 −0.789352
\(496\) 3.88981e138 0.592409
\(497\) −7.22925e137 −0.0992520
\(498\) 1.42500e139 1.76403
\(499\) −1.01921e138 −0.113785 −0.0568925 0.998380i \(-0.518119\pi\)
−0.0568925 + 0.998380i \(0.518119\pi\)
\(500\) −1.94201e139 −1.95567
\(501\) −1.41944e139 −1.28966
\(502\) −1.06420e139 −0.872533
\(503\) 1.93830e139 1.43440 0.717201 0.696867i \(-0.245423\pi\)
0.717201 + 0.696867i \(0.245423\pi\)
\(504\) 7.08017e139 4.73011
\(505\) −1.19875e139 −0.723143
\(506\) −3.36635e139 −1.83404
\(507\) 2.33161e139 1.14748
\(508\) 3.26457e138 0.145159
\(509\) −2.32735e139 −0.935181 −0.467590 0.883945i \(-0.654878\pi\)
−0.467590 + 0.883945i \(0.654878\pi\)
\(510\) −3.92649e139 −1.42607
\(511\) 1.08399e140 3.55918
\(512\) −5.10679e139 −1.51616
\(513\) 5.46090e138 0.146629
\(514\) −1.64084e139 −0.398535
\(515\) 3.32317e139 0.730265
\(516\) −1.42945e140 −2.84255
\(517\) −6.19852e138 −0.111564
\(518\) 7.38274e139 1.20292
\(519\) −1.40979e140 −2.07987
\(520\) −3.99174e139 −0.533323
\(521\) −3.97205e139 −0.480697 −0.240349 0.970687i \(-0.577262\pi\)
−0.240349 + 0.970687i \(0.577262\pi\)
\(522\) 6.22843e139 0.682885
\(523\) 3.44897e139 0.342651 0.171326 0.985214i \(-0.445195\pi\)
0.171326 + 0.985214i \(0.445195\pi\)
\(524\) 2.24505e140 2.02146
\(525\) 2.27636e140 1.85797
\(526\) −3.09819e140 −2.29267
\(527\) 8.81140e139 0.591287
\(528\) 1.82371e140 1.10997
\(529\) 1.17575e140 0.649154
\(530\) 3.01428e140 1.51000
\(531\) −4.29539e140 −1.95270
\(532\) −1.60550e140 −0.662464
\(533\) −1.47251e140 −0.551579
\(534\) 1.59871e140 0.543744
\(535\) 2.44903e140 0.756441
\(536\) −3.05691e140 −0.857623
\(537\) 1.39469e140 0.355469
\(538\) −2.14864e140 −0.497596
\(539\) −1.05752e141 −2.22570
\(540\) −5.24048e140 −1.00252
\(541\) −6.95481e140 −1.20956 −0.604778 0.796394i \(-0.706738\pi\)
−0.604778 + 0.796394i \(0.706738\pi\)
\(542\) 1.80504e141 2.85446
\(543\) 7.38990e140 1.06279
\(544\) −1.16087e140 −0.151860
\(545\) 5.29201e140 0.629797
\(546\) 2.53929e141 2.74974
\(547\) −1.02308e141 −1.00824 −0.504119 0.863634i \(-0.668183\pi\)
−0.504119 + 0.863634i \(0.668183\pi\)
\(548\) −2.98887e141 −2.68107
\(549\) −4.98698e140 −0.407251
\(550\) 1.17266e141 0.871952
\(551\) −6.86505e139 −0.0464875
\(552\) −5.36526e141 −3.30924
\(553\) 2.91718e140 0.163915
\(554\) 6.29678e141 3.22378
\(555\) −7.76326e140 −0.362206
\(556\) −4.08532e140 −0.173730
\(557\) 3.38589e141 1.31260 0.656298 0.754502i \(-0.272122\pi\)
0.656298 + 0.754502i \(0.272122\pi\)
\(558\) 5.20379e141 1.83932
\(559\) −1.50309e141 −0.484480
\(560\) 3.41945e141 1.00525
\(561\) 4.13118e141 1.10786
\(562\) −1.17602e142 −2.87737
\(563\) −2.18776e141 −0.488447 −0.244223 0.969719i \(-0.578533\pi\)
−0.244223 + 0.969719i \(0.578533\pi\)
\(564\) −2.03246e141 −0.414141
\(565\) 1.88820e141 0.351199
\(566\) −1.63497e142 −2.77629
\(567\) −2.58965e141 −0.401527
\(568\) −5.93545e140 −0.0840455
\(569\) −4.89513e140 −0.0633115 −0.0316557 0.999499i \(-0.510078\pi\)
−0.0316557 + 0.999499i \(0.510078\pi\)
\(570\) 2.55590e141 0.301988
\(571\) 2.61141e141 0.281913 0.140957 0.990016i \(-0.454982\pi\)
0.140957 + 0.990016i \(0.454982\pi\)
\(572\) 8.64043e141 0.852393
\(573\) −5.10991e141 −0.460734
\(574\) 4.18232e142 3.44711
\(575\) −1.04049e142 −0.784054
\(576\) −2.53932e142 −1.74968
\(577\) 6.21134e141 0.391409 0.195704 0.980663i \(-0.437301\pi\)
0.195704 + 0.980663i \(0.437301\pi\)
\(578\) −8.83168e141 −0.509049
\(579\) 4.11312e142 2.16883
\(580\) 6.58795e141 0.317840
\(581\) −2.81116e142 −1.24112
\(582\) 9.03859e141 0.365231
\(583\) −3.17142e142 −1.17307
\(584\) 8.89994e142 3.01388
\(585\) −1.61061e142 −0.499416
\(586\) 7.67792e142 2.18030
\(587\) 2.75624e142 0.716894 0.358447 0.933550i \(-0.383306\pi\)
0.358447 + 0.933550i \(0.383306\pi\)
\(588\) −3.46754e143 −8.26208
\(589\) −5.73568e141 −0.125212
\(590\) −6.87829e142 −1.37595
\(591\) 1.34156e143 2.45954
\(592\) 1.82816e142 0.307217
\(593\) 1.00808e143 1.55302 0.776511 0.630103i \(-0.216987\pi\)
0.776511 + 0.630103i \(0.216987\pi\)
\(594\) 8.34731e142 1.17908
\(595\) 7.74594e142 1.00335
\(596\) −1.03581e143 −1.23055
\(597\) −1.24506e143 −1.35679
\(598\) −1.16067e143 −1.16038
\(599\) 2.92686e142 0.268485 0.134242 0.990949i \(-0.457140\pi\)
0.134242 + 0.990949i \(0.457140\pi\)
\(600\) 1.86897e143 1.57330
\(601\) −5.29667e142 −0.409230 −0.204615 0.978843i \(-0.565594\pi\)
−0.204615 + 0.978843i \(0.565594\pi\)
\(602\) 4.26917e143 3.02778
\(603\) −1.23342e143 −0.803098
\(604\) −4.88420e143 −2.92005
\(605\) −3.49644e142 −0.191966
\(606\) 6.26095e143 3.15718
\(607\) −3.80314e143 −1.76167 −0.880836 0.473422i \(-0.843019\pi\)
−0.880836 + 0.473422i \(0.843019\pi\)
\(608\) 7.55658e141 0.0321581
\(609\) −2.03703e143 −0.796537
\(610\) −7.98576e142 −0.286965
\(611\) −2.13717e142 −0.0705857
\(612\) 8.17070e143 2.48063
\(613\) 6.11504e142 0.170681 0.0853405 0.996352i \(-0.472802\pi\)
0.0853405 + 0.996352i \(0.472802\pi\)
\(614\) 1.14784e144 2.94585
\(615\) −4.39789e143 −1.03795
\(616\) −1.19286e144 −2.58931
\(617\) −1.36805e143 −0.273159 −0.136579 0.990629i \(-0.543611\pi\)
−0.136579 + 0.990629i \(0.543611\pi\)
\(618\) −1.73565e144 −3.18828
\(619\) 1.10561e144 1.86867 0.934336 0.356392i \(-0.115993\pi\)
0.934336 + 0.356392i \(0.115993\pi\)
\(620\) 5.50417e143 0.856090
\(621\) −7.40654e143 −1.06023
\(622\) −9.05549e143 −1.19318
\(623\) −3.15383e143 −0.382564
\(624\) 6.28794e143 0.702266
\(625\) −1.62356e142 −0.0166973
\(626\) 2.96127e143 0.280478
\(627\) −2.68914e143 −0.234604
\(628\) −8.00544e143 −0.643374
\(629\) 4.14124e143 0.306636
\(630\) 4.57455e144 3.12112
\(631\) 4.05438e143 0.254925 0.127463 0.991843i \(-0.459317\pi\)
0.127463 + 0.991843i \(0.459317\pi\)
\(632\) 2.39510e143 0.138801
\(633\) 5.36990e144 2.86863
\(634\) 2.67167e144 1.31579
\(635\) 1.02524e143 0.0465565
\(636\) −1.03989e145 −4.35458
\(637\) −3.64618e144 −1.40818
\(638\) −1.04936e144 −0.373819
\(639\) −2.39486e143 −0.0787021
\(640\) −3.69358e144 −1.11990
\(641\) 5.08331e144 1.42219 0.711096 0.703095i \(-0.248199\pi\)
0.711096 + 0.703095i \(0.248199\pi\)
\(642\) −1.27910e145 −3.30256
\(643\) −1.25760e143 −0.0299694 −0.0149847 0.999888i \(-0.504770\pi\)
−0.0149847 + 0.999888i \(0.504770\pi\)
\(644\) 2.17752e145 4.79006
\(645\) −4.48921e144 −0.911684
\(646\) −1.36342e144 −0.255656
\(647\) −2.02257e144 −0.350214 −0.175107 0.984549i \(-0.556027\pi\)
−0.175107 + 0.984549i \(0.556027\pi\)
\(648\) −2.12619e144 −0.340008
\(649\) 7.23685e144 1.06893
\(650\) 4.04317e144 0.551676
\(651\) −1.70192e145 −2.14544
\(652\) 9.26329e144 1.07898
\(653\) 7.57644e143 0.0815523 0.0407762 0.999168i \(-0.487017\pi\)
0.0407762 + 0.999168i \(0.487017\pi\)
\(654\) −2.76395e145 −2.74965
\(655\) 7.05063e144 0.648337
\(656\) 1.03565e145 0.880371
\(657\) 3.59099e145 2.82226
\(658\) 6.07013e144 0.441128
\(659\) −1.16386e145 −0.782170 −0.391085 0.920355i \(-0.627900\pi\)
−0.391085 + 0.920355i \(0.627900\pi\)
\(660\) 2.58060e145 1.60401
\(661\) −1.78883e145 −1.02847 −0.514236 0.857648i \(-0.671925\pi\)
−0.514236 + 0.857648i \(0.671925\pi\)
\(662\) −3.85407e145 −2.04990
\(663\) 1.42438e145 0.700936
\(664\) −2.30805e145 −1.05097
\(665\) −5.04213e144 −0.212471
\(666\) 2.44571e145 0.953855
\(667\) 9.31097e144 0.336135
\(668\) 4.72987e145 1.58074
\(669\) −6.47906e145 −2.00478
\(670\) −1.97510e145 −0.565895
\(671\) 8.40205e144 0.222934
\(672\) 2.24222e145 0.551012
\(673\) 2.26250e144 0.0515007 0.0257504 0.999668i \(-0.491802\pi\)
0.0257504 + 0.999668i \(0.491802\pi\)
\(674\) 1.09181e145 0.230230
\(675\) 2.58004e145 0.504061
\(676\) −7.76942e145 −1.40648
\(677\) −2.76550e145 −0.463934 −0.231967 0.972724i \(-0.574516\pi\)
−0.231967 + 0.972724i \(0.574516\pi\)
\(678\) −9.86184e145 −1.53331
\(679\) −1.78308e145 −0.256967
\(680\) 6.35967e145 0.849622
\(681\) 2.27298e145 0.281527
\(682\) −8.76733e145 −1.00687
\(683\) 8.88576e145 0.946299 0.473150 0.880982i \(-0.343117\pi\)
0.473150 + 0.880982i \(0.343117\pi\)
\(684\) −5.31862e145 −0.525303
\(685\) −9.38660e145 −0.859892
\(686\) 6.48437e146 5.51031
\(687\) 1.95136e146 1.53838
\(688\) 1.05716e146 0.773276
\(689\) −1.09346e146 −0.742189
\(690\) −3.46654e146 −2.18357
\(691\) −2.41484e146 −1.41179 −0.705894 0.708317i \(-0.749455\pi\)
−0.705894 + 0.708317i \(0.749455\pi\)
\(692\) 4.69773e146 2.54932
\(693\) −4.81302e146 −2.42469
\(694\) −1.34481e146 −0.628995
\(695\) −1.28300e145 −0.0557199
\(696\) −1.67247e146 −0.674499
\(697\) 2.34601e146 0.878704
\(698\) −6.60903e146 −2.29924
\(699\) 4.33071e146 1.39954
\(700\) −7.58533e146 −2.27733
\(701\) 2.26703e146 0.632381 0.316191 0.948696i \(-0.397596\pi\)
0.316191 + 0.948696i \(0.397596\pi\)
\(702\) 2.87805e146 0.745996
\(703\) −2.69569e145 −0.0649338
\(704\) 4.27824e146 0.957796
\(705\) −6.38299e145 −0.132826
\(706\) −6.73093e145 −0.130207
\(707\) −1.23512e147 −2.22131
\(708\) 2.37293e147 3.96800
\(709\) 1.10202e147 1.71359 0.856797 0.515653i \(-0.172451\pi\)
0.856797 + 0.515653i \(0.172451\pi\)
\(710\) −3.83494e145 −0.0554567
\(711\) 9.66385e145 0.129977
\(712\) −2.58940e146 −0.323951
\(713\) 7.77922e146 0.905368
\(714\) −4.04561e147 −4.38053
\(715\) 2.71355e146 0.273386
\(716\) −4.64741e146 −0.435703
\(717\) −3.64644e146 −0.318150
\(718\) 7.20253e146 0.584893
\(719\) 6.75590e146 0.510676 0.255338 0.966852i \(-0.417813\pi\)
0.255338 + 0.966852i \(0.417813\pi\)
\(720\) 1.13278e147 0.797115
\(721\) 3.42399e147 2.24319
\(722\) −2.72487e147 −1.66219
\(723\) 2.55937e147 1.45382
\(724\) −2.46247e147 −1.30267
\(725\) −3.24344e146 −0.159808
\(726\) 1.82615e147 0.838109
\(727\) −2.29340e147 −0.980524 −0.490262 0.871575i \(-0.663099\pi\)
−0.490262 + 0.871575i \(0.663099\pi\)
\(728\) −4.11284e147 −1.63823
\(729\) −4.38924e147 −1.62900
\(730\) 5.75032e147 1.98868
\(731\) 2.39473e147 0.771812
\(732\) 2.75499e147 0.827559
\(733\) −3.45294e147 −0.966795 −0.483398 0.875401i \(-0.660597\pi\)
−0.483398 + 0.875401i \(0.660597\pi\)
\(734\) −3.50140e147 −0.913893
\(735\) −1.08899e148 −2.64988
\(736\) −1.02489e147 −0.232525
\(737\) 2.07806e147 0.439624
\(738\) 1.38550e148 2.73340
\(739\) 7.06279e146 0.129953 0.0649767 0.997887i \(-0.479303\pi\)
0.0649767 + 0.997887i \(0.479303\pi\)
\(740\) 2.58688e147 0.443960
\(741\) −9.27182e146 −0.148432
\(742\) 3.10573e148 4.63833
\(743\) −2.95242e146 −0.0411391 −0.0205696 0.999788i \(-0.506548\pi\)
−0.0205696 + 0.999788i \(0.506548\pi\)
\(744\) −1.39733e148 −1.81674
\(745\) −3.25299e147 −0.394671
\(746\) −2.07975e148 −2.35484
\(747\) −9.31264e147 −0.984151
\(748\) −1.37660e148 −1.35792
\(749\) 2.52333e148 2.32360
\(750\) 3.18540e148 2.73848
\(751\) −9.39668e147 −0.754254 −0.377127 0.926161i \(-0.623088\pi\)
−0.377127 + 0.926161i \(0.623088\pi\)
\(752\) 1.50312e147 0.112661
\(753\) 1.15300e148 0.807026
\(754\) −3.61807e147 −0.236512
\(755\) −1.53389e148 −0.936542
\(756\) −5.39946e148 −3.07948
\(757\) −1.19425e148 −0.636293 −0.318146 0.948042i \(-0.603060\pi\)
−0.318146 + 0.948042i \(0.603060\pi\)
\(758\) −2.87774e148 −1.43248
\(759\) 3.64725e148 1.69634
\(760\) −4.13975e147 −0.179918
\(761\) −4.71353e148 −1.91441 −0.957207 0.289403i \(-0.906543\pi\)
−0.957207 + 0.289403i \(0.906543\pi\)
\(762\) −5.35473e147 −0.203262
\(763\) 5.45256e148 1.93458
\(764\) 1.70273e148 0.564726
\(765\) 2.56603e148 0.795605
\(766\) 8.00043e148 2.31916
\(767\) 2.49517e148 0.676301
\(768\) 1.20816e149 3.06213
\(769\) −6.97797e148 −1.65395 −0.826975 0.562238i \(-0.809941\pi\)
−0.826975 + 0.562238i \(0.809941\pi\)
\(770\) −7.70719e148 −1.70853
\(771\) 1.77776e148 0.368615
\(772\) −1.37058e149 −2.65836
\(773\) −3.33756e147 −0.0605598 −0.0302799 0.999541i \(-0.509640\pi\)
−0.0302799 + 0.999541i \(0.509640\pi\)
\(774\) 1.41426e149 2.40088
\(775\) −2.70987e148 −0.430437
\(776\) −1.46396e148 −0.217596
\(777\) −7.99878e148 −1.11261
\(778\) −1.76037e149 −2.29168
\(779\) −1.52711e148 −0.186076
\(780\) 8.89757e148 1.01484
\(781\) 4.03486e147 0.0430824
\(782\) 1.84919e149 1.84856
\(783\) −2.30878e148 −0.216098
\(784\) 2.56444e149 2.24758
\(785\) −2.51413e148 −0.206348
\(786\) −3.68246e149 −2.83059
\(787\) 1.77419e149 1.27732 0.638662 0.769487i \(-0.279488\pi\)
0.638662 + 0.769487i \(0.279488\pi\)
\(788\) −4.47036e149 −3.01469
\(789\) 3.35671e149 2.12055
\(790\) 1.54749e148 0.0915868
\(791\) 1.94548e149 1.07879
\(792\) −3.95165e149 −2.05320
\(793\) 2.89692e148 0.141048
\(794\) −1.46671e149 −0.669249
\(795\) −3.26580e149 −1.39663
\(796\) 4.14882e149 1.66304
\(797\) −1.62408e147 −0.00610243 −0.00305122 0.999995i \(-0.500971\pi\)
−0.00305122 + 0.999995i \(0.500971\pi\)
\(798\) 2.63344e149 0.927630
\(799\) 3.40495e148 0.112448
\(800\) 3.57016e148 0.110549
\(801\) −1.04478e149 −0.303355
\(802\) 7.62335e149 2.07571
\(803\) −6.05009e149 −1.54494
\(804\) 6.81384e149 1.63194
\(805\) 6.83857e149 1.53630
\(806\) −3.02286e149 −0.637036
\(807\) 2.32793e149 0.460239
\(808\) −1.01407e150 −1.88098
\(809\) −1.30934e149 −0.227879 −0.113940 0.993488i \(-0.536347\pi\)
−0.113940 + 0.993488i \(0.536347\pi\)
\(810\) −1.37375e149 −0.224352
\(811\) 3.22566e149 0.494361 0.247180 0.968969i \(-0.420496\pi\)
0.247180 + 0.968969i \(0.420496\pi\)
\(812\) 6.78781e149 0.976324
\(813\) −1.95566e150 −2.64016
\(814\) −4.12053e149 −0.522151
\(815\) 2.90916e149 0.346059
\(816\) −1.00180e150 −1.11876
\(817\) −1.55882e149 −0.163441
\(818\) −2.21053e150 −2.17621
\(819\) −1.65947e150 −1.53408
\(820\) 1.46547e150 1.27222
\(821\) 2.32957e150 1.89935 0.949673 0.313244i \(-0.101416\pi\)
0.949673 + 0.313244i \(0.101416\pi\)
\(822\) 4.90251e150 3.75422
\(823\) 7.76145e148 0.0558279 0.0279140 0.999610i \(-0.491114\pi\)
0.0279140 + 0.999610i \(0.491114\pi\)
\(824\) 2.81121e150 1.89951
\(825\) −1.27051e150 −0.806489
\(826\) −7.08696e150 −4.22656
\(827\) −3.93407e149 −0.220449 −0.110225 0.993907i \(-0.535157\pi\)
−0.110225 + 0.993907i \(0.535157\pi\)
\(828\) 7.21357e150 3.79829
\(829\) 9.35889e149 0.463091 0.231545 0.972824i \(-0.425622\pi\)
0.231545 + 0.972824i \(0.425622\pi\)
\(830\) −1.49125e150 −0.693472
\(831\) −6.82219e150 −2.98175
\(832\) 1.47508e150 0.605989
\(833\) 5.80912e150 2.24333
\(834\) 6.70098e149 0.243269
\(835\) 1.48543e150 0.506988
\(836\) 8.96080e149 0.287557
\(837\) −1.92896e150 −0.582053
\(838\) −1.50265e150 −0.426374
\(839\) 9.21861e148 0.0245994 0.0122997 0.999924i \(-0.496085\pi\)
0.0122997 + 0.999924i \(0.496085\pi\)
\(840\) −1.22836e151 −3.08279
\(841\) −3.94613e150 −0.931488
\(842\) 6.31198e150 1.40150
\(843\) 1.27415e151 2.66135
\(844\) −1.78937e151 −3.51611
\(845\) −2.44000e150 −0.451097
\(846\) 2.01088e150 0.349793
\(847\) −3.60251e150 −0.589671
\(848\) 7.69058e150 1.18460
\(849\) 1.77140e151 2.56785
\(850\) −6.44160e150 −0.878859
\(851\) 3.65613e150 0.469515
\(852\) 1.32301e150 0.159928
\(853\) −4.27610e150 −0.486600 −0.243300 0.969951i \(-0.578230\pi\)
−0.243300 + 0.969951i \(0.578230\pi\)
\(854\) −8.22802e150 −0.881485
\(855\) −1.67033e150 −0.168479
\(856\) 2.07174e151 1.96760
\(857\) −1.01859e151 −0.910936 −0.455468 0.890252i \(-0.650528\pi\)
−0.455468 + 0.890252i \(0.650528\pi\)
\(858\) −1.41725e151 −1.19358
\(859\) 2.16488e151 1.71706 0.858531 0.512761i \(-0.171377\pi\)
0.858531 + 0.512761i \(0.171377\pi\)
\(860\) 1.49590e151 1.11746
\(861\) −4.53131e151 −3.18831
\(862\) −2.62998e151 −1.74312
\(863\) 2.52627e151 1.57734 0.788668 0.614819i \(-0.210771\pi\)
0.788668 + 0.614819i \(0.210771\pi\)
\(864\) 2.54134e150 0.149488
\(865\) 1.47533e151 0.817638
\(866\) 3.50655e150 0.183109
\(867\) 9.56861e150 0.470831
\(868\) 5.67115e151 2.62969
\(869\) −1.62816e150 −0.0711507
\(870\) −1.08059e151 −0.445062
\(871\) 7.16487e150 0.278146
\(872\) 4.47673e151 1.63818
\(873\) −5.90687e150 −0.203762
\(874\) −1.20371e151 −0.391456
\(875\) −6.28396e151 −1.92672
\(876\) −1.98379e152 −5.73502
\(877\) −3.80409e151 −1.03698 −0.518492 0.855082i \(-0.673506\pi\)
−0.518492 + 0.855082i \(0.673506\pi\)
\(878\) 5.48898e151 1.41099
\(879\) −8.31858e151 −2.01661
\(880\) −1.90850e151 −0.436349
\(881\) 6.81368e150 0.146934 0.0734670 0.997298i \(-0.476594\pi\)
0.0734670 + 0.997298i \(0.476594\pi\)
\(882\) 3.43072e152 6.97835
\(883\) 5.85536e150 0.112351 0.0561755 0.998421i \(-0.482109\pi\)
0.0561755 + 0.998421i \(0.482109\pi\)
\(884\) −4.74633e151 −0.859145
\(885\) 7.45223e151 1.27265
\(886\) −1.31205e152 −2.11404
\(887\) 7.83937e151 1.19183 0.595916 0.803047i \(-0.296789\pi\)
0.595916 + 0.803047i \(0.296789\pi\)
\(888\) −6.56726e151 −0.942142
\(889\) 1.05635e151 0.143010
\(890\) −1.67303e151 −0.213756
\(891\) 1.44536e151 0.174291
\(892\) 2.15896e152 2.45728
\(893\) −2.21641e150 −0.0238122
\(894\) 1.69900e152 1.72310
\(895\) −1.45953e151 −0.139742
\(896\) −3.80564e152 −3.44005
\(897\) 1.25752e152 1.07326
\(898\) −5.18119e151 −0.417540
\(899\) 2.42495e151 0.184535
\(900\) −2.51282e152 −1.80581
\(901\) 1.74211e152 1.18236
\(902\) −2.33428e152 −1.49629
\(903\) −4.62540e152 −2.80046
\(904\) 1.59730e152 0.913511
\(905\) −7.73345e151 −0.417803
\(906\) 8.01134e152 4.08887
\(907\) 6.35683e151 0.306524 0.153262 0.988186i \(-0.451022\pi\)
0.153262 + 0.988186i \(0.451022\pi\)
\(908\) −7.57407e151 −0.345071
\(909\) −4.09163e152 −1.76140
\(910\) −2.65734e152 −1.08097
\(911\) 2.37237e151 0.0911981 0.0455991 0.998960i \(-0.485480\pi\)
0.0455991 + 0.998960i \(0.485480\pi\)
\(912\) 6.52108e151 0.236911
\(913\) 1.56899e152 0.538735
\(914\) 6.06287e152 1.96766
\(915\) 8.65211e151 0.265421
\(916\) −6.50233e152 −1.88561
\(917\) 7.26453e152 1.99153
\(918\) −4.58532e152 −1.18842
\(919\) 1.19403e152 0.292596 0.146298 0.989241i \(-0.453264\pi\)
0.146298 + 0.989241i \(0.453264\pi\)
\(920\) 5.61469e152 1.30093
\(921\) −1.24362e153 −2.72468
\(922\) −6.47923e152 −1.34240
\(923\) 1.39117e151 0.0272579
\(924\) 2.65889e153 4.92712
\(925\) −1.27360e152 −0.223220
\(926\) −1.93129e153 −3.20170
\(927\) 1.13428e153 1.77874
\(928\) −3.19479e151 −0.0473939
\(929\) 1.09422e153 1.53566 0.767831 0.640653i \(-0.221336\pi\)
0.767831 + 0.640653i \(0.221336\pi\)
\(930\) −9.02825e152 −1.19876
\(931\) −3.78138e152 −0.475052
\(932\) −1.44309e153 −1.71543
\(933\) 9.81110e152 1.10360
\(934\) 1.73384e153 1.84563
\(935\) −4.32324e152 −0.435523
\(936\) −1.36248e153 −1.29904
\(937\) 2.56796e152 0.231739 0.115870 0.993264i \(-0.463034\pi\)
0.115870 + 0.993264i \(0.463034\pi\)
\(938\) −2.03501e153 −1.73829
\(939\) −3.20836e152 −0.259421
\(940\) 2.12695e152 0.162807
\(941\) 3.66198e152 0.265369 0.132685 0.991158i \(-0.457640\pi\)
0.132685 + 0.991158i \(0.457640\pi\)
\(942\) 1.31310e153 0.900899
\(943\) 2.07120e153 1.34546
\(944\) −1.75491e153 −1.07944
\(945\) −1.69571e153 −0.987675
\(946\) −2.38275e153 −1.31427
\(947\) 2.25802e153 1.17952 0.589759 0.807579i \(-0.299223\pi\)
0.589759 + 0.807579i \(0.299223\pi\)
\(948\) −5.33866e152 −0.264121
\(949\) −2.08599e153 −0.977469
\(950\) 4.19308e152 0.186109
\(951\) −2.89460e153 −1.21700
\(952\) 6.55260e153 2.60982
\(953\) −4.64132e153 −1.75129 −0.875643 0.482959i \(-0.839562\pi\)
−0.875643 + 0.482959i \(0.839562\pi\)
\(954\) 1.02885e154 3.67798
\(955\) 5.34746e152 0.181123
\(956\) 1.21507e153 0.389960
\(957\) 1.13692e153 0.345754
\(958\) 1.06960e154 3.08245
\(959\) −9.67137e153 −2.64137
\(960\) 4.40556e153 1.14034
\(961\) −2.05017e153 −0.502962
\(962\) −1.42071e153 −0.330360
\(963\) 8.35914e153 1.84250
\(964\) −8.52836e153 −1.78196
\(965\) −4.30434e153 −0.852609
\(966\) −3.57170e154 −6.70738
\(967\) 4.61379e153 0.821476 0.410738 0.911753i \(-0.365271\pi\)
0.410738 + 0.911753i \(0.365271\pi\)
\(968\) −2.95778e153 −0.499327
\(969\) 1.47719e153 0.236462
\(970\) −9.45879e152 −0.143579
\(971\) 7.27672e153 1.04748 0.523740 0.851878i \(-0.324536\pi\)
0.523740 + 0.851878i \(0.324536\pi\)
\(972\) 1.65065e154 2.25342
\(973\) −1.32193e153 −0.171158
\(974\) 1.74903e154 2.14788
\(975\) −4.38054e153 −0.510258
\(976\) −2.03747e153 −0.225126
\(977\) −7.44751e153 −0.780623 −0.390311 0.920683i \(-0.627633\pi\)
−0.390311 + 0.920683i \(0.627633\pi\)
\(978\) −1.51942e154 −1.51087
\(979\) 1.76025e153 0.166060
\(980\) 3.62875e154 3.24798
\(981\) 1.80629e154 1.53403
\(982\) −1.77613e153 −0.143130
\(983\) 6.26048e152 0.0478742 0.0239371 0.999713i \(-0.492380\pi\)
0.0239371 + 0.999713i \(0.492380\pi\)
\(984\) −3.72035e154 −2.69983
\(985\) −1.40393e154 −0.966894
\(986\) 5.76433e153 0.376780
\(987\) −6.57663e153 −0.408009
\(988\) 3.08957e153 0.181935
\(989\) 2.11421e154 1.18178
\(990\) −2.55319e154 −1.35479
\(991\) −2.68132e153 −0.135069 −0.0675344 0.997717i \(-0.521513\pi\)
−0.0675344 + 0.997717i \(0.521513\pi\)
\(992\) −2.66922e153 −0.127654
\(993\) 4.17567e154 1.89601
\(994\) −3.95128e153 −0.170349
\(995\) 1.30295e154 0.533382
\(996\) 5.14464e154 1.99986
\(997\) −2.68784e154 −0.992206 −0.496103 0.868264i \(-0.665236\pi\)
−0.496103 + 0.868264i \(0.665236\pi\)
\(998\) −5.57068e153 −0.195293
\(999\) −9.06586e153 −0.301847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))