Properties

Label 1.104.a.a.1.3
Level 1
Weight 104
Character 1.1
Self dual Yes
Analytic conductor 67.184
Analytic rank 0
Dimension 8
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 104 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(67.1843880807\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: multiple of \( 2^{104}\cdot 3^{40}\cdot 5^{12}\cdot 7^{8}\cdot 11\cdot 13^{3}\cdot 17^{2} \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(8.88202e13\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(-1.58307e15 q^{2}\) \(-4.68333e24 q^{3}\) \(-7.63510e30 q^{4}\) \(+1.63346e35 q^{5}\) \(+7.41404e39 q^{6}\) \(-1.85939e42 q^{7}\) \(+2.81411e46 q^{8}\) \(+8.01842e48 q^{9}\) \(+O(q^{10})\) \(q\)\(-1.58307e15 q^{2}\) \(-4.68333e24 q^{3}\) \(-7.63510e30 q^{4}\) \(+1.63346e35 q^{5}\) \(+7.41404e39 q^{6}\) \(-1.85939e42 q^{7}\) \(+2.81411e46 q^{8}\) \(+8.01842e48 q^{9}\) \(-2.58588e50 q^{10}\) \(+3.07131e52 q^{11}\) \(+3.57577e55 q^{12}\) \(-3.16052e56 q^{13}\) \(+2.94354e57 q^{14}\) \(-7.65003e59 q^{15}\) \(+3.28798e61 q^{16}\) \(-2.91320e63 q^{17}\) \(-1.26937e64 q^{18}\) \(-3.76302e65 q^{19}\) \(-1.24716e66 q^{20}\) \(+8.70813e66 q^{21}\) \(-4.86209e67 q^{22}\) \(-2.35323e70 q^{23}\) \(-1.31794e71 q^{24}\) \(-9.59394e71 q^{25}\) \(+5.00333e71 q^{26}\) \(+2.76165e73 q^{27}\) \(+1.41966e73 q^{28}\) \(+2.04298e75 q^{29}\) \(+1.21105e75 q^{30}\) \(-6.25110e76 q^{31}\) \(-3.37436e77 q^{32}\) \(-1.43840e77 q^{33}\) \(+4.61179e78 q^{34}\) \(-3.03723e77 q^{35}\) \(-6.12214e79 q^{36}\) \(-1.13863e81 q^{37}\) \(+5.95712e80 q^{38}\) \(+1.48018e81 q^{39}\) \(+4.59673e81 q^{40}\) \(+7.57593e82 q^{41}\) \(-1.37856e82 q^{42}\) \(-8.64317e82 q^{43}\) \(-2.34497e83 q^{44}\) \(+1.30978e84 q^{45}\) \(+3.72532e85 q^{46}\) \(-1.08657e86 q^{47}\) \(-1.53987e86 q^{48}\) \(-1.10597e87 q^{49}\) \(+1.51879e87 q^{50}\) \(+1.36435e88 q^{51}\) \(+2.41309e87 q^{52}\) \(-4.88897e88 q^{53}\) \(-4.37189e88 q^{54}\) \(+5.01686e87 q^{55}\) \(-5.23252e88 q^{56}\) \(+1.76235e90 q^{57}\) \(-3.23418e90 q^{58}\) \(-8.65596e89 q^{59}\) \(+5.84087e90 q^{60}\) \(+6.27036e91 q^{61}\) \(+9.89593e91 q^{62}\) \(-1.49094e91 q^{63}\) \(+2.00744e92 q^{64}\) \(-5.16258e91 q^{65}\) \(+2.27708e92 q^{66}\) \(+1.07601e94 q^{67}\) \(+2.22426e94 q^{68}\) \(+1.10210e95 q^{69}\) \(+4.80815e92 q^{70}\) \(-6.83478e93 q^{71}\) \(+2.25647e95 q^{72}\) \(+1.38026e96 q^{73}\) \(+1.80253e96 q^{74}\) \(+4.49316e96 q^{75}\) \(+2.87310e96 q^{76}\) \(-5.71076e94 q^{77}\) \(-2.34323e96 q^{78}\) \(+6.37339e97 q^{79}\) \(+5.37077e96 q^{80}\) \(-2.40915e98 q^{81}\) \(-1.19932e98 q^{82}\) \(-1.02368e99 q^{83}\) \(-6.64875e97 q^{84}\) \(-4.75859e98 q^{85}\) \(+1.36827e98 q^{86}\) \(-9.56797e99 q^{87}\) \(+8.64301e98 q^{88}\) \(-2.25719e100 q^{89}\) \(-2.07347e99 q^{90}\) \(+5.87664e98 q^{91}\) \(+1.79671e101 q^{92}\) \(+2.92760e101 q^{93}\) \(+1.72012e101 q^{94}\) \(-6.14673e100 q^{95}\) \(+1.58032e102 q^{96}\) \(-2.30454e102 q^{97}\) \(+1.75082e102 q^{98}\) \(+2.46271e101 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(8q \) \(\mathstrut +\mathstrut 4388929556680440q^{2} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!40\)\(q^{3} \) \(\mathstrut +\mathstrut \)\(48\!\cdots\!64\)\(q^{4} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!20\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!36\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{7} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{8} \) \(\mathstrut +\mathstrut \)\(35\!\cdots\!16\)\(q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 4388929556680440q^{2} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!40\)\(q^{3} \) \(\mathstrut +\mathstrut \)\(48\!\cdots\!64\)\(q^{4} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!20\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!36\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{7} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{8} \) \(\mathstrut +\mathstrut \)\(35\!\cdots\!16\)\(q^{9} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!20\)\(q^{10} \) \(\mathstrut -\mathstrut \)\(53\!\cdots\!44\)\(q^{11} \) \(\mathstrut +\mathstrut \)\(25\!\cdots\!80\)\(q^{12} \) \(\mathstrut -\mathstrut \)\(15\!\cdots\!20\)\(q^{13} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!08\)\(q^{14} \) \(\mathstrut -\mathstrut \)\(30\!\cdots\!60\)\(q^{15} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!88\)\(q^{16} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!20\)\(q^{17} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!40\)\(q^{18} \) \(\mathstrut +\mathstrut \)\(14\!\cdots\!00\)\(q^{19} \) \(\mathstrut +\mathstrut \)\(25\!\cdots\!60\)\(q^{20} \) \(\mathstrut -\mathstrut \)\(46\!\cdots\!04\)\(q^{21} \) \(\mathstrut -\mathstrut \)\(13\!\cdots\!20\)\(q^{22} \) \(\mathstrut +\mathstrut \)\(40\!\cdots\!20\)\(q^{23} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{24} \) \(\mathstrut -\mathstrut \)\(36\!\cdots\!00\)\(q^{25} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!84\)\(q^{26} \) \(\mathstrut +\mathstrut \)\(63\!\cdots\!20\)\(q^{27} \) \(\mathstrut +\mathstrut \)\(51\!\cdots\!80\)\(q^{28} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!00\)\(q^{29} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!60\)\(q^{30} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!36\)\(q^{31} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!40\)\(q^{32} \) \(\mathstrut +\mathstrut \)\(16\!\cdots\!80\)\(q^{33} \) \(\mathstrut -\mathstrut \)\(16\!\cdots\!32\)\(q^{34} \) \(\mathstrut -\mathstrut \)\(15\!\cdots\!80\)\(q^{35} \) \(\mathstrut +\mathstrut \)\(80\!\cdots\!28\)\(q^{36} \) \(\mathstrut -\mathstrut \)\(92\!\cdots\!40\)\(q^{37} \) \(\mathstrut +\mathstrut \)\(19\!\cdots\!20\)\(q^{38} \) \(\mathstrut -\mathstrut \)\(78\!\cdots\!08\)\(q^{39} \) \(\mathstrut +\mathstrut \)\(19\!\cdots\!00\)\(q^{40} \) \(\mathstrut +\mathstrut \)\(22\!\cdots\!76\)\(q^{41} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!80\)\(q^{42} \) \(\mathstrut +\mathstrut \)\(96\!\cdots\!00\)\(q^{43} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!48\)\(q^{44} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!60\)\(q^{45} \) \(\mathstrut +\mathstrut \)\(27\!\cdots\!96\)\(q^{46} \) \(\mathstrut -\mathstrut \)\(29\!\cdots\!20\)\(q^{47} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!20\)\(q^{48} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!44\)\(q^{49} \) \(\mathstrut -\mathstrut \)\(65\!\cdots\!00\)\(q^{50} \) \(\mathstrut -\mathstrut \)\(20\!\cdots\!84\)\(q^{51} \) \(\mathstrut -\mathstrut \)\(36\!\cdots\!00\)\(q^{52} \) \(\mathstrut +\mathstrut \)\(16\!\cdots\!40\)\(q^{53} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!00\)\(q^{54} \) \(\mathstrut -\mathstrut \)\(60\!\cdots\!60\)\(q^{55} \) \(\mathstrut -\mathstrut \)\(50\!\cdots\!00\)\(q^{56} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!40\)\(q^{57} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{58} \) \(\mathstrut -\mathstrut \)\(37\!\cdots\!00\)\(q^{59} \) \(\mathstrut -\mathstrut \)\(44\!\cdots\!80\)\(q^{60} \) \(\mathstrut +\mathstrut \)\(56\!\cdots\!56\)\(q^{61} \) \(\mathstrut +\mathstrut \)\(70\!\cdots\!80\)\(q^{62} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!60\)\(q^{63} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!04\)\(q^{64} \) \(\mathstrut +\mathstrut \)\(51\!\cdots\!40\)\(q^{65} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!52\)\(q^{66} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!20\)\(q^{67} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!40\)\(q^{68} \) \(\mathstrut +\mathstrut \)\(14\!\cdots\!52\)\(q^{69} \) \(\mathstrut +\mathstrut \)\(85\!\cdots\!20\)\(q^{70} \) \(\mathstrut +\mathstrut \)\(13\!\cdots\!96\)\(q^{71} \) \(\mathstrut +\mathstrut \)\(56\!\cdots\!60\)\(q^{72} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!20\)\(q^{73} \) \(\mathstrut +\mathstrut \)\(94\!\cdots\!88\)\(q^{74} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!00\)\(q^{75} \) \(\mathstrut +\mathstrut \)\(62\!\cdots\!00\)\(q^{76} \) \(\mathstrut +\mathstrut \)\(37\!\cdots\!00\)\(q^{77} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!00\)\(q^{78} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!00\)\(q^{79} \) \(\mathstrut -\mathstrut \)\(25\!\cdots\!80\)\(q^{80} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!32\)\(q^{81} \) \(\mathstrut -\mathstrut \)\(34\!\cdots\!20\)\(q^{82} \) \(\mathstrut -\mathstrut \)\(25\!\cdots\!40\)\(q^{83} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!32\)\(q^{84} \) \(\mathstrut -\mathstrut \)\(77\!\cdots\!80\)\(q^{85} \) \(\mathstrut -\mathstrut \)\(22\!\cdots\!44\)\(q^{86} \) \(\mathstrut -\mathstrut \)\(19\!\cdots\!40\)\(q^{87} \) \(\mathstrut -\mathstrut \)\(40\!\cdots\!40\)\(q^{88} \) \(\mathstrut -\mathstrut \)\(24\!\cdots\!00\)\(q^{89} \) \(\mathstrut +\mathstrut \)\(19\!\cdots\!40\)\(q^{90} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!76\)\(q^{91} \) \(\mathstrut +\mathstrut \)\(77\!\cdots\!20\)\(q^{92} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{93} \) \(\mathstrut +\mathstrut \)\(72\!\cdots\!48\)\(q^{94} \) \(\mathstrut +\mathstrut \)\(27\!\cdots\!00\)\(q^{95} \) \(\mathstrut +\mathstrut \)\(88\!\cdots\!96\)\(q^{96} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!80\)\(q^{97} \) \(\mathstrut +\mathstrut \)\(88\!\cdots\!20\)\(q^{98} \) \(\mathstrut -\mathstrut \)\(72\!\cdots\!88\)\(q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58307e15 −0.497113 −0.248556 0.968617i \(-0.579956\pi\)
−0.248556 + 0.968617i \(0.579956\pi\)
\(3\) −4.68333e24 −1.25548 −0.627741 0.778422i \(-0.716020\pi\)
−0.627741 + 0.778422i \(0.716020\pi\)
\(4\) −7.63510e30 −0.752879
\(5\) 1.63346e35 0.164495 0.0822475 0.996612i \(-0.473790\pi\)
0.0822475 + 0.996612i \(0.473790\pi\)
\(6\) 7.41404e39 0.624116
\(7\) −1.85939e42 −0.0558240 −0.0279120 0.999610i \(-0.508886\pi\)
−0.0279120 + 0.999610i \(0.508886\pi\)
\(8\) 2.81411e46 0.871379
\(9\) 8.01842e48 0.576235
\(10\) −2.58588e50 −0.0817726
\(11\) 3.07131e52 0.0717134 0.0358567 0.999357i \(-0.488584\pi\)
0.0358567 + 0.999357i \(0.488584\pi\)
\(12\) 3.57577e55 0.945226
\(13\) −3.16052e56 −0.135418 −0.0677090 0.997705i \(-0.521569\pi\)
−0.0677090 + 0.997705i \(0.521569\pi\)
\(14\) 2.94354e57 0.0277508
\(15\) −7.65003e59 −0.206521
\(16\) 3.28798e61 0.319705
\(17\) −2.91320e63 −1.24810 −0.624052 0.781383i \(-0.714515\pi\)
−0.624052 + 0.781383i \(0.714515\pi\)
\(18\) −1.26937e64 −0.286454
\(19\) −3.76302e65 −0.524476 −0.262238 0.965003i \(-0.584461\pi\)
−0.262238 + 0.965003i \(0.584461\pi\)
\(20\) −1.24716e66 −0.123845
\(21\) 8.70813e66 0.0700860
\(22\) −4.86209e67 −0.0356497
\(23\) −2.35323e70 −1.74856 −0.874280 0.485421i \(-0.838666\pi\)
−0.874280 + 0.485421i \(0.838666\pi\)
\(24\) −1.31794e71 −1.09400
\(25\) −9.59394e71 −0.972941
\(26\) 5.00333e71 0.0673180
\(27\) 2.76165e73 0.532029
\(28\) 1.41966e73 0.0420287
\(29\) 2.04298e75 0.992585 0.496292 0.868155i \(-0.334694\pi\)
0.496292 + 0.868155i \(0.334694\pi\)
\(30\) 1.21105e75 0.102664
\(31\) −6.25110e76 −0.979106 −0.489553 0.871974i \(-0.662840\pi\)
−0.489553 + 0.871974i \(0.662840\pi\)
\(32\) −3.37436e77 −1.03031
\(33\) −1.43840e77 −0.0900349
\(34\) 4.61179e78 0.620448
\(35\) −3.03723e77 −0.00918277
\(36\) −6.12214e79 −0.433835
\(37\) −1.13863e81 −1.96786 −0.983930 0.178554i \(-0.942858\pi\)
−0.983930 + 0.178554i \(0.942858\pi\)
\(38\) 5.95712e80 0.260724
\(39\) 1.48018e81 0.170015
\(40\) 4.59673e81 0.143337
\(41\) 7.57593e82 0.662319 0.331160 0.943575i \(-0.392560\pi\)
0.331160 + 0.943575i \(0.392560\pi\)
\(42\) −1.37856e82 −0.0348407
\(43\) −8.64317e82 −0.0650201 −0.0325100 0.999471i \(-0.510350\pi\)
−0.0325100 + 0.999471i \(0.510350\pi\)
\(44\) −2.34497e83 −0.0539915
\(45\) 1.30978e84 0.0947878
\(46\) 3.72532e85 0.869232
\(47\) −1.08657e86 −0.837565 −0.418782 0.908087i \(-0.637543\pi\)
−0.418782 + 0.908087i \(0.637543\pi\)
\(48\) −1.53987e86 −0.401384
\(49\) −1.10597e87 −0.996884
\(50\) 1.51879e87 0.483662
\(51\) 1.36435e88 1.56697
\(52\) 2.41309e87 0.101953
\(53\) −4.88897e88 −0.774479 −0.387240 0.921979i \(-0.626571\pi\)
−0.387240 + 0.921979i \(0.626571\pi\)
\(54\) −4.37189e88 −0.264479
\(55\) 5.01686e87 0.0117965
\(56\) −5.23252e88 −0.0486438
\(57\) 1.76235e90 0.658471
\(58\) −3.23418e90 −0.493427
\(59\) −8.65596e89 −0.0547566 −0.0273783 0.999625i \(-0.508716\pi\)
−0.0273783 + 0.999625i \(0.508716\pi\)
\(60\) 5.84087e90 0.155485
\(61\) 6.27036e91 0.712535 0.356267 0.934384i \(-0.384049\pi\)
0.356267 + 0.934384i \(0.384049\pi\)
\(62\) 9.89593e91 0.486726
\(63\) −1.49094e91 −0.0321677
\(64\) 2.00744e92 0.192474
\(65\) −5.16258e91 −0.0222756
\(66\) 2.27708e92 0.0447575
\(67\) 1.07601e94 0.974905 0.487452 0.873150i \(-0.337926\pi\)
0.487452 + 0.873150i \(0.337926\pi\)
\(68\) 2.22426e94 0.939671
\(69\) 1.10210e95 2.19529
\(70\) 4.80815e92 0.00456487
\(71\) −6.83478e93 −0.0312550 −0.0156275 0.999878i \(-0.504975\pi\)
−0.0156275 + 0.999878i \(0.504975\pi\)
\(72\) 2.25647e95 0.502119
\(73\) 1.38026e96 1.50950 0.754751 0.656012i \(-0.227758\pi\)
0.754751 + 0.656012i \(0.227758\pi\)
\(74\) 1.80253e96 0.978249
\(75\) 4.49316e96 1.22151
\(76\) 2.87310e96 0.394867
\(77\) −5.71076e94 −0.00400333
\(78\) −2.34323e96 −0.0845166
\(79\) 6.37339e97 1.19282 0.596410 0.802680i \(-0.296593\pi\)
0.596410 + 0.802680i \(0.296593\pi\)
\(80\) 5.37077e96 0.0525899
\(81\) −2.40915e98 −1.24419
\(82\) −1.19932e98 −0.329247
\(83\) −1.02368e99 −1.50536 −0.752682 0.658384i \(-0.771240\pi\)
−0.752682 + 0.658384i \(0.771240\pi\)
\(84\) −6.64875e97 −0.0527663
\(85\) −4.75859e98 −0.205307
\(86\) 1.36827e98 0.0323223
\(87\) −9.56797e99 −1.24617
\(88\) 8.64301e98 0.0624895
\(89\) −2.25719e100 −0.911976 −0.455988 0.889986i \(-0.650714\pi\)
−0.455988 + 0.889986i \(0.650714\pi\)
\(90\) −2.07347e99 −0.0471202
\(91\) 5.87664e98 0.00755958
\(92\) 1.79671e101 1.31645
\(93\) 2.92760e101 1.22925
\(94\) 1.72012e101 0.416364
\(95\) −6.14673e100 −0.0862737
\(96\) 1.58032e102 1.29353
\(97\) −2.30454e102 −1.10622 −0.553109 0.833109i \(-0.686559\pi\)
−0.553109 + 0.833109i \(0.686559\pi\)
\(98\) 1.75082e102 0.495564
\(99\) 2.46271e101 0.0413238
\(100\) 7.32507e102 0.732507
\(101\) −1.56311e103 −0.936351 −0.468175 0.883636i \(-0.655088\pi\)
−0.468175 + 0.883636i \(0.655088\pi\)
\(102\) −2.15986e103 −0.778962
\(103\) −5.39737e103 −1.17778 −0.588892 0.808212i \(-0.700436\pi\)
−0.588892 + 0.808212i \(0.700436\pi\)
\(104\) −8.89407e102 −0.118000
\(105\) 1.42244e102 0.0115288
\(106\) 7.73957e103 0.385004
\(107\) −2.57850e104 −0.790867 −0.395433 0.918495i \(-0.629406\pi\)
−0.395433 + 0.918495i \(0.629406\pi\)
\(108\) −2.10855e104 −0.400554
\(109\) 1.79044e104 0.211590 0.105795 0.994388i \(-0.466261\pi\)
0.105795 + 0.994388i \(0.466261\pi\)
\(110\) −7.94203e102 −0.00586419
\(111\) 5.33259e105 2.47061
\(112\) −6.11362e103 −0.0178472
\(113\) 5.39741e105 0.996887 0.498443 0.866922i \(-0.333905\pi\)
0.498443 + 0.866922i \(0.333905\pi\)
\(114\) −2.78992e105 −0.327334
\(115\) −3.84390e105 −0.287630
\(116\) −1.55984e106 −0.747296
\(117\) −2.53424e105 −0.0780326
\(118\) 1.37030e105 0.0272202
\(119\) 5.41677e105 0.0696741
\(120\) −2.15280e106 −0.179958
\(121\) −1.82477e107 −0.994857
\(122\) −9.92641e106 −0.354210
\(123\) −3.54806e107 −0.831530
\(124\) 4.77278e107 0.737148
\(125\) −3.17784e107 −0.324539
\(126\) 2.36025e106 0.0159910
\(127\) 3.01584e108 1.35993 0.679966 0.733244i \(-0.261995\pi\)
0.679966 + 0.733244i \(0.261995\pi\)
\(128\) 3.10421e108 0.934627
\(129\) 4.04788e107 0.0816315
\(130\) 8.17273e106 0.0110735
\(131\) 1.30289e108 0.118970 0.0594849 0.998229i \(-0.481054\pi\)
0.0594849 + 0.998229i \(0.481054\pi\)
\(132\) 1.09823e108 0.0677854
\(133\) 6.99691e107 0.0292784
\(134\) −1.70339e109 −0.484638
\(135\) 4.51105e108 0.0875162
\(136\) −8.19807e109 −1.08757
\(137\) −4.66180e109 −0.424076 −0.212038 0.977261i \(-0.568010\pi\)
−0.212038 + 0.977261i \(0.568010\pi\)
\(138\) −1.74469e110 −1.09131
\(139\) 1.17771e110 0.507897 0.253949 0.967218i \(-0.418271\pi\)
0.253949 + 0.967218i \(0.418271\pi\)
\(140\) 2.31896e108 0.00691351
\(141\) 5.08878e110 1.05155
\(142\) 1.08199e109 0.0155373
\(143\) −9.70695e108 −0.00971129
\(144\) 2.63644e110 0.184225
\(145\) 3.33713e110 0.163275
\(146\) −2.18505e111 −0.750393
\(147\) 5.17962e111 1.25157
\(148\) 8.69356e111 1.48156
\(149\) 2.40101e111 0.289269 0.144634 0.989485i \(-0.453799\pi\)
0.144634 + 0.989485i \(0.453799\pi\)
\(150\) −7.11299e111 −0.607229
\(151\) −2.77017e112 −1.67955 −0.839777 0.542931i \(-0.817315\pi\)
−0.839777 + 0.542931i \(0.817315\pi\)
\(152\) −1.05896e112 −0.457017
\(153\) −2.33593e112 −0.719201
\(154\) 9.04052e109 0.00199011
\(155\) −1.02109e112 −0.161058
\(156\) −1.13013e112 −0.128001
\(157\) 1.15405e113 0.940575 0.470287 0.882513i \(-0.344150\pi\)
0.470287 + 0.882513i \(0.344150\pi\)
\(158\) −1.00895e113 −0.592966
\(159\) 2.28967e113 0.972345
\(160\) −5.51187e112 −0.169481
\(161\) 4.37557e112 0.0976116
\(162\) 3.81386e113 0.618502
\(163\) 7.49948e113 0.885869 0.442934 0.896554i \(-0.353937\pi\)
0.442934 + 0.896554i \(0.353937\pi\)
\(164\) −5.78430e113 −0.498646
\(165\) −2.34956e112 −0.0148103
\(166\) 1.62055e114 0.748336
\(167\) −3.65116e114 −1.23747 −0.618733 0.785602i \(-0.712354\pi\)
−0.618733 + 0.785602i \(0.712354\pi\)
\(168\) 2.45057e113 0.0610715
\(169\) −5.34721e114 −0.981662
\(170\) 7.53317e113 0.102061
\(171\) −3.01735e114 −0.302222
\(172\) 6.59914e113 0.0489522
\(173\) −1.32007e115 −0.726479 −0.363240 0.931696i \(-0.618329\pi\)
−0.363240 + 0.931696i \(0.618329\pi\)
\(174\) 1.51468e115 0.619488
\(175\) 1.78389e114 0.0543135
\(176\) 1.00984e114 0.0229271
\(177\) 4.05387e114 0.0687459
\(178\) 3.57329e115 0.453355
\(179\) 1.12294e116 1.06764 0.533822 0.845597i \(-0.320755\pi\)
0.533822 + 0.845597i \(0.320755\pi\)
\(180\) −1.00003e115 −0.0713637
\(181\) 2.74049e116 1.47022 0.735109 0.677949i \(-0.237131\pi\)
0.735109 + 0.677949i \(0.237131\pi\)
\(182\) −9.30313e113 −0.00375796
\(183\) −2.93662e116 −0.894575
\(184\) −6.62225e116 −1.52366
\(185\) −1.85991e116 −0.323703
\(186\) −4.63459e116 −0.611076
\(187\) −8.94734e115 −0.0895058
\(188\) 8.29608e116 0.630585
\(189\) −5.13499e115 −0.0297000
\(190\) 9.73070e115 0.0428878
\(191\) 1.02143e117 0.343550 0.171775 0.985136i \(-0.445050\pi\)
0.171775 + 0.985136i \(0.445050\pi\)
\(192\) −9.40149e116 −0.241648
\(193\) −3.58202e117 −0.704574 −0.352287 0.935892i \(-0.614596\pi\)
−0.352287 + 0.935892i \(0.614596\pi\)
\(194\) 3.64825e117 0.549915
\(195\) 2.41781e116 0.0279666
\(196\) 8.44417e117 0.750533
\(197\) 2.01940e118 1.38106 0.690529 0.723305i \(-0.257378\pi\)
0.690529 + 0.723305i \(0.257378\pi\)
\(198\) −3.89863e116 −0.0205426
\(199\) 9.22038e117 0.374814 0.187407 0.982282i \(-0.439992\pi\)
0.187407 + 0.982282i \(0.439992\pi\)
\(200\) −2.69984e118 −0.847800
\(201\) −5.03929e118 −1.22398
\(202\) 2.47451e118 0.465472
\(203\) −3.79870e117 −0.0554101
\(204\) −1.04169e119 −1.17974
\(205\) 1.23750e118 0.108948
\(206\) 8.54442e118 0.585491
\(207\) −1.88692e119 −1.00758
\(208\) −1.03917e118 −0.0432938
\(209\) −1.15574e118 −0.0376120
\(210\) −2.25182e117 −0.00573112
\(211\) 6.49874e119 1.29504 0.647519 0.762049i \(-0.275807\pi\)
0.647519 + 0.762049i \(0.275807\pi\)
\(212\) 3.73277e119 0.583089
\(213\) 3.20096e118 0.0392401
\(214\) 4.08195e119 0.393150
\(215\) −1.41183e118 −0.0106955
\(216\) 7.77160e119 0.463599
\(217\) 1.16232e119 0.0546576
\(218\) −2.83438e119 −0.105184
\(219\) −6.46422e120 −1.89515
\(220\) −3.83042e118 −0.00888133
\(221\) 9.20723e119 0.169016
\(222\) −8.44186e120 −1.22817
\(223\) 1.19739e121 1.38209 0.691044 0.722813i \(-0.257151\pi\)
0.691044 + 0.722813i \(0.257151\pi\)
\(224\) 6.27424e119 0.0575159
\(225\) −7.69283e120 −0.560643
\(226\) −8.54448e120 −0.495565
\(227\) 2.43044e121 1.12293 0.561466 0.827500i \(-0.310238\pi\)
0.561466 + 0.827500i \(0.310238\pi\)
\(228\) −1.34557e121 −0.495748
\(229\) −5.16229e120 −0.151815 −0.0759076 0.997115i \(-0.524185\pi\)
−0.0759076 + 0.997115i \(0.524185\pi\)
\(230\) 6.08516e120 0.142984
\(231\) 2.67454e119 0.00502611
\(232\) 5.74918e121 0.864917
\(233\) 1.28537e122 1.54952 0.774760 0.632256i \(-0.217871\pi\)
0.774760 + 0.632256i \(0.217871\pi\)
\(234\) 4.01188e120 0.0387910
\(235\) −1.77487e121 −0.137775
\(236\) 6.60891e120 0.0412251
\(237\) −2.98487e122 −1.49756
\(238\) −8.57512e120 −0.0346359
\(239\) −4.40462e122 −1.43356 −0.716781 0.697298i \(-0.754385\pi\)
−0.716781 + 0.697298i \(0.754385\pi\)
\(240\) −2.51531e121 −0.0660257
\(241\) −1.75547e122 −0.371977 −0.185989 0.982552i \(-0.559549\pi\)
−0.185989 + 0.982552i \(0.559549\pi\)
\(242\) 2.88873e122 0.494556
\(243\) 7.43998e122 1.03003
\(244\) −4.78748e122 −0.536452
\(245\) −1.80655e122 −0.163982
\(246\) 5.61682e122 0.413364
\(247\) 1.18931e122 0.0710235
\(248\) −1.75913e123 −0.853172
\(249\) 4.79422e123 1.88996
\(250\) 5.03075e122 0.161333
\(251\) 1.95103e123 0.509409 0.254704 0.967019i \(-0.418022\pi\)
0.254704 + 0.967019i \(0.418022\pi\)
\(252\) 1.13834e122 0.0242184
\(253\) −7.22750e122 −0.125395
\(254\) −4.77429e123 −0.676040
\(255\) 2.22861e123 0.257759
\(256\) −6.94997e123 −0.657089
\(257\) −1.42184e124 −1.09975 −0.549875 0.835247i \(-0.685325\pi\)
−0.549875 + 0.835247i \(0.685325\pi\)
\(258\) −6.40808e122 −0.0405801
\(259\) 2.11716e123 0.109854
\(260\) 3.94168e122 0.0167708
\(261\) 1.63815e124 0.571962
\(262\) −2.06257e123 −0.0591415
\(263\) −2.02190e124 −0.476474 −0.238237 0.971207i \(-0.576570\pi\)
−0.238237 + 0.971207i \(0.576570\pi\)
\(264\) −4.04781e123 −0.0784545
\(265\) −7.98592e123 −0.127398
\(266\) −1.10766e123 −0.0145547
\(267\) 1.05712e125 1.14497
\(268\) −8.21541e124 −0.733985
\(269\) 2.59354e125 1.91272 0.956358 0.292196i \(-0.0943859\pi\)
0.956358 + 0.292196i \(0.0943859\pi\)
\(270\) −7.14130e123 −0.0435054
\(271\) 3.83657e124 0.193208 0.0966038 0.995323i \(-0.469202\pi\)
0.0966038 + 0.995323i \(0.469202\pi\)
\(272\) −9.57853e124 −0.399025
\(273\) −2.75223e123 −0.00949091
\(274\) 7.37994e124 0.210814
\(275\) −2.94660e124 −0.0697729
\(276\) −8.41461e125 −1.65278
\(277\) −3.94937e125 −0.643902 −0.321951 0.946756i \(-0.604339\pi\)
−0.321951 + 0.946756i \(0.604339\pi\)
\(278\) −1.86439e125 −0.252482
\(279\) −5.01240e125 −0.564195
\(280\) −8.54711e123 −0.00800167
\(281\) 1.46785e126 1.14368 0.571842 0.820364i \(-0.306229\pi\)
0.571842 + 0.820364i \(0.306229\pi\)
\(282\) −8.05588e125 −0.522738
\(283\) 2.91694e126 1.57734 0.788672 0.614815i \(-0.210769\pi\)
0.788672 + 0.614815i \(0.210769\pi\)
\(284\) 5.21842e124 0.0235312
\(285\) 2.87872e125 0.108315
\(286\) 1.53668e124 0.00482761
\(287\) −1.40866e125 −0.0369733
\(288\) −2.70570e126 −0.593700
\(289\) 3.03871e126 0.557763
\(290\) −5.28290e125 −0.0811663
\(291\) 1.07930e127 1.38884
\(292\) −1.05384e127 −1.13647
\(293\) 9.88298e126 0.893728 0.446864 0.894602i \(-0.352541\pi\)
0.446864 + 0.894602i \(0.352541\pi\)
\(294\) −8.19969e126 −0.622171
\(295\) −1.41391e125 −0.00900719
\(296\) −3.20423e127 −1.71475
\(297\) 8.48190e125 0.0381536
\(298\) −3.80097e126 −0.143799
\(299\) 7.43744e126 0.236787
\(300\) −3.43057e127 −0.919649
\(301\) 1.60710e125 0.00362968
\(302\) 4.38538e127 0.834928
\(303\) 7.32056e127 1.17557
\(304\) −1.23727e127 −0.167678
\(305\) 1.02424e127 0.117208
\(306\) 3.69793e127 0.357524
\(307\) −1.42830e128 −1.16733 −0.583663 0.811996i \(-0.698381\pi\)
−0.583663 + 0.811996i \(0.698381\pi\)
\(308\) 4.36022e125 0.00301402
\(309\) 2.52777e128 1.47869
\(310\) 1.61646e127 0.0800640
\(311\) 2.21990e128 0.931481 0.465740 0.884921i \(-0.345788\pi\)
0.465740 + 0.884921i \(0.345788\pi\)
\(312\) 4.16539e127 0.148147
\(313\) −3.90679e128 −1.17838 −0.589191 0.807994i \(-0.700554\pi\)
−0.589191 + 0.807994i \(0.700554\pi\)
\(314\) −1.82694e128 −0.467572
\(315\) −2.43538e126 −0.00529143
\(316\) −4.86614e128 −0.898049
\(317\) −6.05018e128 −0.948891 −0.474445 0.880285i \(-0.657351\pi\)
−0.474445 + 0.880285i \(0.657351\pi\)
\(318\) −3.62470e128 −0.483365
\(319\) 6.27463e127 0.0711816
\(320\) 3.27906e127 0.0316611
\(321\) 1.20760e129 0.992919
\(322\) −6.92682e127 −0.0485240
\(323\) 1.09624e129 0.654601
\(324\) 1.83941e129 0.936723
\(325\) 3.03219e128 0.131754
\(326\) −1.18722e129 −0.440377
\(327\) −8.38521e128 −0.265647
\(328\) 2.13195e129 0.577131
\(329\) 2.02036e128 0.0467562
\(330\) 3.71952e127 0.00736239
\(331\) −5.08883e129 −0.861938 −0.430969 0.902367i \(-0.641828\pi\)
−0.430969 + 0.902367i \(0.641828\pi\)
\(332\) 7.81588e129 1.13336
\(333\) −9.13002e129 −1.13395
\(334\) 5.78004e129 0.615160
\(335\) 1.75761e129 0.160367
\(336\) 2.86321e128 0.0224069
\(337\) −2.05642e130 −1.38093 −0.690465 0.723366i \(-0.742594\pi\)
−0.690465 + 0.723366i \(0.742594\pi\)
\(338\) 8.46500e129 0.487997
\(339\) −2.52779e130 −1.25157
\(340\) 3.63323e129 0.154571
\(341\) −1.91991e129 −0.0702150
\(342\) 4.77667e129 0.150238
\(343\) 4.11928e129 0.111474
\(344\) −2.43228e129 −0.0566571
\(345\) 1.80023e130 0.361114
\(346\) 2.08976e130 0.361142
\(347\) 9.96252e130 1.48389 0.741944 0.670461i \(-0.233904\pi\)
0.741944 + 0.670461i \(0.233904\pi\)
\(348\) 7.30524e130 0.938217
\(349\) −6.55429e130 −0.726134 −0.363067 0.931763i \(-0.618270\pi\)
−0.363067 + 0.931763i \(0.618270\pi\)
\(350\) −2.82401e129 −0.0269999
\(351\) −8.72828e129 −0.0720463
\(352\) −1.03637e130 −0.0738869
\(353\) −2.03635e131 −1.25446 −0.627228 0.778836i \(-0.715810\pi\)
−0.627228 + 0.778836i \(0.715810\pi\)
\(354\) −6.41756e129 −0.0341745
\(355\) −1.11643e129 −0.00514130
\(356\) 1.72339e131 0.686607
\(357\) −2.53685e130 −0.0874746
\(358\) −1.77770e131 −0.530740
\(359\) −3.27207e131 −0.846172 −0.423086 0.906090i \(-0.639053\pi\)
−0.423086 + 0.906090i \(0.639053\pi\)
\(360\) 3.68585e130 0.0825961
\(361\) −3.73176e131 −0.724925
\(362\) −4.33838e131 −0.730864
\(363\) 8.54599e131 1.24903
\(364\) −4.48687e129 −0.00569144
\(365\) 2.25460e131 0.248305
\(366\) 4.64887e131 0.444705
\(367\) 2.28541e132 1.89960 0.949801 0.312855i \(-0.101286\pi\)
0.949801 + 0.312855i \(0.101286\pi\)
\(368\) −7.73736e131 −0.559024
\(369\) 6.07470e131 0.381652
\(370\) 2.94436e131 0.160917
\(371\) 9.09049e130 0.0432345
\(372\) −2.23525e132 −0.925476
\(373\) −1.92988e132 −0.695867 −0.347933 0.937519i \(-0.613116\pi\)
−0.347933 + 0.937519i \(0.613116\pi\)
\(374\) 1.41642e131 0.0444945
\(375\) 1.48829e132 0.407453
\(376\) −3.05773e132 −0.729836
\(377\) −6.45689e131 −0.134414
\(378\) 8.12904e130 0.0147643
\(379\) 8.27563e132 1.31184 0.655921 0.754829i \(-0.272280\pi\)
0.655921 + 0.754829i \(0.272280\pi\)
\(380\) 4.69309e131 0.0649537
\(381\) −1.41242e133 −1.70737
\(382\) −1.61699e132 −0.170783
\(383\) 4.88075e132 0.450557 0.225278 0.974294i \(-0.427671\pi\)
0.225278 + 0.974294i \(0.427671\pi\)
\(384\) −1.45381e133 −1.17341
\(385\) −9.32828e129 −0.000658528 0
\(386\) 5.67059e132 0.350253
\(387\) −6.93046e131 −0.0374668
\(388\) 1.75954e133 0.832848
\(389\) 2.26635e133 0.939554 0.469777 0.882785i \(-0.344334\pi\)
0.469777 + 0.882785i \(0.344334\pi\)
\(390\) −3.82756e131 −0.0139026
\(391\) 6.85542e133 2.18238
\(392\) −3.11232e133 −0.868663
\(393\) −6.10188e132 −0.149365
\(394\) −3.19685e133 −0.686541
\(395\) 1.04107e133 0.196213
\(396\) −1.88030e132 −0.0311118
\(397\) −5.23196e133 −0.760244 −0.380122 0.924936i \(-0.624118\pi\)
−0.380122 + 0.924936i \(0.624118\pi\)
\(398\) −1.45965e133 −0.186325
\(399\) −3.27689e132 −0.0367585
\(400\) −3.15447e133 −0.311054
\(401\) −2.00592e134 −1.73932 −0.869659 0.493653i \(-0.835661\pi\)
−0.869659 + 0.493653i \(0.835661\pi\)
\(402\) 7.97755e133 0.608454
\(403\) 1.97568e133 0.132589
\(404\) 1.19345e134 0.704958
\(405\) −3.93525e133 −0.204663
\(406\) 6.01360e132 0.0275451
\(407\) −3.49709e133 −0.141122
\(408\) 3.83943e134 1.36543
\(409\) −3.20559e134 −1.00498 −0.502490 0.864583i \(-0.667583\pi\)
−0.502490 + 0.864583i \(0.667583\pi\)
\(410\) −1.95904e133 −0.0541596
\(411\) 2.18327e134 0.532420
\(412\) 4.12095e134 0.886728
\(413\) 1.60948e132 0.00305673
\(414\) 2.98712e134 0.500882
\(415\) −1.67213e134 −0.247625
\(416\) 1.06647e134 0.139522
\(417\) −5.51560e134 −0.637656
\(418\) 1.82962e133 0.0186974
\(419\) 3.99514e134 0.361002 0.180501 0.983575i \(-0.442228\pi\)
0.180501 + 0.983575i \(0.442228\pi\)
\(420\) −1.08604e133 −0.00867979
\(421\) −1.57861e135 −1.11621 −0.558105 0.829771i \(-0.688471\pi\)
−0.558105 + 0.829771i \(0.688471\pi\)
\(422\) −1.02880e135 −0.643780
\(423\) −8.71259e134 −0.482634
\(424\) −1.37581e135 −0.674865
\(425\) 2.79491e135 1.21433
\(426\) −5.06734e133 −0.0195068
\(427\) −1.16590e134 −0.0397765
\(428\) 1.96871e135 0.595427
\(429\) 4.54609e133 0.0121923
\(430\) 2.23502e133 0.00531686
\(431\) −2.75097e135 −0.580640 −0.290320 0.956930i \(-0.593762\pi\)
−0.290320 + 0.956930i \(0.593762\pi\)
\(432\) 9.08026e134 0.170093
\(433\) 3.77565e135 0.627863 0.313931 0.949446i \(-0.398354\pi\)
0.313931 + 0.949446i \(0.398354\pi\)
\(434\) −1.84004e134 −0.0271710
\(435\) −1.56289e135 −0.204989
\(436\) −1.36702e135 −0.159301
\(437\) 8.85524e135 0.917079
\(438\) 1.02333e136 0.942104
\(439\) 9.89206e135 0.809774 0.404887 0.914367i \(-0.367311\pi\)
0.404887 + 0.914367i \(0.367311\pi\)
\(440\) 1.41180e134 0.0102792
\(441\) −8.86812e135 −0.574439
\(442\) −1.45757e135 −0.0840199
\(443\) −1.71342e136 −0.879166 −0.439583 0.898202i \(-0.644874\pi\)
−0.439583 + 0.898202i \(0.644874\pi\)
\(444\) −4.07148e136 −1.86007
\(445\) −3.68703e135 −0.150015
\(446\) −1.89555e136 −0.687054
\(447\) −1.12447e136 −0.363172
\(448\) −3.73260e134 −0.0107447
\(449\) 5.34739e136 1.37232 0.686160 0.727450i \(-0.259295\pi\)
0.686160 + 0.727450i \(0.259295\pi\)
\(450\) 1.21783e136 0.278703
\(451\) 2.32680e135 0.0474972
\(452\) −4.12098e136 −0.750535
\(453\) 1.29736e137 2.10865
\(454\) −3.84756e136 −0.558224
\(455\) 9.59925e133 0.00124351
\(456\) 4.95944e136 0.573777
\(457\) 3.13360e135 0.0323861 0.0161931 0.999869i \(-0.494845\pi\)
0.0161931 + 0.999869i \(0.494845\pi\)
\(458\) 8.17226e135 0.0754693
\(459\) −8.04525e136 −0.664028
\(460\) 2.93486e136 0.216550
\(461\) −3.02377e136 −0.199504 −0.0997518 0.995012i \(-0.531805\pi\)
−0.0997518 + 0.995012i \(0.531805\pi\)
\(462\) −4.23398e134 −0.00249854
\(463\) 1.29423e137 0.683268 0.341634 0.939833i \(-0.389020\pi\)
0.341634 + 0.939833i \(0.389020\pi\)
\(464\) 6.71728e136 0.317335
\(465\) 4.78211e136 0.202205
\(466\) −2.03482e137 −0.770286
\(467\) −3.40048e137 −1.15271 −0.576356 0.817199i \(-0.695526\pi\)
−0.576356 + 0.817199i \(0.695526\pi\)
\(468\) 1.93492e136 0.0587491
\(469\) −2.00071e136 −0.0544231
\(470\) 2.80974e136 0.0684899
\(471\) −5.40481e137 −1.18087
\(472\) −2.43588e136 −0.0477137
\(473\) −2.65458e135 −0.00466281
\(474\) 4.72525e137 0.744459
\(475\) 3.61022e137 0.510285
\(476\) −4.13575e136 −0.0524562
\(477\) −3.92018e137 −0.446282
\(478\) 6.97282e137 0.712642
\(479\) 3.67209e137 0.337003 0.168502 0.985701i \(-0.446107\pi\)
0.168502 + 0.985701i \(0.446107\pi\)
\(480\) 2.58139e137 0.212780
\(481\) 3.59867e137 0.266484
\(482\) 2.77903e137 0.184915
\(483\) −2.04922e137 −0.122550
\(484\) 1.39323e138 0.749007
\(485\) −3.76438e137 −0.181967
\(486\) −1.17780e138 −0.512040
\(487\) −3.64986e137 −0.142736 −0.0713681 0.997450i \(-0.522737\pi\)
−0.0713681 + 0.997450i \(0.522737\pi\)
\(488\) 1.76455e138 0.620888
\(489\) −3.51225e138 −1.11219
\(490\) 2.85990e137 0.0815178
\(491\) −1.88298e138 −0.483223 −0.241612 0.970373i \(-0.577676\pi\)
−0.241612 + 0.970373i \(0.577676\pi\)
\(492\) 2.70898e138 0.626041
\(493\) −5.95161e138 −1.23885
\(494\) −1.88276e137 −0.0353067
\(495\) 4.02273e136 0.00679756
\(496\) −2.05535e138 −0.313025
\(497\) 1.27085e136 0.00174478
\(498\) −7.58959e138 −0.939522
\(499\) 1.62402e138 0.181306 0.0906530 0.995883i \(-0.471105\pi\)
0.0906530 + 0.995883i \(0.471105\pi\)
\(500\) 2.42632e138 0.244339
\(501\) 1.70996e139 1.55362
\(502\) −3.08861e138 −0.253234
\(503\) 2.61353e139 1.93409 0.967046 0.254603i \(-0.0819447\pi\)
0.967046 + 0.254603i \(0.0819447\pi\)
\(504\) −4.19566e137 −0.0280303
\(505\) −2.55327e138 −0.154025
\(506\) 1.14416e138 0.0623356
\(507\) 2.50428e139 1.23246
\(508\) −2.30263e139 −1.02386
\(509\) −3.05748e139 −1.22856 −0.614282 0.789086i \(-0.710554\pi\)
−0.614282 + 0.789086i \(0.710554\pi\)
\(510\) −3.52804e138 −0.128135
\(511\) −2.56644e138 −0.0842664
\(512\) −2.04782e139 −0.607979
\(513\) −1.03922e139 −0.279037
\(514\) 2.25087e139 0.546700
\(515\) −8.81639e138 −0.193740
\(516\) −3.09060e138 −0.0614586
\(517\) −3.33720e138 −0.0600646
\(518\) −3.35161e138 −0.0546098
\(519\) 6.18234e139 0.912082
\(520\) −1.45281e138 −0.0194105
\(521\) −4.18443e139 −0.506400 −0.253200 0.967414i \(-0.581483\pi\)
−0.253200 + 0.967414i \(0.581483\pi\)
\(522\) −2.59330e139 −0.284330
\(523\) −1.24890e140 −1.24076 −0.620382 0.784299i \(-0.713023\pi\)
−0.620382 + 0.784299i \(0.713023\pi\)
\(524\) −9.94771e138 −0.0895699
\(525\) −8.35453e138 −0.0681896
\(526\) 3.20081e139 0.236862
\(527\) 1.82107e140 1.22203
\(528\) −4.72942e138 −0.0287846
\(529\) 3.72648e140 2.05746
\(530\) 1.26423e139 0.0633312
\(531\) −6.94071e138 −0.0315527
\(532\) −5.34221e138 −0.0220431
\(533\) −2.39439e139 −0.0896899
\(534\) −1.67349e140 −0.569179
\(535\) −4.21188e139 −0.130094
\(536\) 3.02800e140 0.849511
\(537\) −5.25912e140 −1.34041
\(538\) −4.10575e140 −0.950836
\(539\) −3.39677e139 −0.0714899
\(540\) −3.44423e139 −0.0658891
\(541\) 3.58457e140 0.623416 0.311708 0.950178i \(-0.399099\pi\)
0.311708 + 0.950178i \(0.399099\pi\)
\(542\) −6.07355e139 −0.0960460
\(543\) −1.28346e141 −1.84583
\(544\) 9.83017e140 1.28593
\(545\) 2.92460e139 0.0348054
\(546\) 4.35696e138 0.00471805
\(547\) −7.62720e140 −0.751653 −0.375827 0.926690i \(-0.622641\pi\)
−0.375827 + 0.926690i \(0.622641\pi\)
\(548\) 3.55933e140 0.319278
\(549\) 5.02784e140 0.410588
\(550\) 4.66467e139 0.0346850
\(551\) −7.68778e140 −0.520587
\(552\) 3.10142e141 1.91293
\(553\) −1.18506e140 −0.0665880
\(554\) 6.25213e140 0.320092
\(555\) 8.71056e140 0.406404
\(556\) −8.99192e140 −0.382385
\(557\) 3.12489e140 0.121141 0.0605706 0.998164i \(-0.480708\pi\)
0.0605706 + 0.998164i \(0.480708\pi\)
\(558\) 7.93497e140 0.280469
\(559\) 2.73169e139 0.00880489
\(560\) −9.98635e138 −0.00293578
\(561\) 4.19034e140 0.112373
\(562\) −2.32371e141 −0.568540
\(563\) −5.06077e141 −1.12989 −0.564943 0.825130i \(-0.691102\pi\)
−0.564943 + 0.825130i \(0.691102\pi\)
\(564\) −3.88533e141 −0.791688
\(565\) 8.81645e140 0.163983
\(566\) −4.61772e141 −0.784118
\(567\) 4.47955e140 0.0694556
\(568\) −1.92338e140 −0.0272350
\(569\) 1.18893e142 1.53771 0.768854 0.639424i \(-0.220827\pi\)
0.768854 + 0.639424i \(0.220827\pi\)
\(570\) −4.55721e140 −0.0538449
\(571\) −5.99838e141 −0.647552 −0.323776 0.946134i \(-0.604952\pi\)
−0.323776 + 0.946134i \(0.604952\pi\)
\(572\) 7.41135e139 0.00731142
\(573\) −4.78369e141 −0.431320
\(574\) 2.23000e140 0.0183799
\(575\) 2.25767e142 1.70125
\(576\) 1.60965e141 0.110910
\(577\) −1.05844e142 −0.666981 −0.333490 0.942753i \(-0.608227\pi\)
−0.333490 + 0.942753i \(0.608227\pi\)
\(578\) −4.81048e141 −0.277271
\(579\) 1.67758e142 0.884580
\(580\) −2.54793e141 −0.122926
\(581\) 1.90341e141 0.0840354
\(582\) −1.70860e142 −0.690409
\(583\) −1.50155e141 −0.0555406
\(584\) 3.88420e142 1.31535
\(585\) −4.13958e140 −0.0128360
\(586\) −1.56454e142 −0.444284
\(587\) 5.25858e142 1.36775 0.683874 0.729600i \(-0.260294\pi\)
0.683874 + 0.729600i \(0.260294\pi\)
\(588\) −3.95469e142 −0.942280
\(589\) 2.35230e142 0.513518
\(590\) 2.23832e140 0.00447759
\(591\) −9.45752e142 −1.73389
\(592\) −3.74379e142 −0.629135
\(593\) −6.86182e142 −1.05712 −0.528558 0.848897i \(-0.677267\pi\)
−0.528558 + 0.848897i \(0.677267\pi\)
\(594\) −1.34274e141 −0.0189667
\(595\) 8.84806e140 0.0114611
\(596\) −1.83320e142 −0.217784
\(597\) −4.31821e142 −0.470572
\(598\) −1.17740e142 −0.117710
\(599\) 1.90341e143 1.74603 0.873013 0.487697i \(-0.162163\pi\)
0.873013 + 0.487697i \(0.162163\pi\)
\(600\) 1.26443e143 1.06440
\(601\) −6.08589e141 −0.0470207 −0.0235103 0.999724i \(-0.507484\pi\)
−0.0235103 + 0.999724i \(0.507484\pi\)
\(602\) −2.54415e140 −0.00180436
\(603\) 8.62787e142 0.561774
\(604\) 2.11505e143 1.26450
\(605\) −2.98068e142 −0.163649
\(606\) −1.15890e143 −0.584392
\(607\) −2.63926e143 −1.22254 −0.611271 0.791421i \(-0.709342\pi\)
−0.611271 + 0.791421i \(0.709342\pi\)
\(608\) 1.26978e143 0.540372
\(609\) 1.77906e142 0.0695663
\(610\) −1.62144e142 −0.0582658
\(611\) 3.43413e142 0.113421
\(612\) 1.78350e143 0.541471
\(613\) −4.41981e143 −1.23364 −0.616820 0.787104i \(-0.711580\pi\)
−0.616820 + 0.787104i \(0.711580\pi\)
\(614\) 2.26109e143 0.580293
\(615\) −5.79561e142 −0.136783
\(616\) −1.60707e141 −0.00348842
\(617\) −1.23764e143 −0.247120 −0.123560 0.992337i \(-0.539431\pi\)
−0.123560 + 0.992337i \(0.539431\pi\)
\(618\) −4.00164e143 −0.735074
\(619\) −7.15619e142 −0.120952 −0.0604761 0.998170i \(-0.519262\pi\)
−0.0604761 + 0.998170i \(0.519262\pi\)
\(620\) 7.79614e142 0.121257
\(621\) −6.49881e143 −0.930285
\(622\) −3.51426e143 −0.463051
\(623\) 4.19700e142 0.0509101
\(624\) 4.86679e142 0.0543546
\(625\) 8.94127e143 0.919556
\(626\) 6.18471e143 0.585789
\(627\) 5.41271e142 0.0472212
\(628\) −8.81130e143 −0.708139
\(629\) 3.31706e144 2.45609
\(630\) 3.85538e141 0.00263044
\(631\) −1.05135e144 −0.661049 −0.330525 0.943797i \(-0.607226\pi\)
−0.330525 + 0.943797i \(0.607226\pi\)
\(632\) 1.79354e144 1.03940
\(633\) −3.04358e144 −1.62590
\(634\) 9.57785e143 0.471706
\(635\) 4.92625e143 0.223702
\(636\) −1.74818e144 −0.732058
\(637\) 3.49544e143 0.134996
\(638\) −9.93317e142 −0.0353853
\(639\) −5.48042e142 −0.0180102
\(640\) 5.07060e143 0.153741
\(641\) 5.10020e144 1.42692 0.713459 0.700697i \(-0.247127\pi\)
0.713459 + 0.700697i \(0.247127\pi\)
\(642\) −1.91171e144 −0.493593
\(643\) −7.47722e144 −1.78187 −0.890933 0.454135i \(-0.849948\pi\)
−0.890933 + 0.454135i \(0.849948\pi\)
\(644\) −3.34079e143 −0.0734897
\(645\) 6.61205e142 0.0134280
\(646\) −1.73543e144 −0.325411
\(647\) 4.25378e144 0.736554 0.368277 0.929716i \(-0.379948\pi\)
0.368277 + 0.929716i \(0.379948\pi\)
\(648\) −6.77963e144 −1.08416
\(649\) −2.65851e142 −0.00392678
\(650\) −4.80016e143 −0.0654965
\(651\) −5.44355e143 −0.0686216
\(652\) −5.72592e144 −0.666952
\(653\) 8.27259e144 0.890456 0.445228 0.895417i \(-0.353123\pi\)
0.445228 + 0.895417i \(0.353123\pi\)
\(654\) 1.32744e144 0.132057
\(655\) 2.12822e143 0.0195700
\(656\) 2.49095e144 0.211747
\(657\) 1.10675e145 0.869828
\(658\) −3.19837e143 −0.0232431
\(659\) 2.87256e145 1.93050 0.965251 0.261324i \(-0.0841591\pi\)
0.965251 + 0.261324i \(0.0841591\pi\)
\(660\) 1.79391e143 0.0111504
\(661\) −2.07722e144 −0.119428 −0.0597142 0.998216i \(-0.519019\pi\)
−0.0597142 + 0.998216i \(0.519019\pi\)
\(662\) 8.05596e144 0.428480
\(663\) −4.31206e144 −0.212196
\(664\) −2.88074e145 −1.31174
\(665\) 1.14292e143 0.00481615
\(666\) 1.44535e145 0.563701
\(667\) −4.80761e145 −1.73559
\(668\) 2.78770e145 0.931661
\(669\) −5.60778e145 −1.73519
\(670\) −2.78242e144 −0.0797205
\(671\) 1.92582e144 0.0510983
\(672\) −2.93844e144 −0.0722102
\(673\) −1.98525e145 −0.451897 −0.225949 0.974139i \(-0.572548\pi\)
−0.225949 + 0.974139i \(0.572548\pi\)
\(674\) 3.25545e145 0.686478
\(675\) −2.64952e145 −0.517633
\(676\) 4.08265e145 0.739072
\(677\) 2.72437e145 0.457036 0.228518 0.973540i \(-0.426612\pi\)
0.228518 + 0.973540i \(0.426612\pi\)
\(678\) 4.00166e145 0.622173
\(679\) 4.28504e144 0.0617535
\(680\) −1.33912e145 −0.178900
\(681\) −1.13826e146 −1.40982
\(682\) 3.03935e144 0.0349048
\(683\) 1.21882e146 1.29799 0.648996 0.760792i \(-0.275189\pi\)
0.648996 + 0.760792i \(0.275189\pi\)
\(684\) 2.30377e145 0.227536
\(685\) −7.61485e144 −0.0697584
\(686\) −6.52110e144 −0.0554152
\(687\) 2.41767e145 0.190601
\(688\) −2.84185e144 −0.0207873
\(689\) 1.54517e145 0.104878
\(690\) −2.84988e145 −0.179514
\(691\) 2.17181e146 1.26971 0.634853 0.772633i \(-0.281061\pi\)
0.634853 + 0.772633i \(0.281061\pi\)
\(692\) 1.00789e146 0.546951
\(693\) −4.57913e143 −0.00230686
\(694\) −1.57714e146 −0.737660
\(695\) 1.92374e145 0.0835466
\(696\) −2.69253e146 −1.08589
\(697\) −2.20702e146 −0.826643
\(698\) 1.03759e146 0.360970
\(699\) −6.01980e146 −1.94539
\(700\) −1.36201e145 −0.0408915
\(701\) 9.09370e145 0.253666 0.126833 0.991924i \(-0.459519\pi\)
0.126833 + 0.991924i \(0.459519\pi\)
\(702\) 1.38175e145 0.0358152
\(703\) 4.28469e146 1.03210
\(704\) 6.16546e144 0.0138030
\(705\) 8.31230e145 0.172974
\(706\) 3.22368e146 0.623606
\(707\) 2.90643e145 0.0522708
\(708\) −3.09517e145 −0.0517574
\(709\) −6.74667e146 −1.04908 −0.524539 0.851386i \(-0.675762\pi\)
−0.524539 + 0.851386i \(0.675762\pi\)
\(710\) 1.76739e144 0.00255580
\(711\) 5.11045e146 0.687345
\(712\) −6.35199e146 −0.794676
\(713\) 1.47103e147 1.71203
\(714\) 4.01601e145 0.0434848
\(715\) −1.58559e144 −0.00159746
\(716\) −8.57378e146 −0.803807
\(717\) 2.06283e147 1.79981
\(718\) 5.17991e146 0.420643
\(719\) −1.12520e147 −0.850533 −0.425267 0.905068i \(-0.639820\pi\)
−0.425267 + 0.905068i \(0.639820\pi\)
\(720\) 4.30651e145 0.0303041
\(721\) 1.00358e146 0.0657486
\(722\) 5.90763e146 0.360369
\(723\) 8.22146e146 0.467011
\(724\) −2.09239e147 −1.10690
\(725\) −1.96003e147 −0.965727
\(726\) −1.35289e147 −0.620907
\(727\) −3.34097e147 −1.42840 −0.714200 0.699941i \(-0.753209\pi\)
−0.714200 + 0.699941i \(0.753209\pi\)
\(728\) 1.65375e145 0.00658725
\(729\) −1.32005e146 −0.0489916
\(730\) −3.56918e146 −0.123436
\(731\) 2.51793e146 0.0811518
\(732\) 2.24214e147 0.673506
\(733\) 2.59957e147 0.727859 0.363929 0.931427i \(-0.381435\pi\)
0.363929 + 0.931427i \(0.381435\pi\)
\(734\) −3.61797e147 −0.944316
\(735\) 8.46069e146 0.205877
\(736\) 7.94064e147 1.80156
\(737\) 3.30475e146 0.0699137
\(738\) −9.61667e146 −0.189724
\(739\) 3.59920e147 0.662244 0.331122 0.943588i \(-0.392573\pi\)
0.331122 + 0.943588i \(0.392573\pi\)
\(740\) 1.42006e147 0.243709
\(741\) −5.56994e146 −0.0891688
\(742\) −1.43909e146 −0.0214924
\(743\) −9.98504e147 −1.39132 −0.695658 0.718373i \(-0.744887\pi\)
−0.695658 + 0.718373i \(0.744887\pi\)
\(744\) 8.23859e147 1.07114
\(745\) 3.92195e146 0.0475833
\(746\) 3.05514e147 0.345924
\(747\) −8.20828e147 −0.867443
\(748\) 6.83138e146 0.0673870
\(749\) 4.79444e146 0.0441494
\(750\) −2.35607e147 −0.202550
\(751\) 8.96189e147 0.719354 0.359677 0.933077i \(-0.382887\pi\)
0.359677 + 0.933077i \(0.382887\pi\)
\(752\) −3.57262e147 −0.267774
\(753\) −9.13731e147 −0.639554
\(754\) 1.02217e147 0.0668189
\(755\) −4.52496e147 −0.276278
\(756\) 3.92061e146 0.0223605
\(757\) 2.55002e147 0.135865 0.0679323 0.997690i \(-0.478360\pi\)
0.0679323 + 0.997690i \(0.478360\pi\)
\(758\) −1.31009e148 −0.652134
\(759\) 3.38488e147 0.157431
\(760\) −1.72976e147 −0.0751771
\(761\) −3.19499e148 −1.29766 −0.648828 0.760935i \(-0.724740\pi\)
−0.648828 + 0.760935i \(0.724740\pi\)
\(762\) 2.23596e148 0.848756
\(763\) −3.32912e146 −0.0118118
\(764\) −7.79870e147 −0.258651
\(765\) −3.81564e147 −0.118305
\(766\) −7.72656e147 −0.223978
\(767\) 2.73574e146 0.00741503
\(768\) 3.25490e148 0.824964
\(769\) 6.27120e148 1.48643 0.743215 0.669053i \(-0.233300\pi\)
0.743215 + 0.669053i \(0.233300\pi\)
\(770\) 1.47673e145 0.000327363 0
\(771\) 6.65894e148 1.38072
\(772\) 2.73491e148 0.530459
\(773\) −7.26938e148 −1.31903 −0.659513 0.751693i \(-0.729238\pi\)
−0.659513 + 0.751693i \(0.729238\pi\)
\(774\) 1.09714e147 0.0186253
\(775\) 5.99727e148 0.952612
\(776\) −6.48524e148 −0.963935
\(777\) −9.91535e147 −0.137919
\(778\) −3.58778e148 −0.467064
\(779\) −2.85084e148 −0.347371
\(780\) −1.84602e147 −0.0210555
\(781\) −2.09917e146 −0.00224140
\(782\) −1.08526e149 −1.08489
\(783\) 5.64201e148 0.528084
\(784\) −3.63640e148 −0.318709
\(785\) 1.88510e148 0.154720
\(786\) 9.65970e147 0.0742510
\(787\) −2.37281e148 −0.170830 −0.0854151 0.996345i \(-0.527222\pi\)
−0.0854151 + 0.996345i \(0.527222\pi\)
\(788\) −1.54183e149 −1.03977
\(789\) 9.46925e148 0.598205
\(790\) −1.64808e148 −0.0975400
\(791\) −1.00359e148 −0.0556502
\(792\) 6.93033e147 0.0360087
\(793\) −1.98176e148 −0.0964900
\(794\) 8.28255e148 0.377927
\(795\) 3.74007e148 0.159946
\(796\) −7.03985e148 −0.282189
\(797\) 7.38552e148 0.277509 0.138755 0.990327i \(-0.455690\pi\)
0.138755 + 0.990327i \(0.455690\pi\)
\(798\) 5.18754e147 0.0182731
\(799\) 3.16540e149 1.04537
\(800\) 3.23734e149 1.00243
\(801\) −1.80991e149 −0.525512
\(802\) 3.17551e149 0.864637
\(803\) 4.23921e148 0.108251
\(804\) 3.84755e149 0.921505
\(805\) 7.14730e147 0.0160566
\(806\) −3.12763e148 −0.0659115
\(807\) −1.21464e150 −2.40138
\(808\) −4.39876e149 −0.815916
\(809\) 1.70469e149 0.296686 0.148343 0.988936i \(-0.452606\pi\)
0.148343 + 0.988936i \(0.452606\pi\)
\(810\) 6.22978e148 0.101741
\(811\) −6.68918e149 −1.02518 −0.512588 0.858634i \(-0.671313\pi\)
−0.512588 + 0.858634i \(0.671313\pi\)
\(812\) 2.90034e148 0.0417171
\(813\) −1.79679e149 −0.242569
\(814\) 5.53613e148 0.0701535
\(815\) 1.22501e149 0.145721
\(816\) 4.48595e149 0.500969
\(817\) 3.25244e148 0.0341015
\(818\) 5.07467e149 0.499589
\(819\) 4.71214e147 0.00435609
\(820\) −9.44841e148 −0.0820248
\(821\) 4.23595e149 0.345365 0.172682 0.984978i \(-0.444757\pi\)
0.172682 + 0.984978i \(0.444757\pi\)
\(822\) −3.45627e149 −0.264673
\(823\) −2.08172e149 −0.149738 −0.0748689 0.997193i \(-0.523854\pi\)
−0.0748689 + 0.997193i \(0.523854\pi\)
\(824\) −1.51888e150 −1.02630
\(825\) 1.37999e149 0.0875987
\(826\) −2.54792e147 −0.00151954
\(827\) −3.02432e149 −0.169470 −0.0847352 0.996404i \(-0.527004\pi\)
−0.0847352 + 0.996404i \(0.527004\pi\)
\(828\) 1.44068e150 0.758587
\(829\) 5.37310e149 0.265868 0.132934 0.991125i \(-0.457560\pi\)
0.132934 + 0.991125i \(0.457560\pi\)
\(830\) 2.64710e149 0.123098
\(831\) 1.84962e150 0.808408
\(832\) −6.34455e148 −0.0260645
\(833\) 3.22191e150 1.24421
\(834\) 8.73158e149 0.316987
\(835\) −5.96402e149 −0.203557
\(836\) 8.82418e148 0.0283173
\(837\) −1.72634e150 −0.520913
\(838\) −6.32459e149 −0.179459
\(839\) −2.48230e150 −0.662388 −0.331194 0.943563i \(-0.607452\pi\)
−0.331194 + 0.943563i \(0.607452\pi\)
\(840\) 4.00290e148 0.0100460
\(841\) −6.25931e148 −0.0147752
\(842\) 2.49904e150 0.554882
\(843\) −6.87443e150 −1.43587
\(844\) −4.96185e150 −0.975007
\(845\) −8.73444e149 −0.161479
\(846\) 1.37926e150 0.239924
\(847\) 3.39295e149 0.0555369
\(848\) −1.60748e150 −0.247605
\(849\) −1.36610e151 −1.98033
\(850\) −4.42453e150 −0.603660
\(851\) 2.67946e151 3.44092
\(852\) −2.44396e149 −0.0295430
\(853\) 6.25516e150 0.711809 0.355904 0.934522i \(-0.384173\pi\)
0.355904 + 0.934522i \(0.384173\pi\)
\(854\) 1.84571e149 0.0197734
\(855\) −4.92871e149 −0.0497140
\(856\) −7.25620e150 −0.689144
\(857\) 8.21348e150 0.734539 0.367270 0.930115i \(-0.380293\pi\)
0.367270 + 0.930115i \(0.380293\pi\)
\(858\) −7.19677e148 −0.00606097
\(859\) 6.53955e150 0.518681 0.259340 0.965786i \(-0.416495\pi\)
0.259340 + 0.965786i \(0.416495\pi\)
\(860\) 1.07794e149 0.00805240
\(861\) 6.59722e149 0.0464193
\(862\) 4.35498e150 0.288643
\(863\) 1.48415e151 0.926660 0.463330 0.886186i \(-0.346654\pi\)
0.463330 + 0.886186i \(0.346654\pi\)
\(864\) −9.31881e150 −0.548154
\(865\) −2.15628e150 −0.119502
\(866\) −5.97711e150 −0.312119
\(867\) −1.42313e151 −0.700261
\(868\) −8.87445e149 −0.0411505
\(869\) 1.95746e150 0.0855412
\(870\) 2.47416e150 0.101903
\(871\) −3.40074e150 −0.132020
\(872\) 5.03849e150 0.184375
\(873\) −1.84788e151 −0.637442
\(874\) −1.40185e151 −0.455892
\(875\) 5.90885e149 0.0181171
\(876\) 4.93549e151 1.42682
\(877\) −5.94195e151 −1.61976 −0.809878 0.586598i \(-0.800467\pi\)
−0.809878 + 0.586598i \(0.800467\pi\)
\(878\) −1.56598e151 −0.402549
\(879\) −4.62853e151 −1.12206
\(880\) 1.64953e149 0.00377140
\(881\) 3.33492e151 0.719161 0.359580 0.933114i \(-0.382920\pi\)
0.359580 + 0.933114i \(0.382920\pi\)
\(882\) 1.40388e151 0.285561
\(883\) 2.16437e151 0.415293 0.207647 0.978204i \(-0.433420\pi\)
0.207647 + 0.978204i \(0.433420\pi\)
\(884\) −7.02981e150 −0.127248
\(885\) 6.62183e149 0.0113084
\(886\) 2.71246e151 0.437045
\(887\) −8.93942e150 −0.135907 −0.0679537 0.997688i \(-0.521647\pi\)
−0.0679537 + 0.997688i \(0.521647\pi\)
\(888\) 1.50065e152 2.15284
\(889\) −5.60762e150 −0.0759168
\(890\) 5.83682e150 0.0745746
\(891\) −7.39926e150 −0.0892250
\(892\) −9.14220e151 −1.04054
\(893\) 4.08879e151 0.439283
\(894\) 1.78012e151 0.180537
\(895\) 1.83428e151 0.175622
\(896\) −5.77194e150 −0.0521746
\(897\) −3.48320e151 −0.297281
\(898\) −8.46529e151 −0.682198
\(899\) −1.27709e152 −0.971845
\(900\) 5.87355e151 0.422096
\(901\) 1.42425e152 0.966631
\(902\) −3.68349e150 −0.0236115
\(903\) −7.52659e149 −0.00455700
\(904\) 1.51889e152 0.868666
\(905\) 4.47648e151 0.241843
\(906\) −2.05382e152 −1.04824
\(907\) −8.42734e151 −0.406364 −0.203182 0.979141i \(-0.565128\pi\)
−0.203182 + 0.979141i \(0.565128\pi\)
\(908\) −1.85567e152 −0.845432
\(909\) −1.25337e152 −0.539558
\(910\) −1.51963e149 −0.000618166 0
\(911\) −1.75967e152 −0.676448 −0.338224 0.941066i \(-0.609826\pi\)
−0.338224 + 0.941066i \(0.609826\pi\)
\(912\) 5.79456e151 0.210516
\(913\) −3.14403e151 −0.107955
\(914\) −4.96070e150 −0.0160996
\(915\) −4.79685e151 −0.147153
\(916\) 3.94146e151 0.114298
\(917\) −2.42258e150 −0.00664137
\(918\) 1.27362e152 0.330097
\(919\) 7.16248e152 1.75515 0.877576 0.479438i \(-0.159160\pi\)
0.877576 + 0.479438i \(0.159160\pi\)
\(920\) −1.08172e152 −0.250634
\(921\) 6.68919e152 1.46556
\(922\) 4.78683e151 0.0991759
\(923\) 2.16015e150 0.00423249
\(924\) −2.04204e150 −0.00378405
\(925\) 1.09240e153 1.91461
\(926\) −2.04886e152 −0.339661
\(927\) −4.32784e152 −0.678680
\(928\) −6.89375e152 −1.02267
\(929\) −6.95652e152 −0.976299 −0.488149 0.872760i \(-0.662328\pi\)
−0.488149 + 0.872760i \(0.662328\pi\)
\(930\) −7.57042e151 −0.100519
\(931\) 4.16178e152 0.522842
\(932\) −9.81390e152 −1.16660
\(933\) −1.03965e153 −1.16946
\(934\) 5.38319e152 0.573028
\(935\) −1.46151e151 −0.0147233
\(936\) −7.13164e151 −0.0679959
\(937\) −1.98212e152 −0.178871 −0.0894356 0.995993i \(-0.528506\pi\)
−0.0894356 + 0.995993i \(0.528506\pi\)
\(938\) 3.16726e151 0.0270544
\(939\) 1.82968e153 1.47944
\(940\) 1.35513e152 0.103728
\(941\) −1.52206e153 −1.10298 −0.551489 0.834182i \(-0.685940\pi\)
−0.551489 + 0.834182i \(0.685940\pi\)
\(942\) 8.55619e152 0.587028
\(943\) −1.78279e153 −1.15811
\(944\) −2.84606e151 −0.0175060
\(945\) −8.38779e150 −0.00488550
\(946\) 4.20239e150 0.00231794
\(947\) −2.76998e152 −0.144695 −0.0723474 0.997379i \(-0.523049\pi\)
−0.0723474 + 0.997379i \(0.523049\pi\)
\(948\) 2.27898e153 1.12748
\(949\) −4.36234e152 −0.204414
\(950\) −5.71522e152 −0.253669
\(951\) 2.83350e153 1.19131
\(952\) 1.52434e152 0.0607126
\(953\) −1.10345e153 −0.416359 −0.208180 0.978091i \(-0.566754\pi\)
−0.208180 + 0.978091i \(0.566754\pi\)
\(954\) 6.20592e152 0.221853
\(955\) 1.66846e152 0.0565122
\(956\) 3.36297e153 1.07930
\(957\) −2.93862e152 −0.0893673
\(958\) −5.81317e152 −0.167529
\(959\) 8.66809e151 0.0236736
\(960\) −1.53569e152 −0.0397499
\(961\) −1.68560e152 −0.0413523
\(962\) −5.69694e152 −0.132472
\(963\) −2.06755e153 −0.455725
\(964\) 1.34032e153 0.280054
\(965\) −5.85108e152 −0.115899
\(966\) 3.24406e152 0.0609210
\(967\) −1.90562e153 −0.339292 −0.169646 0.985505i \(-0.554262\pi\)
−0.169646 + 0.985505i \(0.554262\pi\)
\(968\) −5.13510e153 −0.866897
\(969\) −5.13407e153 −0.821840
\(970\) 5.95927e152 0.0904583
\(971\) 4.35898e153 0.627473 0.313736 0.949510i \(-0.398419\pi\)
0.313736 + 0.949510i \(0.398419\pi\)
\(972\) −5.68049e153 −0.775485
\(973\) −2.18982e152 −0.0283529
\(974\) 5.77797e152 0.0709560
\(975\) −1.42008e153 −0.165415
\(976\) 2.06168e153 0.227801
\(977\) −4.43228e152 −0.0464577 −0.0232288 0.999730i \(-0.507395\pi\)
−0.0232288 + 0.999730i \(0.507395\pi\)
\(978\) 5.56014e153 0.552885
\(979\) −6.93254e152 −0.0654009
\(980\) 1.37932e153 0.123459
\(981\) 1.43565e153 0.121925
\(982\) 2.98088e153 0.240216
\(983\) 1.01755e154 0.778124 0.389062 0.921212i \(-0.372799\pi\)
0.389062 + 0.921212i \(0.372799\pi\)
\(984\) −9.98464e153 −0.724577
\(985\) 3.29861e153 0.227177
\(986\) 9.42181e153 0.615848
\(987\) −9.46201e152 −0.0587016
\(988\) −9.08050e152 −0.0534721
\(989\) 2.03394e153 0.113692
\(990\) −6.36825e151 −0.00337915
\(991\) −6.46924e153 −0.325882 −0.162941 0.986636i \(-0.552098\pi\)
−0.162941 + 0.986636i \(0.552098\pi\)
\(992\) 2.10935e154 1.00878
\(993\) 2.38327e154 1.08215
\(994\) −2.01185e151 −0.000867353 0
\(995\) 1.50611e153 0.0616550
\(996\) −3.66044e154 −1.42291
\(997\) 1.91872e153 0.0708288 0.0354144 0.999373i \(-0.488725\pi\)
0.0354144 + 0.999373i \(0.488725\pi\)
\(998\) −2.57093e153 −0.0901296
\(999\) −3.14451e154 −1.04696
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))