Properties

Label 1.104.a.a.1.4
Level 1
Weight 104
Character 1.1
Self dual Yes
Analytic conductor 67.184
Analytic rank 0
Dimension 8
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 104 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(67.1843880807\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: multiple of \( 2^{104}\cdot 3^{40}\cdot 5^{12}\cdot 7^{8}\cdot 11\cdot 13^{3}\cdot 17^{2} \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(8.06342e13\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.38660e15 q^{2} +4.94875e24 q^{3} -8.21853e30 q^{4} -1.47562e36 q^{5} -6.86195e39 q^{6} +3.27966e43 q^{7} +2.54577e46 q^{8} +1.05749e49 q^{9} +O(q^{10})\) \(q-1.38660e15 q^{2} +4.94875e24 q^{3} -8.21853e30 q^{4} -1.47562e36 q^{5} -6.86195e39 q^{6} +3.27966e43 q^{7} +2.54577e46 q^{8} +1.05749e49 q^{9} +2.04610e51 q^{10} -1.87140e52 q^{11} -4.06714e55 q^{12} -1.80976e57 q^{13} -4.54760e58 q^{14} -7.30247e60 q^{15} +4.80460e61 q^{16} +4.46350e61 q^{17} -1.46632e64 q^{18} -1.38718e66 q^{19} +1.21274e67 q^{20} +1.62302e68 q^{21} +2.59489e67 q^{22} +1.24176e70 q^{23} +1.25984e71 q^{24} +1.19138e72 q^{25} +2.50942e72 q^{26} -1.65303e73 q^{27} -2.69540e74 q^{28} -3.27288e75 q^{29} +1.01256e76 q^{30} +9.03121e76 q^{31} -3.24793e77 q^{32} -9.26107e76 q^{33} -6.18911e76 q^{34} -4.83954e79 q^{35} -8.69101e79 q^{36} +3.03788e80 q^{37} +1.92347e81 q^{38} -8.95602e81 q^{39} -3.75659e82 q^{40} +1.50080e83 q^{41} -2.25049e83 q^{42} +2.40163e84 q^{43} +1.53801e83 q^{44} -1.56045e85 q^{45} -1.72184e85 q^{46} -3.60725e84 q^{47} +2.37768e86 q^{48} -3.38056e85 q^{49} -1.65197e87 q^{50} +2.20887e86 q^{51} +1.48735e88 q^{52} -9.21270e87 q^{53} +2.29210e88 q^{54} +2.76147e88 q^{55} +8.34927e89 q^{56} -6.86481e90 q^{57} +4.53819e90 q^{58} +1.63460e91 q^{59} +6.00156e91 q^{60} -9.20037e91 q^{61} -1.25227e92 q^{62} +3.46821e92 q^{63} -3.68858e91 q^{64} +2.67051e93 q^{65} +1.28414e92 q^{66} +1.05409e94 q^{67} -3.66834e92 q^{68} +6.14518e94 q^{69} +6.71053e94 q^{70} +3.92423e95 q^{71} +2.69212e95 q^{72} +2.83774e95 q^{73} -4.21234e95 q^{74} +5.89582e96 q^{75} +1.14006e97 q^{76} -6.13755e95 q^{77} +1.24185e97 q^{78} +2.16532e97 q^{79} -7.08977e97 q^{80} -2.28956e98 q^{81} -2.08102e98 q^{82} +4.78462e98 q^{83} -1.33389e99 q^{84} -6.58643e97 q^{85} -3.33011e99 q^{86} -1.61966e100 q^{87} -4.76415e98 q^{88} +3.22127e100 q^{89} +2.16373e100 q^{90} -5.93539e100 q^{91} -1.02055e101 q^{92} +4.46932e101 q^{93} +5.00183e99 q^{94} +2.04695e102 q^{95} -1.60732e102 q^{96} +7.81604e101 q^{97} +4.68750e100 q^{98} -1.97898e101 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 4388929556680440q^{2} + \)\(50\!\cdots\!40\)\(q^{3} + \)\(48\!\cdots\!64\)\(q^{4} + \)\(55\!\cdots\!20\)\(q^{5} + \)\(26\!\cdots\!36\)\(q^{6} + \)\(41\!\cdots\!00\)\(q^{7} + \)\(10\!\cdots\!80\)\(q^{8} + \)\(35\!\cdots\!16\)\(q^{9} + O(q^{10}) \) \( 8q + 4388929556680440q^{2} + \)\(50\!\cdots\!40\)\(q^{3} + \)\(48\!\cdots\!64\)\(q^{4} + \)\(55\!\cdots\!20\)\(q^{5} + \)\(26\!\cdots\!36\)\(q^{6} + \)\(41\!\cdots\!00\)\(q^{7} + \)\(10\!\cdots\!80\)\(q^{8} + \)\(35\!\cdots\!16\)\(q^{9} + \)\(20\!\cdots\!20\)\(q^{10} - \)\(53\!\cdots\!44\)\(q^{11} + \)\(25\!\cdots\!80\)\(q^{12} - \)\(15\!\cdots\!20\)\(q^{13} + \)\(20\!\cdots\!08\)\(q^{14} - \)\(30\!\cdots\!60\)\(q^{15} + \)\(36\!\cdots\!88\)\(q^{16} + \)\(20\!\cdots\!20\)\(q^{17} + \)\(26\!\cdots\!40\)\(q^{18} + \)\(14\!\cdots\!00\)\(q^{19} + \)\(25\!\cdots\!60\)\(q^{20} - \)\(46\!\cdots\!04\)\(q^{21} - \)\(13\!\cdots\!20\)\(q^{22} + \)\(40\!\cdots\!20\)\(q^{23} + \)\(41\!\cdots\!00\)\(q^{24} - \)\(36\!\cdots\!00\)\(q^{25} - \)\(14\!\cdots\!84\)\(q^{26} + \)\(63\!\cdots\!20\)\(q^{27} + \)\(51\!\cdots\!80\)\(q^{28} - \)\(11\!\cdots\!00\)\(q^{29} - \)\(31\!\cdots\!60\)\(q^{30} + \)\(10\!\cdots\!36\)\(q^{31} + \)\(10\!\cdots\!40\)\(q^{32} + \)\(16\!\cdots\!80\)\(q^{33} - \)\(16\!\cdots\!32\)\(q^{34} - \)\(15\!\cdots\!80\)\(q^{35} + \)\(80\!\cdots\!28\)\(q^{36} - \)\(92\!\cdots\!40\)\(q^{37} + \)\(19\!\cdots\!20\)\(q^{38} - \)\(78\!\cdots\!08\)\(q^{39} + \)\(19\!\cdots\!00\)\(q^{40} + \)\(22\!\cdots\!76\)\(q^{41} - \)\(18\!\cdots\!80\)\(q^{42} + \)\(96\!\cdots\!00\)\(q^{43} + \)\(26\!\cdots\!48\)\(q^{44} - \)\(14\!\cdots\!60\)\(q^{45} + \)\(27\!\cdots\!96\)\(q^{46} - \)\(29\!\cdots\!20\)\(q^{47} + \)\(12\!\cdots\!20\)\(q^{48} + \)\(26\!\cdots\!44\)\(q^{49} - \)\(65\!\cdots\!00\)\(q^{50} - \)\(20\!\cdots\!84\)\(q^{51} - \)\(36\!\cdots\!00\)\(q^{52} + \)\(16\!\cdots\!40\)\(q^{53} + \)\(24\!\cdots\!00\)\(q^{54} - \)\(60\!\cdots\!60\)\(q^{55} - \)\(50\!\cdots\!00\)\(q^{56} + \)\(55\!\cdots\!40\)\(q^{57} + \)\(10\!\cdots\!80\)\(q^{58} - \)\(37\!\cdots\!00\)\(q^{59} - \)\(44\!\cdots\!80\)\(q^{60} + \)\(56\!\cdots\!56\)\(q^{61} + \)\(70\!\cdots\!80\)\(q^{62} + \)\(10\!\cdots\!60\)\(q^{63} + \)\(26\!\cdots\!04\)\(q^{64} + \)\(51\!\cdots\!40\)\(q^{65} + \)\(36\!\cdots\!52\)\(q^{66} + \)\(36\!\cdots\!20\)\(q^{67} + \)\(12\!\cdots\!40\)\(q^{68} + \)\(14\!\cdots\!52\)\(q^{69} + \)\(85\!\cdots\!20\)\(q^{70} + \)\(13\!\cdots\!96\)\(q^{71} + \)\(56\!\cdots\!60\)\(q^{72} + \)\(44\!\cdots\!20\)\(q^{73} + \)\(94\!\cdots\!88\)\(q^{74} + \)\(15\!\cdots\!00\)\(q^{75} + \)\(62\!\cdots\!00\)\(q^{76} + \)\(37\!\cdots\!00\)\(q^{77} + \)\(44\!\cdots\!00\)\(q^{78} + \)\(24\!\cdots\!00\)\(q^{79} - \)\(25\!\cdots\!80\)\(q^{80} - \)\(31\!\cdots\!32\)\(q^{81} - \)\(34\!\cdots\!20\)\(q^{82} - \)\(25\!\cdots\!40\)\(q^{83} - \)\(14\!\cdots\!32\)\(q^{84} - \)\(77\!\cdots\!80\)\(q^{85} - \)\(22\!\cdots\!44\)\(q^{86} - \)\(19\!\cdots\!40\)\(q^{87} - \)\(40\!\cdots\!40\)\(q^{88} - \)\(24\!\cdots\!00\)\(q^{89} + \)\(19\!\cdots\!40\)\(q^{90} + \)\(15\!\cdots\!76\)\(q^{91} + \)\(77\!\cdots\!20\)\(q^{92} + \)\(10\!\cdots\!80\)\(q^{93} + \)\(72\!\cdots\!48\)\(q^{94} + \)\(27\!\cdots\!00\)\(q^{95} + \)\(88\!\cdots\!96\)\(q^{96} + \)\(50\!\cdots\!80\)\(q^{97} + \)\(88\!\cdots\!20\)\(q^{98} - \)\(72\!\cdots\!88\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38660e15 −0.435420 −0.217710 0.976014i \(-0.569859\pi\)
−0.217710 + 0.976014i \(0.569859\pi\)
\(3\) 4.94875e24 1.32663 0.663316 0.748339i \(-0.269148\pi\)
0.663316 + 0.748339i \(0.269148\pi\)
\(4\) −8.21853e30 −0.810410
\(5\) −1.47562e36 −1.48600 −0.743001 0.669291i \(-0.766598\pi\)
−0.743001 + 0.669291i \(0.766598\pi\)
\(6\) −6.86195e39 −0.577642
\(7\) 3.27966e43 0.984647 0.492323 0.870412i \(-0.336148\pi\)
0.492323 + 0.870412i \(0.336148\pi\)
\(8\) 2.54577e46 0.788288
\(9\) 1.05749e49 0.759953
\(10\) 2.04610e51 0.647034
\(11\) −1.87140e52 −0.0436961 −0.0218480 0.999761i \(-0.506955\pi\)
−0.0218480 + 0.999761i \(0.506955\pi\)
\(12\) −4.06714e55 −1.07512
\(13\) −1.80976e57 −0.775421 −0.387710 0.921781i \(-0.626734\pi\)
−0.387710 + 0.921781i \(0.626734\pi\)
\(14\) −4.54760e58 −0.428734
\(15\) −7.30247e60 −1.97138
\(16\) 4.80460e61 0.467174
\(17\) 4.46350e61 0.0191230 0.00956151 0.999954i \(-0.496956\pi\)
0.00956151 + 0.999954i \(0.496956\pi\)
\(18\) −1.46632e64 −0.330898
\(19\) −1.38718e66 −1.93340 −0.966702 0.255904i \(-0.917627\pi\)
−0.966702 + 0.255904i \(0.917627\pi\)
\(20\) 1.21274e67 1.20427
\(21\) 1.62302e68 1.30626
\(22\) 2.59489e67 0.0190261
\(23\) 1.24176e70 0.922689 0.461345 0.887221i \(-0.347367\pi\)
0.461345 + 0.887221i \(0.347367\pi\)
\(24\) 1.25984e71 1.04577
\(25\) 1.19138e72 1.20820
\(26\) 2.50942e72 0.337633
\(27\) −1.65303e73 −0.318454
\(28\) −2.69540e74 −0.797967
\(29\) −3.27288e75 −1.59013 −0.795065 0.606524i \(-0.792563\pi\)
−0.795065 + 0.606524i \(0.792563\pi\)
\(30\) 1.01256e76 0.858376
\(31\) 9.03121e76 1.41455 0.707276 0.706938i \(-0.249924\pi\)
0.707276 + 0.706938i \(0.249924\pi\)
\(32\) −3.24793e77 −0.991704
\(33\) −9.26107e76 −0.0579686
\(34\) −6.18911e76 −0.00832653
\(35\) −4.83954e79 −1.46319
\(36\) −8.69101e79 −0.615873
\(37\) 3.03788e80 0.525027 0.262513 0.964928i \(-0.415449\pi\)
0.262513 + 0.964928i \(0.415449\pi\)
\(38\) 1.92347e81 0.841842
\(39\) −8.95602e81 −1.02870
\(40\) −3.75659e82 −1.17140
\(41\) 1.50080e83 1.31206 0.656031 0.754734i \(-0.272234\pi\)
0.656031 + 0.754734i \(0.272234\pi\)
\(42\) −2.25049e83 −0.568773
\(43\) 2.40163e84 1.80668 0.903338 0.428930i \(-0.141109\pi\)
0.903338 + 0.428930i \(0.141109\pi\)
\(44\) 1.53801e83 0.0354117
\(45\) −1.56045e85 −1.12929
\(46\) −1.72184e85 −0.401757
\(47\) −3.60725e84 −0.0278059 −0.0139029 0.999903i \(-0.504426\pi\)
−0.0139029 + 0.999903i \(0.504426\pi\)
\(48\) 2.37768e86 0.619768
\(49\) −3.38056e85 −0.0304712
\(50\) −1.65197e87 −0.526074
\(51\) 2.20887e86 0.0253692
\(52\) 1.48735e88 0.628408
\(53\) −9.21270e87 −0.145942 −0.0729709 0.997334i \(-0.523248\pi\)
−0.0729709 + 0.997334i \(0.523248\pi\)
\(54\) 2.29210e88 0.138661
\(55\) 2.76147e88 0.0649325
\(56\) 8.34927e89 0.776185
\(57\) −6.86481e90 −2.56492
\(58\) 4.53819e90 0.692374
\(59\) 1.63460e91 1.03403 0.517015 0.855977i \(-0.327043\pi\)
0.517015 + 0.855977i \(0.327043\pi\)
\(60\) 6.00156e91 1.59762
\(61\) −9.20037e91 −1.04549 −0.522744 0.852490i \(-0.675092\pi\)
−0.522744 + 0.852490i \(0.675092\pi\)
\(62\) −1.25227e92 −0.615923
\(63\) 3.46821e92 0.748285
\(64\) −3.68858e91 −0.0353664
\(65\) 2.67051e93 1.15228
\(66\) 1.28414e92 0.0252407
\(67\) 1.05409e94 0.955045 0.477522 0.878620i \(-0.341535\pi\)
0.477522 + 0.878620i \(0.341535\pi\)
\(68\) −3.66834e92 −0.0154975
\(69\) 6.14518e94 1.22407
\(70\) 6.71053e94 0.637100
\(71\) 3.92423e95 1.79452 0.897261 0.441500i \(-0.145553\pi\)
0.897261 + 0.441500i \(0.145553\pi\)
\(72\) 2.69212e95 0.599062
\(73\) 2.83774e95 0.310345 0.155173 0.987887i \(-0.450407\pi\)
0.155173 + 0.987887i \(0.450407\pi\)
\(74\) −4.21234e95 −0.228607
\(75\) 5.89582e96 1.60284
\(76\) 1.14006e97 1.56685
\(77\) −6.13755e95 −0.0430252
\(78\) 1.24185e97 0.447915
\(79\) 2.16532e97 0.405254 0.202627 0.979256i \(-0.435052\pi\)
0.202627 + 0.979256i \(0.435052\pi\)
\(80\) −7.08977e97 −0.694221
\(81\) −2.28956e98 −1.18242
\(82\) −2.08102e98 −0.571297
\(83\) 4.78462e98 0.703600 0.351800 0.936075i \(-0.385570\pi\)
0.351800 + 0.936075i \(0.385570\pi\)
\(84\) −1.33389e99 −1.05861
\(85\) −6.58643e97 −0.0284168
\(86\) −3.33011e99 −0.786662
\(87\) −1.61966e100 −2.10952
\(88\) −4.76415e98 −0.0344451
\(89\) 3.22127e100 1.30149 0.650747 0.759295i \(-0.274456\pi\)
0.650747 + 0.759295i \(0.274456\pi\)
\(90\) 2.16373e100 0.491716
\(91\) −5.93539e100 −0.763515
\(92\) −1.02055e101 −0.747757
\(93\) 4.46932e101 1.87659
\(94\) 5.00183e99 0.0121072
\(95\) 2.04695e102 2.87304
\(96\) −1.60732e102 −1.31563
\(97\) 7.81604e101 0.375182 0.187591 0.982247i \(-0.439932\pi\)
0.187591 + 0.982247i \(0.439932\pi\)
\(98\) 4.68750e100 0.0132678
\(99\) −1.97898e101 −0.0332070
\(100\) −9.79137e102 −0.979137
\(101\) 3.84808e101 0.0230512 0.0115256 0.999934i \(-0.496331\pi\)
0.0115256 + 0.999934i \(0.496331\pi\)
\(102\) −3.06284e101 −0.0110462
\(103\) 6.60422e102 0.144113 0.0720567 0.997401i \(-0.477044\pi\)
0.0720567 + 0.997401i \(0.477044\pi\)
\(104\) −4.60722e103 −0.611255
\(105\) −2.39496e104 −1.94111
\(106\) 1.27744e103 0.0635459
\(107\) −5.35561e103 −0.164265 −0.0821323 0.996621i \(-0.526173\pi\)
−0.0821323 + 0.996621i \(0.526173\pi\)
\(108\) 1.35855e104 0.258078
\(109\) 1.12941e105 1.33471 0.667356 0.744739i \(-0.267426\pi\)
0.667356 + 0.744739i \(0.267426\pi\)
\(110\) −3.82907e103 −0.0282729
\(111\) 1.50337e105 0.696517
\(112\) 1.57575e105 0.460001
\(113\) −2.39902e104 −0.0443092 −0.0221546 0.999755i \(-0.507053\pi\)
−0.0221546 + 0.999755i \(0.507053\pi\)
\(114\) 9.51877e105 1.11681
\(115\) −1.83237e106 −1.37112
\(116\) 2.68982e106 1.28866
\(117\) −1.91380e106 −0.589283
\(118\) −2.26654e106 −0.450237
\(119\) 1.46388e105 0.0188294
\(120\) −1.85904e107 −1.55401
\(121\) −1.83070e107 −0.998091
\(122\) 1.27573e107 0.455226
\(123\) 7.42708e107 1.74062
\(124\) −7.42233e107 −1.14637
\(125\) −3.02946e107 −0.309385
\(126\) −4.80904e107 −0.325818
\(127\) −9.06897e105 −0.00408946 −0.00204473 0.999998i \(-0.500651\pi\)
−0.00204473 + 0.999998i \(0.500651\pi\)
\(128\) 3.34493e108 1.00710
\(129\) 1.18850e109 2.39679
\(130\) −3.70294e108 −0.501723
\(131\) 5.86233e108 0.535302 0.267651 0.963516i \(-0.413753\pi\)
0.267651 + 0.963516i \(0.413753\pi\)
\(132\) 7.61124e107 0.0469784
\(133\) −4.54949e109 −1.90372
\(134\) −1.46160e109 −0.415845
\(135\) 2.43924e109 0.473223
\(136\) 1.13630e108 0.0150744
\(137\) −7.10352e109 −0.646196 −0.323098 0.946365i \(-0.604724\pi\)
−0.323098 + 0.946365i \(0.604724\pi\)
\(138\) −8.52093e109 −0.532984
\(139\) −1.49203e110 −0.643451 −0.321726 0.946833i \(-0.604263\pi\)
−0.321726 + 0.946833i \(0.604263\pi\)
\(140\) 3.97739e110 1.18578
\(141\) −1.78514e109 −0.0368882
\(142\) −5.44135e110 −0.781370
\(143\) 3.38677e109 0.0338829
\(144\) 5.08082e110 0.355030
\(145\) 4.82952e111 2.36294
\(146\) −3.93482e110 −0.135130
\(147\) −1.67295e110 −0.0404241
\(148\) −2.49669e111 −0.425487
\(149\) 3.48025e110 0.0419293 0.0209646 0.999780i \(-0.493326\pi\)
0.0209646 + 0.999780i \(0.493326\pi\)
\(150\) −8.17517e111 −0.697906
\(151\) 1.86956e112 1.13351 0.566757 0.823885i \(-0.308198\pi\)
0.566757 + 0.823885i \(0.308198\pi\)
\(152\) −3.53144e112 −1.52408
\(153\) 4.72011e110 0.0145326
\(154\) 8.51036e110 0.0187340
\(155\) −1.33266e113 −2.10202
\(156\) 7.36054e112 0.833667
\(157\) 5.49138e112 0.447558 0.223779 0.974640i \(-0.428161\pi\)
0.223779 + 0.974640i \(0.428161\pi\)
\(158\) −3.00244e112 −0.176455
\(159\) −4.55913e112 −0.193611
\(160\) 4.79270e113 1.47367
\(161\) 4.07257e113 0.908523
\(162\) 3.17471e113 0.514851
\(163\) −1.91395e113 −0.226083 −0.113042 0.993590i \(-0.536059\pi\)
−0.113042 + 0.993590i \(0.536059\pi\)
\(164\) −1.23344e114 −1.06331
\(165\) 1.36658e113 0.0861415
\(166\) −6.63438e113 −0.306361
\(167\) 1.92884e113 0.0653729 0.0326864 0.999466i \(-0.489594\pi\)
0.0326864 + 0.999466i \(0.489594\pi\)
\(168\) 4.13184e114 1.02971
\(169\) −2.17188e114 −0.398723
\(170\) 9.13278e112 0.0123732
\(171\) −1.46693e115 −1.46930
\(172\) −1.97378e115 −1.46415
\(173\) −5.88175e114 −0.323692 −0.161846 0.986816i \(-0.551745\pi\)
−0.161846 + 0.986816i \(0.551745\pi\)
\(174\) 2.24583e115 0.918525
\(175\) 3.90732e115 1.18965
\(176\) −8.99132e113 −0.0204137
\(177\) 8.08922e115 1.37178
\(178\) −4.46663e115 −0.566696
\(179\) −4.29767e115 −0.408604 −0.204302 0.978908i \(-0.565492\pi\)
−0.204302 + 0.978908i \(0.565492\pi\)
\(180\) 1.28246e116 0.915189
\(181\) 7.62899e115 0.409280 0.204640 0.978837i \(-0.434398\pi\)
0.204640 + 0.978837i \(0.434398\pi\)
\(182\) 8.23004e115 0.332449
\(183\) −4.55303e116 −1.38698
\(184\) 3.16125e116 0.727345
\(185\) −4.48275e116 −0.780190
\(186\) −6.19717e116 −0.817104
\(187\) −8.35298e113 −0.000835601 0
\(188\) 2.96463e115 0.0225342
\(189\) −5.42138e116 −0.313565
\(190\) −2.83831e117 −1.25098
\(191\) 4.26603e117 1.43485 0.717424 0.696637i \(-0.245321\pi\)
0.717424 + 0.696637i \(0.245321\pi\)
\(192\) −1.82539e116 −0.0469182
\(193\) 2.59015e117 0.509477 0.254738 0.967010i \(-0.418011\pi\)
0.254738 + 0.967010i \(0.418011\pi\)
\(194\) −1.08378e117 −0.163362
\(195\) 1.32157e118 1.52865
\(196\) 2.77832e116 0.0246942
\(197\) −8.46442e117 −0.578877 −0.289439 0.957197i \(-0.593469\pi\)
−0.289439 + 0.957197i \(0.593469\pi\)
\(198\) 2.74407e116 0.0144590
\(199\) −2.51940e118 −1.02415 −0.512076 0.858940i \(-0.671123\pi\)
−0.512076 + 0.858940i \(0.671123\pi\)
\(200\) 3.03297e118 0.952409
\(201\) 5.21640e118 1.26699
\(202\) −5.33576e116 −0.0100369
\(203\) −1.07339e119 −1.56572
\(204\) −1.81537e117 −0.0205595
\(205\) −2.21461e119 −1.94972
\(206\) −9.15744e117 −0.0627498
\(207\) 1.31315e119 0.701201
\(208\) −8.69516e118 −0.362256
\(209\) 2.59597e118 0.0844822
\(210\) 3.32087e119 0.845197
\(211\) 2.08083e119 0.414659 0.207329 0.978271i \(-0.433523\pi\)
0.207329 + 0.978271i \(0.433523\pi\)
\(212\) 7.57149e118 0.118273
\(213\) 1.94200e120 2.38067
\(214\) 7.42611e118 0.0715241
\(215\) −3.54389e120 −2.68472
\(216\) −4.20823e119 −0.251033
\(217\) 2.96193e120 1.39283
\(218\) −1.56605e120 −0.581160
\(219\) 1.40433e120 0.411714
\(220\) −2.26952e119 −0.0526219
\(221\) −8.07785e118 −0.0148284
\(222\) −2.08458e120 −0.303277
\(223\) −1.43517e121 −1.65654 −0.828271 0.560328i \(-0.810675\pi\)
−0.828271 + 0.560328i \(0.810675\pi\)
\(224\) −1.06521e121 −0.976478
\(225\) 1.25987e121 0.918175
\(226\) 3.32649e119 0.0192931
\(227\) 6.21977e120 0.287371 0.143685 0.989623i \(-0.454105\pi\)
0.143685 + 0.989623i \(0.454105\pi\)
\(228\) 5.64186e121 2.07863
\(229\) −3.79949e121 −1.11737 −0.558687 0.829379i \(-0.688695\pi\)
−0.558687 + 0.829379i \(0.688695\pi\)
\(230\) 2.54077e121 0.597011
\(231\) −3.03732e120 −0.0570786
\(232\) −8.33199e121 −1.25348
\(233\) 1.58774e122 1.91403 0.957017 0.290031i \(-0.0936657\pi\)
0.957017 + 0.290031i \(0.0936657\pi\)
\(234\) 2.65368e121 0.256585
\(235\) 5.32293e120 0.0413196
\(236\) −1.34340e122 −0.837987
\(237\) 1.07156e122 0.537622
\(238\) −2.02982e120 −0.00819869
\(239\) −4.28019e122 −1.39306 −0.696532 0.717526i \(-0.745274\pi\)
−0.696532 + 0.717526i \(0.745274\pi\)
\(240\) −3.50855e122 −0.920976
\(241\) 7.98661e121 0.169233 0.0846165 0.996414i \(-0.473033\pi\)
0.0846165 + 0.996414i \(0.473033\pi\)
\(242\) 2.53845e122 0.434588
\(243\) −9.03022e122 −1.25019
\(244\) 7.56136e122 0.847274
\(245\) 4.98842e121 0.0452803
\(246\) −1.02984e123 −0.757901
\(247\) 2.51046e123 1.49920
\(248\) 2.29914e123 1.11507
\(249\) 2.36779e123 0.933418
\(250\) 4.20066e122 0.134712
\(251\) −4.21130e123 −1.09956 −0.549780 0.835309i \(-0.685289\pi\)
−0.549780 + 0.835309i \(0.685289\pi\)
\(252\) −2.85036e123 −0.606418
\(253\) −2.32383e122 −0.0403179
\(254\) 1.25751e121 0.00178063
\(255\) −3.25946e122 −0.0376987
\(256\) −4.26404e123 −0.403146
\(257\) 1.69032e124 1.30741 0.653706 0.756749i \(-0.273213\pi\)
0.653706 + 0.756749i \(0.273213\pi\)
\(258\) −1.64799e124 −1.04361
\(259\) 9.96322e123 0.516966
\(260\) −2.19477e124 −0.933816
\(261\) −3.46103e124 −1.20842
\(262\) −8.12874e123 −0.233081
\(263\) 2.34782e124 0.553278 0.276639 0.960974i \(-0.410779\pi\)
0.276639 + 0.960974i \(0.410779\pi\)
\(264\) −2.35765e123 −0.0456960
\(265\) 1.35944e124 0.216870
\(266\) 6.30834e124 0.828917
\(267\) 1.59413e125 1.72660
\(268\) −8.66304e124 −0.773978
\(269\) 5.04713e124 0.372222 0.186111 0.982529i \(-0.440412\pi\)
0.186111 + 0.982529i \(0.440412\pi\)
\(270\) −3.38226e124 −0.206050
\(271\) 8.90355e124 0.448379 0.224189 0.974546i \(-0.428027\pi\)
0.224189 + 0.974546i \(0.428027\pi\)
\(272\) 2.14454e123 0.00893377
\(273\) −2.93727e125 −1.01290
\(274\) 9.84978e124 0.281367
\(275\) −2.22954e124 −0.0527936
\(276\) −5.05043e125 −0.991998
\(277\) −1.89004e125 −0.308150 −0.154075 0.988059i \(-0.549240\pi\)
−0.154075 + 0.988059i \(0.549240\pi\)
\(278\) 2.06886e125 0.280171
\(279\) 9.55041e125 1.07499
\(280\) −1.23203e126 −1.15341
\(281\) −1.93020e126 −1.50393 −0.751965 0.659203i \(-0.770894\pi\)
−0.751965 + 0.659203i \(0.770894\pi\)
\(282\) 2.47528e124 0.0160618
\(283\) 1.67149e126 0.903863 0.451932 0.892053i \(-0.350735\pi\)
0.451932 + 0.892053i \(0.350735\pi\)
\(284\) −3.22514e126 −1.45430
\(285\) 1.01298e127 3.81147
\(286\) −4.69611e124 −0.0147533
\(287\) 4.92212e126 1.29192
\(288\) −3.43465e126 −0.753649
\(289\) −5.44603e126 −0.999634
\(290\) −6.69664e126 −1.02887
\(291\) 3.86796e126 0.497729
\(292\) −2.33221e126 −0.251507
\(293\) 1.21150e127 1.09557 0.547787 0.836618i \(-0.315470\pi\)
0.547787 + 0.836618i \(0.315470\pi\)
\(294\) 2.31972e125 0.0176015
\(295\) −2.41205e127 −1.53657
\(296\) 7.73374e126 0.413872
\(297\) 3.09347e125 0.0139152
\(298\) −4.82573e125 −0.0182568
\(299\) −2.24729e127 −0.715472
\(300\) −4.84550e127 −1.29895
\(301\) 7.87653e127 1.77894
\(302\) −2.59234e127 −0.493554
\(303\) 1.90432e126 0.0305804
\(304\) −6.66486e127 −0.903236
\(305\) 1.35763e128 1.55360
\(306\) −6.54492e125 −0.00632778
\(307\) 1.18403e128 0.967694 0.483847 0.875153i \(-0.339239\pi\)
0.483847 + 0.875153i \(0.339239\pi\)
\(308\) 5.04417e126 0.0348680
\(309\) 3.26826e127 0.191185
\(310\) 1.84788e128 0.915263
\(311\) 1.43730e128 0.603097 0.301548 0.953451i \(-0.402496\pi\)
0.301548 + 0.953451i \(0.402496\pi\)
\(312\) −2.28000e128 −0.810910
\(313\) −5.98680e128 −1.80576 −0.902882 0.429888i \(-0.858553\pi\)
−0.902882 + 0.429888i \(0.858553\pi\)
\(314\) −7.61437e127 −0.194875
\(315\) −5.11776e128 −1.11195
\(316\) −1.77957e128 −0.328421
\(317\) 7.02009e128 1.10101 0.550504 0.834833i \(-0.314436\pi\)
0.550504 + 0.834833i \(0.314436\pi\)
\(318\) 6.32171e127 0.0843021
\(319\) 6.12485e127 0.0694825
\(320\) 5.44294e127 0.0525545
\(321\) −2.65035e128 −0.217919
\(322\) −5.64704e128 −0.395589
\(323\) −6.19168e127 −0.0369725
\(324\) 1.88168e129 0.958248
\(325\) −2.15610e129 −0.936863
\(326\) 2.65389e128 0.0984410
\(327\) 5.58917e129 1.77067
\(328\) 3.82069e129 1.03428
\(329\) −1.18306e128 −0.0273790
\(330\) −1.89491e128 −0.0375077
\(331\) −6.53510e129 −1.10690 −0.553452 0.832881i \(-0.686690\pi\)
−0.553452 + 0.832881i \(0.686690\pi\)
\(332\) −3.93225e129 −0.570204
\(333\) 3.21252e129 0.398996
\(334\) −2.67454e128 −0.0284646
\(335\) −1.55543e130 −1.41920
\(336\) 7.79798e129 0.610252
\(337\) −7.88857e129 −0.529735 −0.264867 0.964285i \(-0.585328\pi\)
−0.264867 + 0.964285i \(0.585328\pi\)
\(338\) 3.01154e129 0.173612
\(339\) −1.18721e129 −0.0587820
\(340\) 5.41308e128 0.0230293
\(341\) −1.69010e129 −0.0618104
\(342\) 2.03405e130 0.639760
\(343\) −3.74941e130 −1.01465
\(344\) 6.11399e130 1.42418
\(345\) −9.06794e130 −1.81897
\(346\) 8.15567e129 0.140942
\(347\) 5.14091e130 0.765724 0.382862 0.923806i \(-0.374938\pi\)
0.382862 + 0.923806i \(0.374938\pi\)
\(348\) 1.33113e131 1.70957
\(349\) 4.76696e130 0.528119 0.264059 0.964506i \(-0.414938\pi\)
0.264059 + 0.964506i \(0.414938\pi\)
\(350\) −5.41790e130 −0.517997
\(351\) 2.99158e130 0.246936
\(352\) 6.07816e129 0.0433336
\(353\) 2.17977e131 1.34281 0.671405 0.741091i \(-0.265691\pi\)
0.671405 + 0.741091i \(0.265691\pi\)
\(354\) −1.12165e131 −0.597298
\(355\) −5.79066e131 −2.66666
\(356\) −2.64741e131 −1.05474
\(357\) 7.24437e129 0.0249797
\(358\) 5.95917e130 0.177914
\(359\) 2.57415e129 0.00665685 0.00332843 0.999994i \(-0.498941\pi\)
0.00332843 + 0.999994i \(0.498941\pi\)
\(360\) −3.97255e131 −0.890207
\(361\) 1.40949e132 2.73805
\(362\) −1.05784e131 −0.178209
\(363\) −9.05966e131 −1.32410
\(364\) 4.87802e131 0.618760
\(365\) −4.18743e131 −0.461174
\(366\) 6.31325e131 0.603917
\(367\) 6.71409e130 0.0558065 0.0279033 0.999611i \(-0.491117\pi\)
0.0279033 + 0.999611i \(0.491117\pi\)
\(368\) 5.96619e131 0.431056
\(369\) 1.58708e132 0.997105
\(370\) 6.21580e131 0.339710
\(371\) −3.02146e131 −0.143701
\(372\) −3.67312e132 −1.52081
\(373\) 1.68779e132 0.608574 0.304287 0.952580i \(-0.401582\pi\)
0.304287 + 0.952580i \(0.401582\pi\)
\(374\) 1.15823e129 0.000363837 0
\(375\) −1.49920e132 −0.410440
\(376\) −9.18323e130 −0.0219190
\(377\) 5.92311e132 1.23302
\(378\) 7.51731e131 0.136532
\(379\) −6.30987e132 −1.00023 −0.500116 0.865958i \(-0.666709\pi\)
−0.500116 + 0.865958i \(0.666709\pi\)
\(380\) −1.68229e133 −2.32834
\(381\) −4.48800e130 −0.00542522
\(382\) −5.91530e132 −0.624761
\(383\) 7.18637e132 0.663396 0.331698 0.943386i \(-0.392379\pi\)
0.331698 + 0.943386i \(0.392379\pi\)
\(384\) 1.65532e133 1.33606
\(385\) 9.05669e131 0.0639355
\(386\) −3.59152e132 −0.221836
\(387\) 2.53970e133 1.37299
\(388\) −6.42363e132 −0.304051
\(389\) 1.02193e133 0.423660 0.211830 0.977306i \(-0.432058\pi\)
0.211830 + 0.977306i \(0.432058\pi\)
\(390\) −1.83249e133 −0.665603
\(391\) 5.54262e131 0.0176446
\(392\) −8.60612e131 −0.0240201
\(393\) 2.90112e133 0.710148
\(394\) 1.17368e133 0.252054
\(395\) −3.19519e133 −0.602207
\(396\) 1.62643e132 0.0269113
\(397\) 9.23396e133 1.34177 0.670883 0.741563i \(-0.265915\pi\)
0.670883 + 0.741563i \(0.265915\pi\)
\(398\) 3.49342e133 0.445936
\(399\) −2.25143e134 −2.52554
\(400\) 5.72410e133 0.564439
\(401\) −1.78505e134 −1.54780 −0.773899 0.633310i \(-0.781696\pi\)
−0.773899 + 0.633310i \(0.781696\pi\)
\(402\) −7.23309e133 −0.551674
\(403\) −1.63443e134 −1.09687
\(404\) −3.16256e132 −0.0186809
\(405\) 3.37852e134 1.75708
\(406\) 1.48837e134 0.681743
\(407\) −5.68507e132 −0.0229416
\(408\) 5.62328e132 0.0199982
\(409\) 2.98366e134 0.935402 0.467701 0.883887i \(-0.345082\pi\)
0.467701 + 0.883887i \(0.345082\pi\)
\(410\) 3.07079e134 0.848948
\(411\) −3.51535e134 −0.857265
\(412\) −5.42770e133 −0.116791
\(413\) 5.36094e134 1.01815
\(414\) −1.82082e134 −0.305317
\(415\) −7.06028e134 −1.04555
\(416\) 5.87795e134 0.768988
\(417\) −7.38368e134 −0.853623
\(418\) −3.59958e133 −0.0367852
\(419\) −1.13134e134 −0.102228 −0.0511140 0.998693i \(-0.516277\pi\)
−0.0511140 + 0.998693i \(0.516277\pi\)
\(420\) 1.96831e135 1.57309
\(421\) −1.67287e135 −1.18286 −0.591431 0.806355i \(-0.701437\pi\)
−0.591431 + 0.806355i \(0.701437\pi\)
\(422\) −2.88529e134 −0.180551
\(423\) −3.81463e133 −0.0211312
\(424\) −2.34534e134 −0.115044
\(425\) 5.31771e133 0.0231044
\(426\) −2.69279e135 −1.03659
\(427\) −3.01741e135 −1.02944
\(428\) 4.40152e134 0.133122
\(429\) 1.67603e134 0.0449501
\(430\) 4.91397e135 1.16898
\(431\) 2.20865e135 0.466173 0.233087 0.972456i \(-0.425117\pi\)
0.233087 + 0.972456i \(0.425117\pi\)
\(432\) −7.94215e134 −0.148773
\(433\) 6.14291e135 1.02152 0.510760 0.859723i \(-0.329364\pi\)
0.510760 + 0.859723i \(0.329364\pi\)
\(434\) −4.10703e135 −0.606467
\(435\) 2.39001e136 3.13475
\(436\) −9.28211e135 −1.08166
\(437\) −1.72255e136 −1.78393
\(438\) −1.94724e135 −0.179268
\(439\) 9.09548e135 0.744565 0.372283 0.928119i \(-0.378575\pi\)
0.372283 + 0.928119i \(0.378575\pi\)
\(440\) 7.03007e134 0.0511855
\(441\) −3.57490e134 −0.0231567
\(442\) 1.12008e134 0.00645657
\(443\) 9.73657e134 0.0499590 0.0249795 0.999688i \(-0.492048\pi\)
0.0249795 + 0.999688i \(0.492048\pi\)
\(444\) −1.23555e136 −0.564465
\(445\) −4.75337e136 −1.93402
\(446\) 1.99001e136 0.721291
\(447\) 1.72229e135 0.0556247
\(448\) −1.20973e135 −0.0348234
\(449\) −5.76893e135 −0.148050 −0.0740251 0.997256i \(-0.523584\pi\)
−0.0740251 + 0.997256i \(0.523584\pi\)
\(450\) −1.74694e136 −0.399791
\(451\) −2.80859e135 −0.0573319
\(452\) 1.97164e135 0.0359086
\(453\) 9.25198e136 1.50376
\(454\) −8.62436e135 −0.125127
\(455\) 8.75838e136 1.13458
\(456\) −1.74762e137 −2.02189
\(457\) 1.14703e137 1.18547 0.592733 0.805399i \(-0.298049\pi\)
0.592733 + 0.805399i \(0.298049\pi\)
\(458\) 5.26840e136 0.486526
\(459\) −7.37830e134 −0.00608980
\(460\) 1.50594e137 1.11117
\(461\) −4.28772e136 −0.282897 −0.141449 0.989946i \(-0.545176\pi\)
−0.141449 + 0.989946i \(0.545176\pi\)
\(462\) 4.21156e135 0.0248531
\(463\) 1.83388e137 0.968165 0.484083 0.875022i \(-0.339153\pi\)
0.484083 + 0.875022i \(0.339153\pi\)
\(464\) −1.57249e137 −0.742867
\(465\) −6.59501e137 −2.78861
\(466\) −2.20157e137 −0.833408
\(467\) −3.86590e136 −0.131048 −0.0655241 0.997851i \(-0.520872\pi\)
−0.0655241 + 0.997851i \(0.520872\pi\)
\(468\) 1.57286e137 0.477561
\(469\) 3.45705e137 0.940381
\(470\) −7.38080e135 −0.0179914
\(471\) 2.71754e137 0.593745
\(472\) 4.16131e137 0.815113
\(473\) −4.49440e136 −0.0789447
\(474\) −1.48583e137 −0.234091
\(475\) −1.65266e138 −2.33594
\(476\) −1.20309e136 −0.0152595
\(477\) −9.74233e136 −0.110909
\(478\) 5.93493e137 0.606567
\(479\) 2.45895e137 0.225668 0.112834 0.993614i \(-0.464007\pi\)
0.112834 + 0.993614i \(0.464007\pi\)
\(480\) 2.37179e138 1.95502
\(481\) −5.49782e137 −0.407117
\(482\) −1.10743e137 −0.0736873
\(483\) 2.01541e138 1.20528
\(484\) 1.50456e138 0.808862
\(485\) −1.15335e138 −0.557521
\(486\) 1.25214e138 0.544356
\(487\) −3.14432e138 −1.22966 −0.614830 0.788660i \(-0.710775\pi\)
−0.614830 + 0.788660i \(0.710775\pi\)
\(488\) −2.34220e138 −0.824145
\(489\) −9.47164e137 −0.299929
\(490\) −6.91696e136 −0.0197159
\(491\) 2.43959e137 0.0626065 0.0313033 0.999510i \(-0.490034\pi\)
0.0313033 + 0.999510i \(0.490034\pi\)
\(492\) −6.10397e138 −1.41062
\(493\) −1.46085e137 −0.0304081
\(494\) −3.48101e138 −0.652782
\(495\) 2.92023e137 0.0493456
\(496\) 4.33914e138 0.660841
\(497\) 1.28701e139 1.76697
\(498\) −3.28318e138 −0.406428
\(499\) −9.51286e138 −1.06202 −0.531010 0.847365i \(-0.678187\pi\)
−0.531010 + 0.847365i \(0.678187\pi\)
\(500\) 2.48977e138 0.250729
\(501\) 9.54533e137 0.0867258
\(502\) 5.83940e138 0.478770
\(503\) 7.69347e138 0.569339 0.284669 0.958626i \(-0.408116\pi\)
0.284669 + 0.958626i \(0.408116\pi\)
\(504\) 8.82927e138 0.589864
\(505\) −5.67830e137 −0.0342541
\(506\) 3.22224e137 0.0175552
\(507\) −1.07481e139 −0.528959
\(508\) 7.45336e136 0.00331414
\(509\) 1.68209e139 0.675900 0.337950 0.941164i \(-0.390267\pi\)
0.337950 + 0.941164i \(0.390267\pi\)
\(510\) 4.51958e137 0.0164147
\(511\) 9.30684e138 0.305581
\(512\) −2.80091e139 −0.831566
\(513\) 2.29305e139 0.615700
\(514\) −2.34380e139 −0.569272
\(515\) −9.74531e138 −0.214153
\(516\) −9.76776e139 −1.94239
\(517\) 6.75060e136 0.00121501
\(518\) −1.38150e139 −0.225097
\(519\) −2.91073e139 −0.429421
\(520\) 6.79851e139 0.908325
\(521\) 1.00938e140 1.22156 0.610778 0.791802i \(-0.290857\pi\)
0.610778 + 0.791802i \(0.290857\pi\)
\(522\) 4.79908e139 0.526172
\(523\) −1.31642e140 −1.30785 −0.653923 0.756561i \(-0.726878\pi\)
−0.653923 + 0.756561i \(0.726878\pi\)
\(524\) −4.81798e139 −0.433814
\(525\) 1.93363e140 1.57823
\(526\) −3.25550e139 −0.240908
\(527\) 4.03108e138 0.0270505
\(528\) −4.44958e138 −0.0270814
\(529\) −2.69225e139 −0.148644
\(530\) −1.88501e139 −0.0944293
\(531\) 1.72857e140 0.785814
\(532\) 3.73901e140 1.54279
\(533\) −2.71608e140 −1.01740
\(534\) −2.21042e140 −0.751797
\(535\) 7.90284e139 0.244098
\(536\) 2.68346e140 0.752850
\(537\) −2.12681e140 −0.542067
\(538\) −6.99838e139 −0.162073
\(539\) 6.32637e137 0.00133147
\(540\) −2.00470e140 −0.383504
\(541\) −6.09215e140 −1.05953 −0.529763 0.848146i \(-0.677719\pi\)
−0.529763 + 0.848146i \(0.677719\pi\)
\(542\) −1.23457e140 −0.195233
\(543\) 3.77540e140 0.542964
\(544\) −1.44971e139 −0.0189644
\(545\) −1.66658e141 −1.98338
\(546\) 4.07284e140 0.441038
\(547\) 4.40996e139 0.0434598 0.0217299 0.999764i \(-0.493083\pi\)
0.0217299 + 0.999764i \(0.493083\pi\)
\(548\) 5.83805e140 0.523684
\(549\) −9.72930e140 −0.794522
\(550\) 3.09149e139 0.0229874
\(551\) 4.54007e141 3.07436
\(552\) 1.56442e141 0.964919
\(553\) 7.10152e140 0.399031
\(554\) 2.62074e140 0.134175
\(555\) −2.21840e141 −1.03503
\(556\) 1.22623e141 0.521459
\(557\) −1.16444e141 −0.451415 −0.225707 0.974195i \(-0.572469\pi\)
−0.225707 + 0.974195i \(0.572469\pi\)
\(558\) −1.32426e141 −0.468073
\(559\) −4.34636e141 −1.40093
\(560\) −2.32521e141 −0.683562
\(561\) −4.13368e138 −0.00110854
\(562\) 2.67643e141 0.654840
\(563\) 5.53026e141 1.23471 0.617353 0.786687i \(-0.288205\pi\)
0.617353 + 0.786687i \(0.288205\pi\)
\(564\) 1.46712e140 0.0298946
\(565\) 3.54004e140 0.0658435
\(566\) −2.31770e141 −0.393560
\(567\) −7.50899e141 −1.16427
\(568\) 9.99017e141 1.41460
\(569\) −6.18794e141 −0.800322 −0.400161 0.916445i \(-0.631046\pi\)
−0.400161 + 0.916445i \(0.631046\pi\)
\(570\) −1.40461e142 −1.65959
\(571\) −9.18082e141 −0.991110 −0.495555 0.868576i \(-0.665035\pi\)
−0.495555 + 0.868576i \(0.665035\pi\)
\(572\) −2.78343e140 −0.0274590
\(573\) 2.11115e142 1.90351
\(574\) −6.82503e141 −0.562526
\(575\) 1.47941e142 1.11479
\(576\) −3.90064e140 −0.0268768
\(577\) 1.84227e142 1.16091 0.580457 0.814291i \(-0.302874\pi\)
0.580457 + 0.814291i \(0.302874\pi\)
\(578\) 7.55149e141 0.435260
\(579\) 1.28180e142 0.675888
\(580\) −3.96916e142 −1.91495
\(581\) 1.56919e142 0.692797
\(582\) −5.36333e141 −0.216721
\(583\) 1.72406e140 0.00637709
\(584\) 7.22423e141 0.244642
\(585\) 2.82404e142 0.875676
\(586\) −1.67988e142 −0.477035
\(587\) 1.27209e142 0.330869 0.165435 0.986221i \(-0.447097\pi\)
0.165435 + 0.986221i \(0.447097\pi\)
\(588\) 1.37492e141 0.0327601
\(589\) −1.25279e143 −2.73490
\(590\) 3.34456e142 0.669052
\(591\) −4.18883e142 −0.767957
\(592\) 1.45958e142 0.245279
\(593\) 6.22106e142 0.958402 0.479201 0.877705i \(-0.340926\pi\)
0.479201 + 0.877705i \(0.340926\pi\)
\(594\) −4.28942e140 −0.00605895
\(595\) −2.16013e141 −0.0279805
\(596\) −2.86025e141 −0.0339799
\(597\) −1.24679e143 −1.35867
\(598\) 3.11610e142 0.311531
\(599\) −1.82276e143 −1.67204 −0.836022 0.548696i \(-0.815125\pi\)
−0.836022 + 0.548696i \(0.815125\pi\)
\(600\) 1.50094e143 1.26350
\(601\) 2.43541e143 1.88164 0.940819 0.338910i \(-0.110058\pi\)
0.940819 + 0.338910i \(0.110058\pi\)
\(602\) −1.09216e143 −0.774584
\(603\) 1.11468e143 0.725789
\(604\) −1.53650e143 −0.918611
\(605\) 2.70141e143 1.48316
\(606\) −2.64053e141 −0.0133153
\(607\) 2.14879e143 0.995349 0.497675 0.867364i \(-0.334187\pi\)
0.497675 + 0.867364i \(0.334187\pi\)
\(608\) 4.50546e143 1.91737
\(609\) −5.31195e143 −2.07713
\(610\) −1.88249e143 −0.676466
\(611\) 6.52825e141 0.0215613
\(612\) −3.87923e141 −0.0117774
\(613\) 2.20584e143 0.615685 0.307843 0.951437i \(-0.400393\pi\)
0.307843 + 0.951437i \(0.400393\pi\)
\(614\) −1.64179e143 −0.421353
\(615\) −1.09595e144 −2.58657
\(616\) −1.56248e142 −0.0339162
\(617\) 1.93858e143 0.387077 0.193538 0.981093i \(-0.438004\pi\)
0.193538 + 0.981093i \(0.438004\pi\)
\(618\) −4.53178e142 −0.0832459
\(619\) −5.57066e143 −0.941538 −0.470769 0.882256i \(-0.656024\pi\)
−0.470769 + 0.882256i \(0.656024\pi\)
\(620\) 1.09525e144 1.70350
\(621\) −2.05267e143 −0.293834
\(622\) −1.99297e143 −0.262600
\(623\) 1.05647e144 1.28151
\(624\) −4.30301e143 −0.480581
\(625\) −7.27756e143 −0.748453
\(626\) 8.30132e143 0.786265
\(627\) 1.28468e143 0.112077
\(628\) −4.51311e143 −0.362705
\(629\) 1.35596e142 0.0100401
\(630\) 7.09631e143 0.484166
\(631\) 3.61771e142 0.0227469 0.0113734 0.999935i \(-0.496380\pi\)
0.0113734 + 0.999935i \(0.496380\pi\)
\(632\) 5.51241e143 0.319456
\(633\) 1.02975e144 0.550100
\(634\) −9.73408e143 −0.479400
\(635\) 1.33824e142 0.00607695
\(636\) 3.74694e143 0.156904
\(637\) 6.11798e142 0.0236280
\(638\) −8.49275e142 −0.0302540
\(639\) 4.14983e144 1.36375
\(640\) −4.93585e144 −1.49656
\(641\) 3.83328e144 1.07246 0.536231 0.844072i \(-0.319848\pi\)
0.536231 + 0.844072i \(0.319848\pi\)
\(642\) 3.67499e143 0.0948861
\(643\) −3.54930e143 −0.0845820 −0.0422910 0.999105i \(-0.513466\pi\)
−0.0422910 + 0.999105i \(0.513466\pi\)
\(644\) −3.34705e144 −0.736276
\(645\) −1.75378e145 −3.56164
\(646\) 8.58542e142 0.0160986
\(647\) 5.81862e144 1.00751 0.503755 0.863847i \(-0.331951\pi\)
0.503755 + 0.863847i \(0.331951\pi\)
\(648\) −5.82869e144 −0.932091
\(649\) −3.05898e143 −0.0451830
\(650\) 2.98966e144 0.407928
\(651\) 1.46579e145 1.84778
\(652\) 1.57298e144 0.183220
\(653\) 1.39255e145 1.49894 0.749468 0.662040i \(-0.230309\pi\)
0.749468 + 0.662040i \(0.230309\pi\)
\(654\) −7.74997e144 −0.770985
\(655\) −8.65057e144 −0.795459
\(656\) 7.21075e144 0.612961
\(657\) 3.00088e144 0.235848
\(658\) 1.64043e143 0.0119213
\(659\) 7.91052e144 0.531626 0.265813 0.964025i \(-0.414360\pi\)
0.265813 + 0.964025i \(0.414360\pi\)
\(660\) −1.12313e144 −0.0698099
\(661\) −2.97341e145 −1.70954 −0.854771 0.519005i \(-0.826302\pi\)
−0.854771 + 0.519005i \(0.826302\pi\)
\(662\) 9.06160e144 0.481968
\(663\) −3.99752e143 −0.0196718
\(664\) 1.21805e145 0.554639
\(665\) 6.71331e145 2.82893
\(666\) −4.45450e144 −0.173731
\(667\) −4.06414e145 −1.46720
\(668\) −1.58522e144 −0.0529788
\(669\) −7.10229e145 −2.19762
\(670\) 2.15677e145 0.617946
\(671\) 1.72176e144 0.0456837
\(672\) −5.27146e145 −1.29543
\(673\) −5.07205e145 −1.15454 −0.577268 0.816555i \(-0.695881\pi\)
−0.577268 + 0.816555i \(0.695881\pi\)
\(674\) 1.09383e145 0.230657
\(675\) −1.96938e145 −0.384756
\(676\) 1.78497e145 0.323129
\(677\) 1.16550e146 1.95522 0.977608 0.210435i \(-0.0674881\pi\)
0.977608 + 0.210435i \(0.0674881\pi\)
\(678\) 1.64620e144 0.0255948
\(679\) 2.56340e145 0.369422
\(680\) −1.67675e144 −0.0224006
\(681\) 3.07801e145 0.381235
\(682\) 2.34350e144 0.0269134
\(683\) −1.33029e146 −1.41671 −0.708353 0.705858i \(-0.750561\pi\)
−0.708353 + 0.705858i \(0.750561\pi\)
\(684\) 1.20560e146 1.19073
\(685\) 1.04821e146 0.960249
\(686\) 5.19896e145 0.441798
\(687\) −1.88027e146 −1.48234
\(688\) 1.15389e146 0.844032
\(689\) 1.66727e145 0.113166
\(690\) 1.25736e146 0.792015
\(691\) −2.87961e146 −1.68350 −0.841752 0.539865i \(-0.818475\pi\)
−0.841752 + 0.539865i \(0.818475\pi\)
\(692\) 4.83394e145 0.262324
\(693\) −6.49040e144 −0.0326971
\(694\) −7.12841e145 −0.333411
\(695\) 2.20167e146 0.956169
\(696\) −4.12329e146 −1.66291
\(697\) 6.69882e144 0.0250906
\(698\) −6.60988e145 −0.229953
\(699\) 7.85733e146 2.53922
\(700\) −3.21124e146 −0.964104
\(701\) −3.12479e146 −0.871651 −0.435826 0.900031i \(-0.643544\pi\)
−0.435826 + 0.900031i \(0.643544\pi\)
\(702\) −4.14814e145 −0.107521
\(703\) −4.21409e146 −1.01509
\(704\) 6.90280e143 0.00154537
\(705\) 2.63418e145 0.0548159
\(706\) −3.02249e146 −0.584685
\(707\) 1.26204e145 0.0226973
\(708\) −6.64815e146 −1.11170
\(709\) 6.99651e146 1.08793 0.543964 0.839108i \(-0.316923\pi\)
0.543964 + 0.839108i \(0.316923\pi\)
\(710\) 8.02936e146 1.16112
\(711\) 2.28980e146 0.307974
\(712\) 8.20062e146 1.02595
\(713\) 1.12146e147 1.30519
\(714\) −1.00451e145 −0.0108766
\(715\) −4.99759e145 −0.0503500
\(716\) 3.53206e146 0.331136
\(717\) −2.11816e147 −1.84808
\(718\) −3.56932e144 −0.00289852
\(719\) 1.97740e147 1.49471 0.747356 0.664424i \(-0.231323\pi\)
0.747356 + 0.664424i \(0.231323\pi\)
\(720\) −7.49736e146 −0.527575
\(721\) 2.16596e146 0.141901
\(722\) −1.95441e147 −1.19220
\(723\) 3.95237e146 0.224510
\(724\) −6.26991e146 −0.331685
\(725\) −3.89923e147 −1.92119
\(726\) 1.25622e147 0.576539
\(727\) 1.38347e147 0.591489 0.295744 0.955267i \(-0.404432\pi\)
0.295744 + 0.955267i \(0.404432\pi\)
\(728\) −1.51101e147 −0.601870
\(729\) −1.28286e147 −0.476116
\(730\) 5.80630e146 0.200804
\(731\) 1.07197e146 0.0345491
\(732\) 3.74192e147 1.12402
\(733\) 7.02841e146 0.196790 0.0983949 0.995147i \(-0.468629\pi\)
0.0983949 + 0.995147i \(0.468629\pi\)
\(734\) −9.30979e145 −0.0242993
\(735\) 2.46864e146 0.0600703
\(736\) −4.03316e147 −0.915035
\(737\) −1.97261e146 −0.0417317
\(738\) −2.20065e147 −0.434159
\(739\) 1.70762e147 0.314197 0.157099 0.987583i \(-0.449786\pi\)
0.157099 + 0.987583i \(0.449786\pi\)
\(740\) 3.68416e147 0.632274
\(741\) 1.24236e148 1.98889
\(742\) 4.18957e146 0.0625703
\(743\) −1.26492e148 −1.76255 −0.881274 0.472606i \(-0.843313\pi\)
−0.881274 + 0.472606i \(0.843313\pi\)
\(744\) 1.13778e148 1.47929
\(745\) −5.13552e146 −0.0623070
\(746\) −2.34030e147 −0.264985
\(747\) 5.05968e147 0.534703
\(748\) 6.86493e144 0.000677179 0
\(749\) −1.75646e147 −0.161743
\(750\) 2.07880e147 0.178714
\(751\) −4.73492e147 −0.380063 −0.190032 0.981778i \(-0.560859\pi\)
−0.190032 + 0.981778i \(0.560859\pi\)
\(752\) −1.73314e146 −0.0129902
\(753\) −2.08406e148 −1.45871
\(754\) −8.21301e147 −0.536881
\(755\) −2.75876e148 −1.68440
\(756\) 4.45558e147 0.254116
\(757\) 7.89892e147 0.420852 0.210426 0.977610i \(-0.432515\pi\)
0.210426 + 0.977610i \(0.432515\pi\)
\(758\) 8.74929e147 0.435521
\(759\) −1.15001e147 −0.0534871
\(760\) 5.21107e148 2.26478
\(761\) −2.42437e148 −0.984666 −0.492333 0.870407i \(-0.663856\pi\)
−0.492333 + 0.870407i \(0.663856\pi\)
\(762\) 6.22309e145 0.00236224
\(763\) 3.70409e148 1.31422
\(764\) −3.50605e148 −1.16281
\(765\) −6.96508e146 −0.0215955
\(766\) −9.96466e147 −0.288856
\(767\) −2.95823e148 −0.801808
\(768\) −2.11016e148 −0.534827
\(769\) 1.14358e148 0.271057 0.135528 0.990773i \(-0.456727\pi\)
0.135528 + 0.990773i \(0.456727\pi\)
\(770\) −1.25581e147 −0.0278388
\(771\) 8.36495e148 1.73445
\(772\) −2.12873e148 −0.412885
\(773\) 8.37268e148 1.51922 0.759610 0.650379i \(-0.225390\pi\)
0.759610 + 0.650379i \(0.225390\pi\)
\(774\) −3.52155e148 −0.597826
\(775\) 1.07596e149 1.70906
\(776\) 1.98978e148 0.295752
\(777\) 4.93054e148 0.685823
\(778\) −1.41702e148 −0.184470
\(779\) −2.08188e149 −2.53674
\(780\) −1.08614e149 −1.23883
\(781\) −7.34378e147 −0.0784136
\(782\) −7.68542e146 −0.00768280
\(783\) 5.41016e148 0.506383
\(784\) −1.62422e147 −0.0142354
\(785\) −8.10318e148 −0.665072
\(786\) −4.02270e148 −0.309213
\(787\) −2.20240e149 −1.58561 −0.792807 0.609473i \(-0.791381\pi\)
−0.792807 + 0.609473i \(0.791381\pi\)
\(788\) 6.95651e148 0.469128
\(789\) 1.16188e149 0.733997
\(790\) 4.43046e148 0.262213
\(791\) −7.86798e147 −0.0436289
\(792\) −5.03803e147 −0.0261767
\(793\) 1.66504e149 0.810693
\(794\) −1.28039e149 −0.584231
\(795\) 6.72754e148 0.287706
\(796\) 2.07058e149 0.829983
\(797\) 6.88399e148 0.258664 0.129332 0.991601i \(-0.458717\pi\)
0.129332 + 0.991601i \(0.458717\pi\)
\(798\) 3.12184e149 1.09967
\(799\) −1.61010e146 −0.000531732 0
\(800\) −3.86950e149 −1.19818
\(801\) 3.40646e149 0.989075
\(802\) 2.47515e149 0.673941
\(803\) −5.31054e147 −0.0135609
\(804\) −4.28712e149 −1.02678
\(805\) −6.00956e149 −1.35007
\(806\) 2.26631e149 0.477600
\(807\) 2.49770e149 0.493802
\(808\) 9.79632e147 0.0181710
\(809\) −1.39930e149 −0.243534 −0.121767 0.992559i \(-0.538856\pi\)
−0.121767 + 0.992559i \(0.538856\pi\)
\(810\) −4.68467e149 −0.765069
\(811\) −2.40080e149 −0.367944 −0.183972 0.982932i \(-0.558896\pi\)
−0.183972 + 0.982932i \(0.558896\pi\)
\(812\) 8.82172e149 1.26887
\(813\) 4.40614e149 0.594833
\(814\) 7.88295e147 0.00998923
\(815\) 2.82426e149 0.335960
\(816\) 1.06128e148 0.0118518
\(817\) −3.33149e150 −3.49303
\(818\) −4.13715e149 −0.407292
\(819\) −6.27661e149 −0.580236
\(820\) 1.82008e150 1.58008
\(821\) −8.20174e149 −0.668703 −0.334351 0.942448i \(-0.608517\pi\)
−0.334351 + 0.942448i \(0.608517\pi\)
\(822\) 4.87441e149 0.373270
\(823\) 2.02435e150 1.45611 0.728054 0.685520i \(-0.240425\pi\)
0.728054 + 0.685520i \(0.240425\pi\)
\(824\) 1.68128e149 0.113603
\(825\) −1.10334e149 −0.0700377
\(826\) −7.43350e149 −0.443324
\(827\) 3.27114e150 1.83301 0.916507 0.400018i \(-0.130996\pi\)
0.916507 + 0.400018i \(0.130996\pi\)
\(828\) −1.07922e150 −0.568260
\(829\) 6.39157e149 0.316264 0.158132 0.987418i \(-0.449453\pi\)
0.158132 + 0.987418i \(0.449453\pi\)
\(830\) 9.78982e149 0.455253
\(831\) −9.35333e149 −0.408802
\(832\) 6.67543e148 0.0274238
\(833\) −1.50891e147 −0.000582702 0
\(834\) 1.02382e150 0.371684
\(835\) −2.84623e149 −0.0971442
\(836\) −2.13350e149 −0.0684652
\(837\) −1.49288e150 −0.450469
\(838\) 1.56872e149 0.0445121
\(839\) 4.63238e149 0.123613 0.0618063 0.998088i \(-0.480314\pi\)
0.0618063 + 0.998088i \(0.480314\pi\)
\(840\) −6.09703e150 −1.53015
\(841\) 6.47535e150 1.52851
\(842\) 2.31961e150 0.515042
\(843\) −9.55209e150 −1.99516
\(844\) −1.71014e150 −0.336044
\(845\) 3.20487e150 0.592503
\(846\) 5.28939e148 0.00920093
\(847\) −6.00407e150 −0.982766
\(848\) −4.42634e149 −0.0681802
\(849\) 8.27179e150 1.19909
\(850\) −7.37357e148 −0.0100601
\(851\) 3.77233e150 0.484437
\(852\) −1.59604e151 −1.92932
\(853\) −1.40317e151 −1.59674 −0.798372 0.602165i \(-0.794305\pi\)
−0.798372 + 0.602165i \(0.794305\pi\)
\(854\) 4.18396e150 0.448237
\(855\) 2.16463e151 2.18338
\(856\) −1.36341e150 −0.129488
\(857\) 4.00172e150 0.357878 0.178939 0.983860i \(-0.442734\pi\)
0.178939 + 0.983860i \(0.442734\pi\)
\(858\) −2.32399e149 −0.0195721
\(859\) −3.74195e150 −0.296790 −0.148395 0.988928i \(-0.547411\pi\)
−0.148395 + 0.988928i \(0.547411\pi\)
\(860\) 2.91256e151 2.17572
\(861\) 2.43583e151 1.71390
\(862\) −3.06252e150 −0.202981
\(863\) −1.41102e151 −0.881003 −0.440502 0.897752i \(-0.645199\pi\)
−0.440502 + 0.897752i \(0.645199\pi\)
\(864\) 5.36892e150 0.315812
\(865\) 8.67923e150 0.481007
\(866\) −8.51778e150 −0.444790
\(867\) −2.69510e151 −1.32615
\(868\) −2.43427e151 −1.12877
\(869\) −4.05217e149 −0.0177080
\(870\) −3.31399e151 −1.36493
\(871\) −1.90764e151 −0.740561
\(872\) 2.87522e151 1.05214
\(873\) 8.26538e150 0.285121
\(874\) 2.38850e151 0.776759
\(875\) −9.93561e150 −0.304635
\(876\) −1.15415e151 −0.333657
\(877\) −1.57159e151 −0.428410 −0.214205 0.976789i \(-0.568716\pi\)
−0.214205 + 0.976789i \(0.568716\pi\)
\(878\) −1.26118e151 −0.324198
\(879\) 5.99542e151 1.45342
\(880\) 1.32678e150 0.0303347
\(881\) 9.81411e150 0.211637 0.105818 0.994385i \(-0.466254\pi\)
0.105818 + 0.994385i \(0.466254\pi\)
\(882\) 4.95698e149 0.0100829
\(883\) −1.00914e151 −0.193631 −0.0968153 0.995302i \(-0.530866\pi\)
−0.0968153 + 0.995302i \(0.530866\pi\)
\(884\) 6.63881e149 0.0120171
\(885\) −1.19366e152 −2.03846
\(886\) −1.35008e150 −0.0217531
\(887\) 3.85045e151 0.585390 0.292695 0.956206i \(-0.405448\pi\)
0.292695 + 0.956206i \(0.405448\pi\)
\(888\) 3.82723e151 0.549056
\(889\) −2.97432e149 −0.00402668
\(890\) 6.59105e151 0.842111
\(891\) 4.28467e150 0.0516673
\(892\) 1.17950e152 1.34248
\(893\) 5.00391e150 0.0537600
\(894\) −2.38813e150 −0.0242201
\(895\) 6.34173e151 0.607186
\(896\) 1.09703e152 0.991641
\(897\) −1.11213e152 −0.949169
\(898\) 7.99923e150 0.0644639
\(899\) −2.95580e152 −2.24932
\(900\) −1.03543e152 −0.744098
\(901\) −4.11209e149 −0.00279085
\(902\) 3.89441e150 0.0249635
\(903\) 3.89789e152 2.35999
\(904\) −6.10735e150 −0.0349284
\(905\) −1.12575e152 −0.608191
\(906\) −1.28288e152 −0.654765
\(907\) −3.01371e152 −1.45320 −0.726602 0.687058i \(-0.758902\pi\)
−0.726602 + 0.687058i \(0.758902\pi\)
\(908\) −5.11174e151 −0.232888
\(909\) 4.06930e150 0.0175178
\(910\) −1.21444e152 −0.494020
\(911\) 2.13545e152 0.820907 0.410453 0.911882i \(-0.365370\pi\)
0.410453 + 0.911882i \(0.365370\pi\)
\(912\) −3.29827e152 −1.19826
\(913\) −8.95392e150 −0.0307446
\(914\) −1.59047e152 −0.516175
\(915\) 6.71854e152 2.06105
\(916\) 3.12263e152 0.905531
\(917\) 1.92265e152 0.527083
\(918\) 1.02308e150 0.00265162
\(919\) 2.05675e152 0.504002 0.252001 0.967727i \(-0.418911\pi\)
0.252001 + 0.967727i \(0.418911\pi\)
\(920\) −4.66480e152 −1.08084
\(921\) 5.85949e152 1.28377
\(922\) 5.94537e151 0.123179
\(923\) −7.10189e152 −1.39151
\(924\) 2.49623e151 0.0462571
\(925\) 3.61926e152 0.634337
\(926\) −2.54287e152 −0.421558
\(927\) 6.98389e151 0.109519
\(928\) 1.06301e153 1.57694
\(929\) −1.09687e153 −1.53939 −0.769693 0.638414i \(-0.779591\pi\)
−0.769693 + 0.638414i \(0.779591\pi\)
\(930\) 9.14467e152 1.21422
\(931\) 4.68945e151 0.0589132
\(932\) −1.30489e153 −1.55115
\(933\) 7.11283e152 0.800088
\(934\) 5.36048e151 0.0570610
\(935\) 1.23258e150 0.00124170
\(936\) −4.87209e152 −0.464525
\(937\) −5.52863e152 −0.498917 −0.249459 0.968385i \(-0.580253\pi\)
−0.249459 + 0.968385i \(0.580253\pi\)
\(938\) −4.79356e152 −0.409460
\(939\) −2.96271e153 −2.39559
\(940\) −4.37467e151 −0.0334858
\(941\) 1.10236e152 0.0798834 0.0399417 0.999202i \(-0.487283\pi\)
0.0399417 + 0.999202i \(0.487283\pi\)
\(942\) −3.76816e152 −0.258528
\(943\) 1.86364e153 1.21062
\(944\) 7.85361e152 0.483071
\(945\) 7.99989e152 0.465957
\(946\) 6.23195e151 0.0343740
\(947\) 1.56209e153 0.815987 0.407994 0.912985i \(-0.366229\pi\)
0.407994 + 0.912985i \(0.366229\pi\)
\(948\) −8.80666e152 −0.435694
\(949\) −5.13562e152 −0.240648
\(950\) 2.29158e153 1.01711
\(951\) 3.47406e153 1.46063
\(952\) 3.72670e151 0.0148430
\(953\) −1.11248e153 −0.419766 −0.209883 0.977726i \(-0.567308\pi\)
−0.209883 + 0.977726i \(0.567308\pi\)
\(954\) 1.35088e152 0.0482919
\(955\) −6.29504e153 −2.13218
\(956\) 3.51769e153 1.12895
\(957\) 3.03103e152 0.0921777
\(958\) −3.40959e152 −0.0982603
\(959\) −2.32972e153 −0.636275
\(960\) 2.69358e152 0.0697205
\(961\) 4.08008e153 1.00095
\(962\) 7.62330e152 0.177267
\(963\) −5.66350e152 −0.124833
\(964\) −6.56382e152 −0.137148
\(965\) −3.82208e153 −0.757083
\(966\) −2.79458e153 −0.524801
\(967\) 6.73826e153 1.19973 0.599866 0.800100i \(-0.295221\pi\)
0.599866 + 0.800100i \(0.295221\pi\)
\(968\) −4.66053e153 −0.786783
\(969\) −3.06411e152 −0.0490489
\(970\) 1.59924e153 0.242756
\(971\) −5.16901e153 −0.744075 −0.372037 0.928218i \(-0.621341\pi\)
−0.372037 + 0.928218i \(0.621341\pi\)
\(972\) 7.42152e153 1.01316
\(973\) −4.89336e153 −0.633572
\(974\) 4.35992e153 0.535418
\(975\) −1.06700e154 −1.24287
\(976\) −4.42042e153 −0.488425
\(977\) −1.45504e154 −1.52513 −0.762564 0.646913i \(-0.776060\pi\)
−0.762564 + 0.646913i \(0.776060\pi\)
\(978\) 1.31334e153 0.130595
\(979\) −6.02828e152 −0.0568702
\(980\) −4.09975e152 −0.0366956
\(981\) 1.19434e154 1.01432
\(982\) −3.38274e152 −0.0272601
\(983\) 2.41089e154 1.84362 0.921812 0.387638i \(-0.126709\pi\)
0.921812 + 0.387638i \(0.126709\pi\)
\(984\) 1.89076e154 1.37211
\(985\) 1.24903e154 0.860212
\(986\) 2.02562e152 0.0132403
\(987\) −5.85465e152 −0.0363218
\(988\) −2.06323e154 −1.21497
\(989\) 2.98225e154 1.66700
\(990\) −4.04920e152 −0.0214860
\(991\) 3.44196e153 0.173385 0.0866926 0.996235i \(-0.472370\pi\)
0.0866926 + 0.996235i \(0.472370\pi\)
\(992\) −2.93327e154 −1.40282
\(993\) −3.23405e154 −1.46846
\(994\) −1.78458e154 −0.769374
\(995\) 3.71768e154 1.52189
\(996\) −1.94597e154 −0.756451
\(997\) −8.30556e153 −0.306597 −0.153299 0.988180i \(-0.548990\pi\)
−0.153299 + 0.988180i \(0.548990\pi\)
\(998\) 1.31906e154 0.462424
\(999\) −5.02170e153 −0.167197
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))