Properties

Label 1.104.a.a.1.2
Level 1
Weight 104
Character 1.1
Self dual Yes
Analytic conductor 67.184
Analytic rank 0
Dimension 8
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 104 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(67.1843880807\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: multiple of \( 2^{104}\cdot 3^{40}\cdot 5^{12}\cdot 7^{8}\cdot 11\cdot 13^{3}\cdot 17^{2} \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.83024e14\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(-3.84396e15 q^{2}\) \(+3.76369e24 q^{3}\) \(+4.63479e30 q^{4}\) \(+1.31095e36 q^{5}\) \(-1.44675e40 q^{6}\) \(-5.54417e43 q^{7}\) \(+2.11664e46 q^{8}\) \(+2.50204e47 q^{9}\) \(+O(q^{10})\) \(q\)\(-3.84396e15 q^{2}\) \(+3.76369e24 q^{3}\) \(+4.63479e30 q^{4}\) \(+1.31095e36 q^{5}\) \(-1.44675e40 q^{6}\) \(-5.54417e43 q^{7}\) \(+2.11664e46 q^{8}\) \(+2.50204e47 q^{9}\) \(-5.03922e51 q^{10}\) \(-6.51768e53 q^{11}\) \(+1.74439e55 q^{12}\) \(-1.37266e57 q^{13}\) \(+2.13116e59 q^{14}\) \(+4.93400e60 q^{15}\) \(-1.28365e62 q^{16}\) \(+1.56950e63 q^{17}\) \(-9.61772e62 q^{18}\) \(+5.72587e65 q^{19}\) \(+6.07596e66 q^{20}\) \(-2.08666e68 q^{21}\) \(+2.50537e69 q^{22}\) \(+8.74183e69 q^{23}\) \(+7.96640e70 q^{24}\) \(+7.32506e71 q^{25}\) \(+5.27645e72 q^{26}\) \(-5.14308e73 q^{27}\) \(-2.56961e74 q^{28}\) \(+1.45955e75 q^{29}\) \(-1.89661e76 q^{30}\) \(+4.89378e76 q^{31}\) \(+2.78777e77 q^{32}\) \(-2.45306e78 q^{33}\) \(-6.03308e78 q^{34}\) \(-7.26812e79 q^{35}\) \(+1.15964e78 q^{36}\) \(-3.88581e80 q^{37}\) \(-2.20100e81 q^{38}\) \(-5.16628e81 q^{39}\) \(+2.77481e82 q^{40}\) \(-1.41013e83 q^{41}\) \(+8.02102e83 q^{42}\) \(+2.24257e84 q^{43}\) \(-3.02080e84 q^{44}\) \(+3.28004e83 q^{45}\) \(-3.36032e85 q^{46}\) \(-7.36419e85 q^{47}\) \(-4.83127e86 q^{48}\) \(+1.96436e87 q^{49}\) \(-2.81572e87 q^{50}\) \(+5.90711e87 q^{51}\) \(-6.36200e87 q^{52}\) \(+7.09567e88 q^{53}\) \(+1.97698e89 q^{54}\) \(-8.54433e89 q^{55}\) \(-1.17350e90 q^{56}\) \(+2.15504e90 q^{57}\) \(-5.61043e90 q^{58}\) \(+2.12206e91 q^{59}\) \(+2.28680e91 q^{60}\) \(+9.84700e91 q^{61}\) \(-1.88115e92 q^{62}\) \(-1.38717e91 q^{63}\) \(+2.30172e92 q^{64}\) \(-1.79949e93 q^{65}\) \(+9.42944e93 q^{66}\) \(+7.24139e93 q^{67}\) \(+7.27428e93 q^{68}\) \(+3.29016e94 q^{69}\) \(+2.79383e95 q^{70}\) \(-2.66545e93 q^{71}\) \(+5.29592e93 q^{72}\) \(+5.38053e95 q^{73}\) \(+1.49369e96 q^{74}\) \(+2.75693e96 q^{75}\) \(+2.65382e96 q^{76}\) \(+3.61351e97 q^{77}\) \(+1.98590e97 q^{78}\) \(-5.00820e97 q^{79}\) \(-1.68280e98 q^{80}\) \(-1.97052e98 q^{81}\) \(+5.42047e98 q^{82}\) \(-9.52399e98 q^{83}\) \(-9.67121e98 q^{84}\) \(+2.05753e99 q^{85}\) \(-8.62034e99 q^{86}\) \(+5.49328e99 q^{87}\) \(-1.37956e100 q^{88}\) \(-2.31148e100 q^{89}\) \(-1.26083e99 q^{90}\) \(+7.61028e100 q^{91}\) \(+4.05165e100 q^{92}\) \(+1.84187e101 q^{93}\) \(+2.83076e101 q^{94}\) \(+7.50631e101 q^{95}\) \(+1.04923e102 q^{96}\) \(+9.94437e101 q^{97}\) \(-7.55091e102 q^{98}\) \(-1.63075e101 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(8q \) \(\mathstrut +\mathstrut 4388929556680440q^{2} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!40\)\(q^{3} \) \(\mathstrut +\mathstrut \)\(48\!\cdots\!64\)\(q^{4} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!20\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!36\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{7} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{8} \) \(\mathstrut +\mathstrut \)\(35\!\cdots\!16\)\(q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 4388929556680440q^{2} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!40\)\(q^{3} \) \(\mathstrut +\mathstrut \)\(48\!\cdots\!64\)\(q^{4} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!20\)\(q^{5} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!36\)\(q^{6} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{7} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{8} \) \(\mathstrut +\mathstrut \)\(35\!\cdots\!16\)\(q^{9} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!20\)\(q^{10} \) \(\mathstrut -\mathstrut \)\(53\!\cdots\!44\)\(q^{11} \) \(\mathstrut +\mathstrut \)\(25\!\cdots\!80\)\(q^{12} \) \(\mathstrut -\mathstrut \)\(15\!\cdots\!20\)\(q^{13} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!08\)\(q^{14} \) \(\mathstrut -\mathstrut \)\(30\!\cdots\!60\)\(q^{15} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!88\)\(q^{16} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!20\)\(q^{17} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!40\)\(q^{18} \) \(\mathstrut +\mathstrut \)\(14\!\cdots\!00\)\(q^{19} \) \(\mathstrut +\mathstrut \)\(25\!\cdots\!60\)\(q^{20} \) \(\mathstrut -\mathstrut \)\(46\!\cdots\!04\)\(q^{21} \) \(\mathstrut -\mathstrut \)\(13\!\cdots\!20\)\(q^{22} \) \(\mathstrut +\mathstrut \)\(40\!\cdots\!20\)\(q^{23} \) \(\mathstrut +\mathstrut \)\(41\!\cdots\!00\)\(q^{24} \) \(\mathstrut -\mathstrut \)\(36\!\cdots\!00\)\(q^{25} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!84\)\(q^{26} \) \(\mathstrut +\mathstrut \)\(63\!\cdots\!20\)\(q^{27} \) \(\mathstrut +\mathstrut \)\(51\!\cdots\!80\)\(q^{28} \) \(\mathstrut -\mathstrut \)\(11\!\cdots\!00\)\(q^{29} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!60\)\(q^{30} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!36\)\(q^{31} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!40\)\(q^{32} \) \(\mathstrut +\mathstrut \)\(16\!\cdots\!80\)\(q^{33} \) \(\mathstrut -\mathstrut \)\(16\!\cdots\!32\)\(q^{34} \) \(\mathstrut -\mathstrut \)\(15\!\cdots\!80\)\(q^{35} \) \(\mathstrut +\mathstrut \)\(80\!\cdots\!28\)\(q^{36} \) \(\mathstrut -\mathstrut \)\(92\!\cdots\!40\)\(q^{37} \) \(\mathstrut +\mathstrut \)\(19\!\cdots\!20\)\(q^{38} \) \(\mathstrut -\mathstrut \)\(78\!\cdots\!08\)\(q^{39} \) \(\mathstrut +\mathstrut \)\(19\!\cdots\!00\)\(q^{40} \) \(\mathstrut +\mathstrut \)\(22\!\cdots\!76\)\(q^{41} \) \(\mathstrut -\mathstrut \)\(18\!\cdots\!80\)\(q^{42} \) \(\mathstrut +\mathstrut \)\(96\!\cdots\!00\)\(q^{43} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!48\)\(q^{44} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!60\)\(q^{45} \) \(\mathstrut +\mathstrut \)\(27\!\cdots\!96\)\(q^{46} \) \(\mathstrut -\mathstrut \)\(29\!\cdots\!20\)\(q^{47} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!20\)\(q^{48} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!44\)\(q^{49} \) \(\mathstrut -\mathstrut \)\(65\!\cdots\!00\)\(q^{50} \) \(\mathstrut -\mathstrut \)\(20\!\cdots\!84\)\(q^{51} \) \(\mathstrut -\mathstrut \)\(36\!\cdots\!00\)\(q^{52} \) \(\mathstrut +\mathstrut \)\(16\!\cdots\!40\)\(q^{53} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!00\)\(q^{54} \) \(\mathstrut -\mathstrut \)\(60\!\cdots\!60\)\(q^{55} \) \(\mathstrut -\mathstrut \)\(50\!\cdots\!00\)\(q^{56} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!40\)\(q^{57} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{58} \) \(\mathstrut -\mathstrut \)\(37\!\cdots\!00\)\(q^{59} \) \(\mathstrut -\mathstrut \)\(44\!\cdots\!80\)\(q^{60} \) \(\mathstrut +\mathstrut \)\(56\!\cdots\!56\)\(q^{61} \) \(\mathstrut +\mathstrut \)\(70\!\cdots\!80\)\(q^{62} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!60\)\(q^{63} \) \(\mathstrut +\mathstrut \)\(26\!\cdots\!04\)\(q^{64} \) \(\mathstrut +\mathstrut \)\(51\!\cdots\!40\)\(q^{65} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!52\)\(q^{66} \) \(\mathstrut +\mathstrut \)\(36\!\cdots\!20\)\(q^{67} \) \(\mathstrut +\mathstrut \)\(12\!\cdots\!40\)\(q^{68} \) \(\mathstrut +\mathstrut \)\(14\!\cdots\!52\)\(q^{69} \) \(\mathstrut +\mathstrut \)\(85\!\cdots\!20\)\(q^{70} \) \(\mathstrut +\mathstrut \)\(13\!\cdots\!96\)\(q^{71} \) \(\mathstrut +\mathstrut \)\(56\!\cdots\!60\)\(q^{72} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!20\)\(q^{73} \) \(\mathstrut +\mathstrut \)\(94\!\cdots\!88\)\(q^{74} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!00\)\(q^{75} \) \(\mathstrut +\mathstrut \)\(62\!\cdots\!00\)\(q^{76} \) \(\mathstrut +\mathstrut \)\(37\!\cdots\!00\)\(q^{77} \) \(\mathstrut +\mathstrut \)\(44\!\cdots\!00\)\(q^{78} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!00\)\(q^{79} \) \(\mathstrut -\mathstrut \)\(25\!\cdots\!80\)\(q^{80} \) \(\mathstrut -\mathstrut \)\(31\!\cdots\!32\)\(q^{81} \) \(\mathstrut -\mathstrut \)\(34\!\cdots\!20\)\(q^{82} \) \(\mathstrut -\mathstrut \)\(25\!\cdots\!40\)\(q^{83} \) \(\mathstrut -\mathstrut \)\(14\!\cdots\!32\)\(q^{84} \) \(\mathstrut -\mathstrut \)\(77\!\cdots\!80\)\(q^{85} \) \(\mathstrut -\mathstrut \)\(22\!\cdots\!44\)\(q^{86} \) \(\mathstrut -\mathstrut \)\(19\!\cdots\!40\)\(q^{87} \) \(\mathstrut -\mathstrut \)\(40\!\cdots\!40\)\(q^{88} \) \(\mathstrut -\mathstrut \)\(24\!\cdots\!00\)\(q^{89} \) \(\mathstrut +\mathstrut \)\(19\!\cdots\!40\)\(q^{90} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!76\)\(q^{91} \) \(\mathstrut +\mathstrut \)\(77\!\cdots\!20\)\(q^{92} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!80\)\(q^{93} \) \(\mathstrut +\mathstrut \)\(72\!\cdots\!48\)\(q^{94} \) \(\mathstrut +\mathstrut \)\(27\!\cdots\!00\)\(q^{95} \) \(\mathstrut +\mathstrut \)\(88\!\cdots\!96\)\(q^{96} \) \(\mathstrut +\mathstrut \)\(50\!\cdots\!80\)\(q^{97} \) \(\mathstrut +\mathstrut \)\(88\!\cdots\!20\)\(q^{98} \) \(\mathstrut -\mathstrut \)\(72\!\cdots\!88\)\(q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.84396e15 −1.20707 −0.603536 0.797335i \(-0.706242\pi\)
−0.603536 + 0.797335i \(0.706242\pi\)
\(3\) 3.76369e24 1.00895 0.504475 0.863426i \(-0.331686\pi\)
0.504475 + 0.863426i \(0.331686\pi\)
\(4\) 4.63479e30 0.457025
\(5\) 1.31095e36 1.32017 0.660085 0.751191i \(-0.270520\pi\)
0.660085 + 0.751191i \(0.270520\pi\)
\(6\) −1.44675e40 −1.21788
\(7\) −5.54417e43 −1.66452 −0.832258 0.554389i \(-0.812952\pi\)
−0.832258 + 0.554389i \(0.812952\pi\)
\(8\) 2.11664e46 0.655410
\(9\) 2.50204e47 0.0179806
\(10\) −5.03922e51 −1.59354
\(11\) −6.51768e53 −1.52184 −0.760921 0.648844i \(-0.775253\pi\)
−0.760921 + 0.648844i \(0.775253\pi\)
\(12\) 1.74439e55 0.461116
\(13\) −1.37266e57 −0.588141 −0.294070 0.955784i \(-0.595010\pi\)
−0.294070 + 0.955784i \(0.595010\pi\)
\(14\) 2.13116e59 2.00919
\(15\) 4.93400e60 1.33199
\(16\) −1.28365e62 −1.24815
\(17\) 1.56950e63 0.672421 0.336210 0.941787i \(-0.390855\pi\)
0.336210 + 0.941787i \(0.390855\pi\)
\(18\) −9.61772e62 −0.0217039
\(19\) 5.72587e65 0.798052 0.399026 0.916940i \(-0.369348\pi\)
0.399026 + 0.916940i \(0.369348\pi\)
\(20\) 6.07596e66 0.603351
\(21\) −2.08666e68 −1.67941
\(22\) 2.50537e69 1.83697
\(23\) 8.74183e69 0.649559 0.324780 0.945790i \(-0.394710\pi\)
0.324780 + 0.945790i \(0.394710\pi\)
\(24\) 7.96640e70 0.661276
\(25\) 7.32506e71 0.742849
\(26\) 5.27645e72 0.709929
\(27\) −5.14308e73 −0.990809
\(28\) −2.56961e74 −0.760725
\(29\) 1.45955e75 0.709122 0.354561 0.935033i \(-0.384630\pi\)
0.354561 + 0.935033i \(0.384630\pi\)
\(30\) −1.89661e76 −1.60780
\(31\) 4.89378e76 0.766508 0.383254 0.923643i \(-0.374803\pi\)
0.383254 + 0.923643i \(0.374803\pi\)
\(32\) 2.78777e77 0.851202
\(33\) −2.45306e78 −1.53546
\(34\) −6.03308e78 −0.811661
\(35\) −7.26812e79 −2.19744
\(36\) 1.15964e78 0.00821760
\(37\) −3.88581e80 −0.671573 −0.335786 0.941938i \(-0.609002\pi\)
−0.335786 + 0.941938i \(0.609002\pi\)
\(38\) −2.20100e81 −0.963307
\(39\) −5.16628e81 −0.593405
\(40\) 2.77481e82 0.865253
\(41\) −1.41013e83 −1.23279 −0.616396 0.787437i \(-0.711408\pi\)
−0.616396 + 0.787437i \(0.711408\pi\)
\(42\) 8.02102e83 2.02717
\(43\) 2.24257e84 1.68702 0.843511 0.537112i \(-0.180485\pi\)
0.843511 + 0.537112i \(0.180485\pi\)
\(44\) −3.02080e84 −0.695520
\(45\) 3.28004e83 0.0237375
\(46\) −3.36032e85 −0.784066
\(47\) −7.36419e85 −0.567656 −0.283828 0.958875i \(-0.591604\pi\)
−0.283828 + 0.958875i \(0.591604\pi\)
\(48\) −4.83127e86 −1.25932
\(49\) 1.96436e87 1.77061
\(50\) −2.81572e87 −0.896673
\(51\) 5.90711e87 0.678439
\(52\) −6.36200e87 −0.268795
\(53\) 7.09567e88 1.12405 0.562026 0.827120i \(-0.310022\pi\)
0.562026 + 0.827120i \(0.310022\pi\)
\(54\) 1.97698e89 1.19598
\(55\) −8.54433e89 −2.00909
\(56\) −1.17350e90 −1.09094
\(57\) 2.15504e90 0.805195
\(58\) −5.61043e90 −0.855962
\(59\) 2.12206e91 1.34239 0.671195 0.741281i \(-0.265781\pi\)
0.671195 + 0.741281i \(0.265781\pi\)
\(60\) 2.28680e91 0.608751
\(61\) 9.84700e91 1.11897 0.559484 0.828841i \(-0.311000\pi\)
0.559484 + 0.828841i \(0.311000\pi\)
\(62\) −1.88115e92 −0.925232
\(63\) −1.38717e91 −0.0299290
\(64\) 2.30172e92 0.220691
\(65\) −1.79949e93 −0.776446
\(66\) 9.42944e93 1.85342
\(67\) 7.24139e93 0.656099 0.328050 0.944661i \(-0.393609\pi\)
0.328050 + 0.944661i \(0.393609\pi\)
\(68\) 7.27428e93 0.307313
\(69\) 3.29016e94 0.655373
\(70\) 2.79383e95 2.65247
\(71\) −2.66545e93 −0.0121889 −0.00609446 0.999981i \(-0.501940\pi\)
−0.00609446 + 0.999981i \(0.501940\pi\)
\(72\) 5.29592e93 0.0117847
\(73\) 5.38053e95 0.588434 0.294217 0.955739i \(-0.404941\pi\)
0.294217 + 0.955739i \(0.404941\pi\)
\(74\) 1.49369e96 0.810637
\(75\) 2.75693e96 0.749498
\(76\) 2.65382e96 0.364730
\(77\) 3.61351e97 2.53313
\(78\) 1.98590e97 0.716283
\(79\) −5.00820e97 −0.937316 −0.468658 0.883380i \(-0.655262\pi\)
−0.468658 + 0.883380i \(0.655262\pi\)
\(80\) −1.68280e98 −1.64777
\(81\) −1.97052e98 −1.01766
\(82\) 5.42047e98 1.48807
\(83\) −9.52399e98 −1.40055 −0.700273 0.713876i \(-0.746938\pi\)
−0.700273 + 0.713876i \(0.746938\pi\)
\(84\) −9.67121e98 −0.767534
\(85\) 2.05753e99 0.887710
\(86\) −8.62034e99 −2.03636
\(87\) 5.49328e99 0.715469
\(88\) −1.37956e100 −0.997431
\(89\) −2.31148e100 −0.933908 −0.466954 0.884282i \(-0.654649\pi\)
−0.466954 + 0.884282i \(0.654649\pi\)
\(90\) −1.26083e99 −0.0286529
\(91\) 7.61028e100 0.978969
\(92\) 4.05165e100 0.296865
\(93\) 1.84187e101 0.773369
\(94\) 2.83076e101 0.685202
\(95\) 7.50631e101 1.05356
\(96\) 1.04923e102 0.858820
\(97\) 9.94437e101 0.477346 0.238673 0.971100i \(-0.423288\pi\)
0.238673 + 0.971100i \(0.423288\pi\)
\(98\) −7.55091e102 −2.13726
\(99\) −1.63075e101 −0.0273637
\(100\) 3.39501e102 0.339501
\(101\) 2.71280e102 0.162505 0.0812526 0.996694i \(-0.474108\pi\)
0.0812526 + 0.996694i \(0.474108\pi\)
\(102\) −2.27067e103 −0.818925
\(103\) 4.58289e103 1.00005 0.500026 0.866010i \(-0.333324\pi\)
0.500026 + 0.866010i \(0.333324\pi\)
\(104\) −2.90544e103 −0.385473
\(105\) −2.73550e104 −2.21711
\(106\) −2.72754e104 −1.35681
\(107\) 4.53430e104 1.39074 0.695369 0.718653i \(-0.255241\pi\)
0.695369 + 0.718653i \(0.255241\pi\)
\(108\) −2.38371e104 −0.452824
\(109\) 2.64553e103 0.0312643 0.0156322 0.999878i \(-0.495024\pi\)
0.0156322 + 0.999878i \(0.495024\pi\)
\(110\) 3.28440e105 2.42512
\(111\) −1.46250e105 −0.677584
\(112\) 7.11678e105 2.07757
\(113\) −3.33276e105 −0.615551 −0.307776 0.951459i \(-0.599585\pi\)
−0.307776 + 0.951459i \(0.599585\pi\)
\(114\) −8.28389e105 −0.971929
\(115\) 1.14601e106 0.857529
\(116\) 6.76468e105 0.324086
\(117\) −3.43445e104 −0.0105751
\(118\) −8.15710e106 −1.62036
\(119\) −8.70156e106 −1.11925
\(120\) 1.04435e107 0.872997
\(121\) 2.41382e107 1.31600
\(122\) −3.78514e107 −1.35067
\(123\) −5.30729e107 −1.24383
\(124\) 2.26816e107 0.350314
\(125\) −3.32417e107 −0.339483
\(126\) 5.33223e106 0.0361265
\(127\) 3.90967e108 1.76298 0.881492 0.472200i \(-0.156540\pi\)
0.881492 + 0.472200i \(0.156540\pi\)
\(128\) −3.71190e108 −1.11759
\(129\) 8.44035e108 1.70212
\(130\) 6.91715e108 0.937227
\(131\) 1.26327e109 1.15352 0.576760 0.816914i \(-0.304317\pi\)
0.576760 + 0.816914i \(0.304317\pi\)
\(132\) −1.13694e109 −0.701745
\(133\) −3.17452e109 −1.32837
\(134\) −2.78356e109 −0.791960
\(135\) −6.74231e109 −1.30804
\(136\) 3.32206e109 0.440711
\(137\) 7.01221e109 0.637890 0.318945 0.947773i \(-0.396671\pi\)
0.318945 + 0.947773i \(0.396671\pi\)
\(138\) −1.26472e110 −0.791083
\(139\) 2.98456e110 1.28712 0.643559 0.765397i \(-0.277457\pi\)
0.643559 + 0.765397i \(0.277457\pi\)
\(140\) −3.36862e110 −1.00429
\(141\) −2.77165e110 −0.572736
\(142\) 1.02459e109 0.0147129
\(143\) 8.94658e110 0.895057
\(144\) −3.21174e109 −0.0224426
\(145\) 1.91339e111 0.936161
\(146\) −2.06825e111 −0.710282
\(147\) 7.39325e111 1.78646
\(148\) −1.80099e111 −0.306926
\(149\) 4.61317e111 0.555784 0.277892 0.960612i \(-0.410364\pi\)
0.277892 + 0.960612i \(0.410364\pi\)
\(150\) −1.05975e112 −0.904698
\(151\) −1.32137e112 −0.801145 −0.400572 0.916265i \(-0.631189\pi\)
−0.400572 + 0.916265i \(0.631189\pi\)
\(152\) 1.21196e112 0.523052
\(153\) 3.92694e110 0.0120905
\(154\) −1.38902e113 −3.05767
\(155\) 6.41548e112 1.01192
\(156\) −2.39446e112 −0.271201
\(157\) −5.76528e112 −0.469882 −0.234941 0.972010i \(-0.575490\pi\)
−0.234941 + 0.972010i \(0.575490\pi\)
\(158\) 1.92513e113 1.13141
\(159\) 2.67059e113 1.13411
\(160\) 3.65461e113 1.12373
\(161\) −4.84662e113 −1.08120
\(162\) 7.57458e113 1.22839
\(163\) −2.47052e113 −0.291827 −0.145914 0.989297i \(-0.546612\pi\)
−0.145914 + 0.989297i \(0.546612\pi\)
\(164\) −6.53564e113 −0.563417
\(165\) −3.21583e114 −2.02707
\(166\) 3.66098e114 1.69056
\(167\) 5.46207e114 1.85122 0.925612 0.378475i \(-0.123551\pi\)
0.925612 + 0.378475i \(0.123551\pi\)
\(168\) −4.41671e114 −1.10070
\(169\) −3.56290e114 −0.654091
\(170\) −7.90904e114 −1.07153
\(171\) 1.43264e113 0.0143495
\(172\) 1.03938e115 0.771012
\(173\) −1.85346e115 −1.02002 −0.510011 0.860168i \(-0.670359\pi\)
−0.510011 + 0.860168i \(0.670359\pi\)
\(174\) −2.11159e115 −0.863623
\(175\) −4.06114e115 −1.23648
\(176\) 8.36643e115 1.89949
\(177\) 7.98678e115 1.35441
\(178\) 8.88521e115 1.12729
\(179\) 6.25668e115 0.594857 0.297429 0.954744i \(-0.403871\pi\)
0.297429 + 0.954744i \(0.403871\pi\)
\(180\) 1.52023e114 0.0108486
\(181\) −1.80631e116 −0.969048 −0.484524 0.874778i \(-0.661007\pi\)
−0.484524 + 0.874778i \(0.661007\pi\)
\(182\) −2.92536e116 −1.18169
\(183\) 3.70611e116 1.12898
\(184\) 1.85033e116 0.425728
\(185\) −5.09409e116 −0.886590
\(186\) −7.08006e116 −0.933513
\(187\) −1.02295e117 −1.02332
\(188\) −3.41314e116 −0.259433
\(189\) 2.85142e117 1.64922
\(190\) −2.88539e117 −1.27173
\(191\) 2.26140e117 0.760604 0.380302 0.924862i \(-0.375820\pi\)
0.380302 + 0.924862i \(0.375820\pi\)
\(192\) 8.66298e116 0.222666
\(193\) 5.94722e117 1.16980 0.584901 0.811104i \(-0.301133\pi\)
0.584901 + 0.811104i \(0.301133\pi\)
\(194\) −3.82257e117 −0.576191
\(195\) −6.77272e117 −0.783395
\(196\) 9.10439e117 0.809214
\(197\) 2.68054e117 0.183320 0.0916602 0.995790i \(-0.470783\pi\)
0.0916602 + 0.995790i \(0.470783\pi\)
\(198\) 6.26852e116 0.0330300
\(199\) 2.86888e117 0.116622 0.0583109 0.998298i \(-0.481429\pi\)
0.0583109 + 0.998298i \(0.481429\pi\)
\(200\) 1.55045e118 0.486871
\(201\) 2.72544e118 0.661971
\(202\) −1.04279e118 −0.196156
\(203\) −8.09197e118 −1.18034
\(204\) 2.73782e118 0.310064
\(205\) −1.84860e119 −1.62749
\(206\) −1.76164e119 −1.20714
\(207\) 2.18724e117 0.0116795
\(208\) 1.76202e119 0.734090
\(209\) −3.73194e119 −1.21451
\(210\) 1.05151e120 2.67621
\(211\) 4.57220e119 0.911127 0.455564 0.890203i \(-0.349438\pi\)
0.455564 + 0.890203i \(0.349438\pi\)
\(212\) 3.28869e119 0.513720
\(213\) −1.00319e118 −0.0122980
\(214\) −1.74296e120 −1.67872
\(215\) 2.93989e120 2.22716
\(216\) −1.08861e120 −0.649386
\(217\) −2.71319e120 −1.27586
\(218\) −1.01693e119 −0.0377383
\(219\) 2.02507e120 0.593700
\(220\) −3.96011e120 −0.918205
\(221\) −2.15439e120 −0.395478
\(222\) 5.62179e120 0.817893
\(223\) 1.34410e120 0.155143 0.0775714 0.996987i \(-0.475283\pi\)
0.0775714 + 0.996987i \(0.475283\pi\)
\(224\) −1.54559e121 −1.41684
\(225\) 1.83276e119 0.0133569
\(226\) 1.28110e121 0.743015
\(227\) −8.63345e120 −0.398889 −0.199445 0.979909i \(-0.563914\pi\)
−0.199445 + 0.979909i \(0.563914\pi\)
\(228\) 9.98816e120 0.367994
\(229\) −5.04867e120 −0.148474 −0.0742369 0.997241i \(-0.523652\pi\)
−0.0742369 + 0.997241i \(0.523652\pi\)
\(230\) −4.40520e121 −1.03510
\(231\) 1.36002e122 2.55580
\(232\) 3.08934e121 0.464766
\(233\) −1.65761e121 −0.199826 −0.0999129 0.994996i \(-0.531856\pi\)
−0.0999129 + 0.994996i \(0.531856\pi\)
\(234\) 1.32019e120 0.0127650
\(235\) −9.65406e121 −0.749402
\(236\) 9.83529e121 0.613506
\(237\) −1.88493e122 −0.945705
\(238\) 3.34484e122 1.35102
\(239\) 3.17233e121 0.103249 0.0516245 0.998667i \(-0.483560\pi\)
0.0516245 + 0.998667i \(0.483560\pi\)
\(240\) −6.33354e122 −1.66252
\(241\) −6.34433e122 −1.34434 −0.672169 0.740398i \(-0.734637\pi\)
−0.672169 + 0.740398i \(0.734637\pi\)
\(242\) −9.27860e122 −1.58851
\(243\) −2.59720e121 −0.0359569
\(244\) 4.56387e122 0.511396
\(245\) 2.57517e123 2.33751
\(246\) 2.04010e123 1.50139
\(247\) −7.85969e122 −0.469367
\(248\) 1.03584e123 0.502377
\(249\) −3.58454e123 −1.41308
\(250\) 1.27780e123 0.409781
\(251\) 5.12794e123 1.33889 0.669447 0.742859i \(-0.266531\pi\)
0.669447 + 0.742859i \(0.266531\pi\)
\(252\) −6.42925e121 −0.0136783
\(253\) −5.69765e123 −0.988527
\(254\) −1.50286e124 −2.12805
\(255\) 7.74390e123 0.895655
\(256\) 1.19342e124 1.12832
\(257\) 9.34587e123 0.722876 0.361438 0.932396i \(-0.382286\pi\)
0.361438 + 0.932396i \(0.382286\pi\)
\(258\) −3.24443e124 −2.05459
\(259\) 2.15436e124 1.11784
\(260\) −8.34024e123 −0.354855
\(261\) 3.65184e122 0.0127504
\(262\) −4.85596e124 −1.39238
\(263\) −2.43248e123 −0.0573230 −0.0286615 0.999589i \(-0.509124\pi\)
−0.0286615 + 0.999589i \(0.509124\pi\)
\(264\) −5.19224e124 −1.00636
\(265\) 9.30205e124 1.48394
\(266\) 1.22027e125 1.60344
\(267\) −8.69969e124 −0.942267
\(268\) 3.35623e124 0.299854
\(269\) 8.90086e124 0.656432 0.328216 0.944603i \(-0.393553\pi\)
0.328216 + 0.944603i \(0.393553\pi\)
\(270\) 2.59171e125 1.57889
\(271\) −1.33757e125 −0.673593 −0.336797 0.941577i \(-0.609343\pi\)
−0.336797 + 0.941577i \(0.609343\pi\)
\(272\) −2.01469e125 −0.839284
\(273\) 2.86428e125 0.987731
\(274\) −2.69546e125 −0.769980
\(275\) −4.77424e125 −1.13050
\(276\) 1.52492e125 0.299522
\(277\) 4.56977e124 0.0745051 0.0372526 0.999306i \(-0.488139\pi\)
0.0372526 + 0.999306i \(0.488139\pi\)
\(278\) −1.14725e126 −1.55364
\(279\) 1.22444e124 0.0137823
\(280\) −1.53840e126 −1.44023
\(281\) 1.95443e126 1.52281 0.761404 0.648278i \(-0.224511\pi\)
0.761404 + 0.648278i \(0.224511\pi\)
\(282\) 1.06541e126 0.691335
\(283\) 4.51389e125 0.244090 0.122045 0.992525i \(-0.461055\pi\)
0.122045 + 0.992525i \(0.461055\pi\)
\(284\) −1.23538e124 −0.00557065
\(285\) 2.82515e126 1.06299
\(286\) −3.43902e126 −1.08040
\(287\) 7.81799e126 2.05200
\(288\) 6.97510e124 0.0153051
\(289\) −2.98470e126 −0.547850
\(290\) −7.35497e126 −1.13001
\(291\) 3.74276e126 0.481618
\(292\) 2.49376e126 0.268929
\(293\) −3.76777e126 −0.340724 −0.170362 0.985382i \(-0.554494\pi\)
−0.170362 + 0.985382i \(0.554494\pi\)
\(294\) −2.84193e127 −2.15639
\(295\) 2.78191e127 1.77218
\(296\) −8.22488e126 −0.440156
\(297\) 3.35210e127 1.50785
\(298\) −1.77328e127 −0.670872
\(299\) −1.19996e127 −0.382032
\(300\) 1.27778e127 0.342539
\(301\) −1.24332e128 −2.80807
\(302\) 5.07928e127 0.967040
\(303\) 1.02102e127 0.163960
\(304\) −7.35002e127 −0.996091
\(305\) 1.29089e128 1.47723
\(306\) −1.50950e126 −0.0145942
\(307\) 2.21632e128 1.81136 0.905681 0.423960i \(-0.139360\pi\)
0.905681 + 0.423960i \(0.139360\pi\)
\(308\) 1.67479e128 1.15770
\(309\) 1.72486e128 1.00900
\(310\) −2.46608e128 −1.22146
\(311\) −2.08750e128 −0.875923 −0.437961 0.898994i \(-0.644299\pi\)
−0.437961 + 0.898994i \(0.644299\pi\)
\(312\) −1.09352e128 −0.388923
\(313\) −3.52356e128 −1.06279 −0.531397 0.847123i \(-0.678333\pi\)
−0.531397 + 0.847123i \(0.678333\pi\)
\(314\) 2.21615e128 0.567181
\(315\) −1.81851e127 −0.0395114
\(316\) −2.32119e128 −0.428377
\(317\) 4.86254e127 0.0762625 0.0381313 0.999273i \(-0.487860\pi\)
0.0381313 + 0.999273i \(0.487860\pi\)
\(318\) −1.02656e129 −1.36896
\(319\) −9.51285e128 −1.07917
\(320\) 3.01743e128 0.291349
\(321\) 1.70657e129 1.40319
\(322\) 1.86302e129 1.30509
\(323\) 8.98674e128 0.536627
\(324\) −9.13292e128 −0.465095
\(325\) −1.00548e129 −0.436900
\(326\) 9.49655e128 0.352257
\(327\) 9.95699e127 0.0315441
\(328\) −2.98474e129 −0.807984
\(329\) 4.08283e129 0.944872
\(330\) 1.23615e130 2.44682
\(331\) −1.07244e130 −1.81649 −0.908243 0.418444i \(-0.862576\pi\)
−0.908243 + 0.418444i \(0.862576\pi\)
\(332\) −4.41416e129 −0.640084
\(333\) −9.72245e127 −0.0120753
\(334\) −2.09959e130 −2.23456
\(335\) 9.49308e129 0.866162
\(336\) 2.67854e130 2.09616
\(337\) −2.48592e130 −1.66935 −0.834675 0.550742i \(-0.814345\pi\)
−0.834675 + 0.550742i \(0.814345\pi\)
\(338\) 1.36956e130 0.789535
\(339\) −1.25435e130 −0.621061
\(340\) 9.53620e129 0.405706
\(341\) −3.18961e130 −1.16651
\(342\) −5.50698e128 −0.0173209
\(343\) −4.73991e130 −1.28269
\(344\) 4.74672e130 1.10569
\(345\) 4.31322e130 0.865204
\(346\) 7.12463e130 1.23124
\(347\) −1.28443e131 −1.91312 −0.956558 0.291541i \(-0.905832\pi\)
−0.956558 + 0.291541i \(0.905832\pi\)
\(348\) 2.54602e130 0.326987
\(349\) 1.47483e131 1.63393 0.816965 0.576687i \(-0.195655\pi\)
0.816965 + 0.576687i \(0.195655\pi\)
\(350\) 1.56108e131 1.49253
\(351\) 7.05972e130 0.582735
\(352\) −1.81698e131 −1.29539
\(353\) 6.40967e130 0.394855 0.197428 0.980317i \(-0.436741\pi\)
0.197428 + 0.980317i \(0.436741\pi\)
\(354\) −3.07008e131 −1.63487
\(355\) −3.49426e129 −0.0160915
\(356\) −1.07132e131 −0.426819
\(357\) −3.27500e131 −1.12927
\(358\) −2.40504e131 −0.718036
\(359\) −4.81724e130 −0.124576 −0.0622879 0.998058i \(-0.519840\pi\)
−0.0622879 + 0.998058i \(0.519840\pi\)
\(360\) 6.94267e129 0.0155578
\(361\) −1.86923e131 −0.363113
\(362\) 6.94337e131 1.16971
\(363\) 9.08486e131 1.32778
\(364\) 3.52720e131 0.447413
\(365\) 7.05359e131 0.776833
\(366\) −1.42461e132 −1.36276
\(367\) 1.10561e132 0.918969 0.459485 0.888186i \(-0.348034\pi\)
0.459485 + 0.888186i \(0.348034\pi\)
\(368\) −1.12215e132 −0.810750
\(369\) −3.52819e130 −0.0221664
\(370\) 1.95815e132 1.07018
\(371\) −3.93396e132 −1.87100
\(372\) 8.53666e131 0.353449
\(373\) 2.38273e132 0.859153 0.429576 0.903030i \(-0.358663\pi\)
0.429576 + 0.903030i \(0.358663\pi\)
\(374\) 3.93217e132 1.23522
\(375\) −1.25112e132 −0.342521
\(376\) −1.55874e132 −0.372047
\(377\) −2.00346e132 −0.417063
\(378\) −1.09607e133 −1.99072
\(379\) −5.06332e131 −0.0802631 −0.0401316 0.999194i \(-0.512778\pi\)
−0.0401316 + 0.999194i \(0.512778\pi\)
\(380\) 3.47902e132 0.481505
\(381\) 1.47148e133 1.77876
\(382\) −8.69272e132 −0.918105
\(383\) −1.53557e133 −1.41753 −0.708767 0.705443i \(-0.750748\pi\)
−0.708767 + 0.705443i \(0.750748\pi\)
\(384\) −1.39705e133 −1.12759
\(385\) 4.73713e133 3.34416
\(386\) −2.28608e133 −1.41204
\(387\) 5.61100e131 0.0303337
\(388\) 4.60900e132 0.218159
\(389\) −1.58353e133 −0.656479 −0.328240 0.944594i \(-0.606455\pi\)
−0.328240 + 0.944594i \(0.606455\pi\)
\(390\) 2.60340e133 0.945615
\(391\) 1.37203e133 0.436777
\(392\) 4.15785e133 1.16048
\(393\) 4.75457e133 1.16384
\(394\) −1.03039e133 −0.221281
\(395\) −6.56548e133 −1.23742
\(396\) −7.55817e131 −0.0125059
\(397\) −1.06791e133 −0.155176 −0.0775879 0.996986i \(-0.524722\pi\)
−0.0775879 + 0.996986i \(0.524722\pi\)
\(398\) −1.10279e133 −0.140771
\(399\) −1.19479e134 −1.34026
\(400\) −9.40282e133 −0.927189
\(401\) 1.21033e134 1.04947 0.524735 0.851266i \(-0.324164\pi\)
0.524735 + 0.851266i \(0.324164\pi\)
\(402\) −1.04765e134 −0.799048
\(403\) −6.71750e133 −0.450815
\(404\) 1.25733e133 0.0742689
\(405\) −2.58324e134 −1.34348
\(406\) 3.11052e134 1.42476
\(407\) 2.53265e134 1.02203
\(408\) 1.25032e134 0.444656
\(409\) −5.37735e133 −0.168585 −0.0842923 0.996441i \(-0.526863\pi\)
−0.0842923 + 0.996441i \(0.526863\pi\)
\(410\) 7.10594e134 1.96450
\(411\) 2.63918e134 0.643599
\(412\) 2.12407e134 0.457049
\(413\) −1.17651e135 −2.23443
\(414\) −8.40765e132 −0.0140980
\(415\) −1.24854e135 −1.84896
\(416\) −3.82666e134 −0.500626
\(417\) 1.12330e135 1.29864
\(418\) 1.43454e135 1.46600
\(419\) 1.07138e135 0.968106 0.484053 0.875039i \(-0.339164\pi\)
0.484053 + 0.875039i \(0.339164\pi\)
\(420\) −1.26784e135 −1.01328
\(421\) −1.10685e135 −0.782639 −0.391320 0.920255i \(-0.627981\pi\)
−0.391320 + 0.920255i \(0.627981\pi\)
\(422\) −1.75753e135 −1.09980
\(423\) −1.84255e133 −0.0102068
\(424\) 1.50190e135 0.736715
\(425\) 1.14967e135 0.499507
\(426\) 3.85623e133 0.0148446
\(427\) −5.45935e135 −1.86254
\(428\) 2.10155e135 0.635602
\(429\) 3.36722e135 0.903068
\(430\) −1.13008e136 −2.68834
\(431\) 1.35915e135 0.286872 0.143436 0.989660i \(-0.454185\pi\)
0.143436 + 0.989660i \(0.454185\pi\)
\(432\) 6.60193e135 1.23668
\(433\) 2.47856e135 0.412166 0.206083 0.978535i \(-0.433928\pi\)
0.206083 + 0.978535i \(0.433928\pi\)
\(434\) 1.04294e136 1.54006
\(435\) 7.20140e135 0.944540
\(436\) 1.22615e134 0.0142886
\(437\) 5.00546e135 0.518382
\(438\) −7.78426e135 −0.716640
\(439\) 3.71671e134 0.0304253 0.0152127 0.999884i \(-0.495157\pi\)
0.0152127 + 0.999884i \(0.495157\pi\)
\(440\) −1.80853e136 −1.31678
\(441\) 4.91491e134 0.0318367
\(442\) 8.28138e135 0.477371
\(443\) −5.66929e135 −0.290895 −0.145448 0.989366i \(-0.546462\pi\)
−0.145448 + 0.989366i \(0.546462\pi\)
\(444\) −6.77838e135 −0.309673
\(445\) −3.03022e136 −1.23292
\(446\) −5.16666e135 −0.187269
\(447\) 1.73625e136 0.560759
\(448\) −1.27611e136 −0.367343
\(449\) −4.49565e136 −1.15373 −0.576867 0.816838i \(-0.695725\pi\)
−0.576867 + 0.816838i \(0.695725\pi\)
\(450\) −7.04504e134 −0.0161227
\(451\) 9.19076e136 1.87611
\(452\) −1.54466e136 −0.281322
\(453\) −4.97322e136 −0.808315
\(454\) 3.31866e136 0.481489
\(455\) 9.97667e136 1.29241
\(456\) 4.56146e136 0.527733
\(457\) 1.00591e137 1.03962 0.519812 0.854281i \(-0.326002\pi\)
0.519812 + 0.854281i \(0.326002\pi\)
\(458\) 1.94069e136 0.179219
\(459\) −8.07206e136 −0.666240
\(460\) 5.31150e136 0.391912
\(461\) 4.39872e136 0.290221 0.145110 0.989415i \(-0.453646\pi\)
0.145110 + 0.989415i \(0.453646\pi\)
\(462\) −5.22784e137 −3.08504
\(463\) 8.97464e136 0.473801 0.236901 0.971534i \(-0.423868\pi\)
0.236901 + 0.971534i \(0.423868\pi\)
\(464\) −1.87355e137 −0.885092
\(465\) 2.41459e137 1.02098
\(466\) 6.37177e136 0.241204
\(467\) 1.46815e137 0.497682 0.248841 0.968544i \(-0.419950\pi\)
0.248841 + 0.968544i \(0.419950\pi\)
\(468\) −1.59180e135 −0.00483310
\(469\) −4.01475e137 −1.09209
\(470\) 3.71098e137 0.904583
\(471\) −2.16988e137 −0.474087
\(472\) 4.49164e137 0.879816
\(473\) −1.46164e138 −2.56738
\(474\) 7.24559e137 1.14154
\(475\) 4.19423e137 0.592832
\(476\) −4.03299e137 −0.511527
\(477\) 1.77536e136 0.0202111
\(478\) −1.21943e137 −0.124629
\(479\) −8.59062e137 −0.788398 −0.394199 0.919025i \(-0.628978\pi\)
−0.394199 + 0.919025i \(0.628978\pi\)
\(480\) 1.37548e138 1.13379
\(481\) 5.33391e137 0.394979
\(482\) 2.43873e138 1.62271
\(483\) −1.82412e138 −1.09088
\(484\) 1.11875e138 0.601447
\(485\) 1.30365e138 0.630177
\(486\) 9.98352e136 0.0434026
\(487\) 1.34506e138 0.526018 0.263009 0.964793i \(-0.415285\pi\)
0.263009 + 0.964793i \(0.415285\pi\)
\(488\) 2.08426e138 0.733383
\(489\) −9.29826e137 −0.294439
\(490\) −9.89885e138 −2.82154
\(491\) −6.37468e138 −1.63592 −0.817959 0.575276i \(-0.804895\pi\)
−0.817959 + 0.575276i \(0.804895\pi\)
\(492\) −2.45981e138 −0.568459
\(493\) 2.29075e138 0.476828
\(494\) 3.02123e138 0.566560
\(495\) −2.13782e137 −0.0361247
\(496\) −6.28190e138 −0.956720
\(497\) 1.47777e137 0.0202887
\(498\) 1.37788e139 1.70569
\(499\) 5.16841e138 0.577004 0.288502 0.957479i \(-0.406843\pi\)
0.288502 + 0.957479i \(0.406843\pi\)
\(500\) −1.54068e138 −0.155152
\(501\) 2.05576e139 1.86779
\(502\) −1.97116e139 −1.61614
\(503\) −1.77422e137 −0.0131298 −0.00656488 0.999978i \(-0.502090\pi\)
−0.00656488 + 0.999978i \(0.502090\pi\)
\(504\) −2.93615e137 −0.0196158
\(505\) 3.55634e138 0.214534
\(506\) 2.19015e139 1.19322
\(507\) −1.34097e139 −0.659945
\(508\) 1.81205e139 0.805728
\(509\) 1.49444e139 0.600501 0.300250 0.953860i \(-0.402930\pi\)
0.300250 + 0.953860i \(0.402930\pi\)
\(510\) −2.97672e139 −1.08112
\(511\) −2.98306e139 −0.979457
\(512\) −8.23122e138 −0.244378
\(513\) −2.94486e139 −0.790717
\(514\) −3.59251e139 −0.872564
\(515\) 6.00793e139 1.32024
\(516\) 3.91192e139 0.777912
\(517\) 4.79974e139 0.863883
\(518\) −8.28127e139 −1.34932
\(519\) −6.97587e139 −1.02915
\(520\) −3.80887e139 −0.508890
\(521\) 2.45826e139 0.297499 0.148750 0.988875i \(-0.452475\pi\)
0.148750 + 0.988875i \(0.452475\pi\)
\(522\) −1.40375e138 −0.0153907
\(523\) 1.36972e140 1.36080 0.680402 0.732840i \(-0.261805\pi\)
0.680402 + 0.732840i \(0.261805\pi\)
\(524\) 5.85499e139 0.527187
\(525\) −1.52849e140 −1.24755
\(526\) 9.35035e138 0.0691930
\(527\) 7.68077e139 0.515416
\(528\) 3.14887e140 1.91649
\(529\) −1.04701e140 −0.578073
\(530\) −3.57566e140 −1.79122
\(531\) 5.30947e138 0.0241370
\(532\) −1.47132e140 −0.607098
\(533\) 1.93563e140 0.725055
\(534\) 3.34412e140 1.13738
\(535\) 5.94422e140 1.83601
\(536\) 1.53274e140 0.430014
\(537\) 2.35482e140 0.600182
\(538\) −3.42145e140 −0.792361
\(539\) −1.28031e141 −2.69459
\(540\) −3.12492e140 −0.597805
\(541\) −8.00457e140 −1.39213 −0.696064 0.717980i \(-0.745067\pi\)
−0.696064 + 0.717980i \(0.745067\pi\)
\(542\) 5.14156e140 0.813076
\(543\) −6.79839e140 −0.977722
\(544\) 4.37539e140 0.572366
\(545\) 3.46816e139 0.0412742
\(546\) −1.10102e141 −1.19226
\(547\) 9.42779e140 0.929100 0.464550 0.885547i \(-0.346216\pi\)
0.464550 + 0.885547i \(0.346216\pi\)
\(548\) 3.25001e140 0.291532
\(549\) 2.46376e139 0.0201197
\(550\) 1.83520e141 1.36460
\(551\) 8.35717e140 0.565916
\(552\) 6.96409e140 0.429538
\(553\) 2.77663e141 1.56018
\(554\) −1.75660e140 −0.0899331
\(555\) −1.91726e141 −0.894526
\(556\) 1.38328e141 0.588245
\(557\) −4.54013e141 −1.76005 −0.880026 0.474925i \(-0.842475\pi\)
−0.880026 + 0.474925i \(0.842475\pi\)
\(558\) −4.70670e139 −0.0166362
\(559\) −3.07829e141 −0.992206
\(560\) 9.32973e141 2.74275
\(561\) −3.85006e141 −1.03248
\(562\) −7.51275e141 −1.83814
\(563\) 2.61229e141 0.583230 0.291615 0.956536i \(-0.405807\pi\)
0.291615 + 0.956536i \(0.405807\pi\)
\(564\) −1.28460e141 −0.261755
\(565\) −4.36907e141 −0.812632
\(566\) −1.73512e141 −0.294634
\(567\) 1.09249e142 1.69391
\(568\) −5.64181e139 −0.00798875
\(569\) −3.10663e141 −0.401798 −0.200899 0.979612i \(-0.564386\pi\)
−0.200899 + 0.979612i \(0.564386\pi\)
\(570\) −1.08597e142 −1.28311
\(571\) 1.42175e142 1.53484 0.767420 0.641145i \(-0.221540\pi\)
0.767420 + 0.641145i \(0.221540\pi\)
\(572\) 4.14655e141 0.409064
\(573\) 8.51121e141 0.767412
\(574\) −3.00520e142 −2.47691
\(575\) 6.40344e141 0.482525
\(576\) 5.75899e139 0.00396816
\(577\) −1.45001e142 −0.913725 −0.456863 0.889537i \(-0.651027\pi\)
−0.456863 + 0.889537i \(0.651027\pi\)
\(578\) 1.14731e142 0.661295
\(579\) 2.23835e142 1.18027
\(580\) 8.86814e141 0.427849
\(581\) 5.28026e142 2.33123
\(582\) −1.43870e142 −0.581348
\(583\) −4.62473e142 −1.71063
\(584\) 1.13887e142 0.385665
\(585\) −4.50239e140 −0.0139610
\(586\) 1.44831e142 0.411278
\(587\) −5.25666e142 −1.36725 −0.683625 0.729834i \(-0.739597\pi\)
−0.683625 + 0.729834i \(0.739597\pi\)
\(588\) 3.42661e142 0.816456
\(589\) 2.80211e142 0.611714
\(590\) −1.06935e143 −2.13915
\(591\) 1.00887e142 0.184961
\(592\) 4.98803e142 0.838226
\(593\) 6.61885e142 1.01968 0.509842 0.860268i \(-0.329704\pi\)
0.509842 + 0.860268i \(0.329704\pi\)
\(594\) −1.28853e143 −1.82009
\(595\) −1.14073e143 −1.47761
\(596\) 2.13810e142 0.254007
\(597\) 1.07976e142 0.117666
\(598\) 4.61259e142 0.461141
\(599\) −8.88243e142 −0.814798 −0.407399 0.913250i \(-0.633564\pi\)
−0.407399 + 0.913250i \(0.633564\pi\)
\(600\) 5.83543e142 0.491229
\(601\) −1.86160e143 −1.43830 −0.719152 0.694853i \(-0.755469\pi\)
−0.719152 + 0.694853i \(0.755469\pi\)
\(602\) 4.77927e143 3.38955
\(603\) 1.81182e141 0.0117971
\(604\) −6.12426e142 −0.366143
\(605\) 3.16438e143 1.73735
\(606\) −3.92474e142 −0.197911
\(607\) 2.15377e143 0.997659 0.498830 0.866700i \(-0.333763\pi\)
0.498830 + 0.866700i \(0.333763\pi\)
\(608\) 1.59624e143 0.679303
\(609\) −3.04557e143 −1.19091
\(610\) −4.96212e143 −1.78312
\(611\) 1.01085e143 0.333861
\(612\) 1.82005e141 0.00552568
\(613\) 4.62414e143 1.29068 0.645338 0.763897i \(-0.276717\pi\)
0.645338 + 0.763897i \(0.276717\pi\)
\(614\) −8.51942e143 −2.18645
\(615\) −6.95757e143 −1.64206
\(616\) 7.64852e143 1.66024
\(617\) −4.05236e143 −0.809137 −0.404568 0.914508i \(-0.632578\pi\)
−0.404568 + 0.914508i \(0.632578\pi\)
\(618\) −6.63029e143 −1.21794
\(619\) 2.54979e143 0.430960 0.215480 0.976508i \(-0.430868\pi\)
0.215480 + 0.976508i \(0.430868\pi\)
\(620\) 2.97344e143 0.462473
\(621\) −4.49600e143 −0.643589
\(622\) 8.02425e143 1.05730
\(623\) 1.28152e144 1.55450
\(624\) 6.63170e143 0.740660
\(625\) −1.15809e144 −1.19102
\(626\) 1.35444e144 1.28287
\(627\) −1.40459e144 −1.22538
\(628\) −2.67208e143 −0.214748
\(629\) −6.09877e143 −0.451579
\(630\) 6.99027e142 0.0476931
\(631\) −7.65142e143 −0.481094 −0.240547 0.970638i \(-0.577327\pi\)
−0.240547 + 0.970638i \(0.577327\pi\)
\(632\) −1.06006e144 −0.614327
\(633\) 1.72084e144 0.919282
\(634\) −1.86914e143 −0.0920544
\(635\) 5.12537e144 2.32744
\(636\) 1.23776e144 0.518318
\(637\) −2.69640e144 −1.04137
\(638\) 3.65670e144 1.30264
\(639\) −6.66906e140 −0.000219165 0
\(640\) −4.86611e144 −1.47541
\(641\) 3.53096e143 0.0987880 0.0493940 0.998779i \(-0.484271\pi\)
0.0493940 + 0.998779i \(0.484271\pi\)
\(642\) −6.55998e144 −1.69375
\(643\) −2.19323e144 −0.522660 −0.261330 0.965249i \(-0.584161\pi\)
−0.261330 + 0.965249i \(0.584161\pi\)
\(644\) −2.24631e144 −0.494136
\(645\) 1.10649e145 2.24709
\(646\) −3.45446e144 −0.647748
\(647\) 3.54133e144 0.613191 0.306596 0.951840i \(-0.400810\pi\)
0.306596 + 0.951840i \(0.400810\pi\)
\(648\) −4.17088e144 −0.666983
\(649\) −1.38309e145 −2.04291
\(650\) 3.86503e144 0.527370
\(651\) −1.02116e145 −1.28728
\(652\) −1.14503e144 −0.133372
\(653\) 1.49140e145 1.60533 0.802666 0.596429i \(-0.203414\pi\)
0.802666 + 0.596429i \(0.203414\pi\)
\(654\) −3.82742e143 −0.0380761
\(655\) 1.65608e145 1.52284
\(656\) 1.81011e145 1.53871
\(657\) 1.34623e143 0.0105804
\(658\) −1.56942e145 −1.14053
\(659\) 1.65915e145 1.11503 0.557515 0.830167i \(-0.311755\pi\)
0.557515 + 0.830167i \(0.311755\pi\)
\(660\) −1.49047e145 −0.926423
\(661\) 8.72748e143 0.0501780 0.0250890 0.999685i \(-0.492013\pi\)
0.0250890 + 0.999685i \(0.492013\pi\)
\(662\) 4.12242e145 2.19263
\(663\) −8.10847e144 −0.399018
\(664\) −2.01589e145 −0.917932
\(665\) −4.16163e145 −1.75367
\(666\) 3.73727e143 0.0145758
\(667\) 1.27591e145 0.460617
\(668\) 2.53155e145 0.846055
\(669\) 5.05879e144 0.156531
\(670\) −3.64910e145 −1.04552
\(671\) −6.41796e145 −1.70289
\(672\) −5.81711e145 −1.42952
\(673\) 1.24310e145 0.282962 0.141481 0.989941i \(-0.454814\pi\)
0.141481 + 0.989941i \(0.454814\pi\)
\(674\) 9.55577e145 2.01503
\(675\) −3.76734e145 −0.736021
\(676\) −1.65133e145 −0.298936
\(677\) 4.41341e145 0.740386 0.370193 0.928955i \(-0.379292\pi\)
0.370193 + 0.928955i \(0.379292\pi\)
\(678\) 4.82166e145 0.749665
\(679\) −5.51333e145 −0.794549
\(680\) 4.35505e145 0.581814
\(681\) −3.24937e145 −0.402460
\(682\) 1.22607e146 1.40806
\(683\) −1.69082e145 −0.180066 −0.0900328 0.995939i \(-0.528697\pi\)
−0.0900328 + 0.995939i \(0.528697\pi\)
\(684\) 6.63996e143 0.00655807
\(685\) 9.19264e145 0.842123
\(686\) 1.82200e146 1.54830
\(687\) −1.90017e145 −0.149803
\(688\) −2.87868e146 −2.10566
\(689\) −9.73996e145 −0.661100
\(690\) −1.65798e146 −1.04436
\(691\) −2.14832e145 −0.125597 −0.0627986 0.998026i \(-0.520003\pi\)
−0.0627986 + 0.998026i \(0.520003\pi\)
\(692\) −8.59041e145 −0.466176
\(693\) 9.04115e144 0.0455473
\(694\) 4.93728e146 2.30927
\(695\) 3.91260e146 1.69921
\(696\) 1.16273e146 0.468925
\(697\) −2.21319e146 −0.828954
\(698\) −5.66919e146 −1.97227
\(699\) −6.23873e145 −0.201614
\(700\) −1.88225e146 −0.565104
\(701\) 4.07353e146 1.13630 0.568149 0.822926i \(-0.307660\pi\)
0.568149 + 0.822926i \(0.307660\pi\)
\(702\) −2.71372e146 −0.703403
\(703\) −2.22497e146 −0.535950
\(704\) −1.50019e146 −0.335857
\(705\) −3.63349e146 −0.756109
\(706\) −2.46385e146 −0.476619
\(707\) −1.50402e146 −0.270492
\(708\) 3.70170e146 0.618997
\(709\) 1.12091e147 1.74297 0.871484 0.490423i \(-0.163158\pi\)
0.871484 + 0.490423i \(0.163158\pi\)
\(710\) 1.34318e145 0.0194236
\(711\) −1.25307e145 −0.0168535
\(712\) −4.89257e146 −0.612093
\(713\) 4.27806e146 0.497893
\(714\) 1.25890e147 1.36311
\(715\) 1.17285e147 1.18163
\(716\) 2.89984e146 0.271865
\(717\) 1.19397e146 0.104173
\(718\) 1.85172e146 0.150372
\(719\) −4.57872e146 −0.346104 −0.173052 0.984913i \(-0.555363\pi\)
−0.173052 + 0.984913i \(0.555363\pi\)
\(720\) −4.21043e145 −0.0296280
\(721\) −2.54084e147 −1.66460
\(722\) 7.18524e146 0.438304
\(723\) −2.38781e147 −1.35637
\(724\) −8.37185e146 −0.442879
\(725\) 1.06913e147 0.526770
\(726\) −3.49218e147 −1.60273
\(727\) −1.12902e147 −0.482703 −0.241352 0.970438i \(-0.577591\pi\)
−0.241352 + 0.970438i \(0.577591\pi\)
\(728\) 1.61082e147 0.641626
\(729\) 2.64426e147 0.981379
\(730\) −2.71137e147 −0.937694
\(731\) 3.51971e147 1.13439
\(732\) 1.71770e147 0.515973
\(733\) −4.59740e147 −1.28723 −0.643617 0.765348i \(-0.722567\pi\)
−0.643617 + 0.765348i \(0.722567\pi\)
\(734\) −4.24993e147 −1.10926
\(735\) 9.69216e147 2.35843
\(736\) 2.43702e147 0.552906
\(737\) −4.71970e147 −0.998480
\(738\) 1.35622e146 0.0267564
\(739\) 4.38091e147 0.806075 0.403037 0.915183i \(-0.367954\pi\)
0.403037 + 0.915183i \(0.367954\pi\)
\(740\) −2.36100e147 −0.405194
\(741\) −2.95815e147 −0.473568
\(742\) 1.51220e148 2.25843
\(743\) −3.72029e147 −0.518385 −0.259193 0.965826i \(-0.583456\pi\)
−0.259193 + 0.965826i \(0.583456\pi\)
\(744\) 3.89858e147 0.506874
\(745\) 6.04761e147 0.733730
\(746\) −9.15912e147 −1.03706
\(747\) −2.38294e146 −0.0251827
\(748\) −4.74114e147 −0.467682
\(749\) −2.51389e148 −2.31490
\(750\) 4.80924e147 0.413448
\(751\) −5.97527e147 −0.479624 −0.239812 0.970819i \(-0.577086\pi\)
−0.239812 + 0.970819i \(0.577086\pi\)
\(752\) 9.45304e147 0.708521
\(753\) 1.93000e148 1.35088
\(754\) 7.70122e147 0.503426
\(755\) −1.73224e148 −1.05765
\(756\) 1.32157e148 0.753733
\(757\) −2.15898e148 −1.15030 −0.575150 0.818048i \(-0.695056\pi\)
−0.575150 + 0.818048i \(0.695056\pi\)
\(758\) 1.94632e147 0.0968834
\(759\) −2.14442e148 −0.997375
\(760\) 1.58882e148 0.690517
\(761\) 2.06807e148 0.839952 0.419976 0.907535i \(-0.362039\pi\)
0.419976 + 0.907535i \(0.362039\pi\)
\(762\) −5.65630e148 −2.14710
\(763\) −1.46673e147 −0.0520399
\(764\) 1.04811e148 0.347615
\(765\) 5.14801e146 0.0159616
\(766\) 5.90267e148 1.71107
\(767\) −2.91287e148 −0.789514
\(768\) 4.49165e148 1.13842
\(769\) 7.29288e148 1.72859 0.864296 0.502984i \(-0.167765\pi\)
0.864296 + 0.502984i \(0.167765\pi\)
\(770\) −1.82093e149 −4.03665
\(771\) 3.51750e148 0.729346
\(772\) 2.75641e148 0.534629
\(773\) 5.84700e148 1.06094 0.530468 0.847705i \(-0.322016\pi\)
0.530468 + 0.847705i \(0.322016\pi\)
\(774\) −2.15684e147 −0.0366150
\(775\) 3.58472e148 0.569400
\(776\) 2.10487e148 0.312857
\(777\) 8.10836e148 1.12785
\(778\) 6.08701e148 0.792418
\(779\) −8.07421e148 −0.983832
\(780\) −3.13901e148 −0.358031
\(781\) 1.73725e147 0.0185496
\(782\) −5.27401e148 −0.527222
\(783\) −7.50657e148 −0.702604
\(784\) −2.52155e149 −2.20999
\(785\) −7.55798e148 −0.620324
\(786\) −1.82763e149 −1.40484
\(787\) 6.29281e148 0.453049 0.226525 0.974005i \(-0.427264\pi\)
0.226525 + 0.974005i \(0.427264\pi\)
\(788\) 1.24237e148 0.0837821
\(789\) −9.15512e147 −0.0578360
\(790\) 2.52374e149 1.49365
\(791\) 1.84774e149 1.02459
\(792\) −3.45171e147 −0.0179344
\(793\) −1.35166e149 −0.658110
\(794\) 4.10500e148 0.187308
\(795\) 3.50101e149 1.49722
\(796\) 1.32967e148 0.0532991
\(797\) −3.51456e148 −0.132059 −0.0660294 0.997818i \(-0.521033\pi\)
−0.0660294 + 0.997818i \(0.521033\pi\)
\(798\) 4.59273e149 1.61779
\(799\) −1.15581e149 −0.381703
\(800\) 2.04205e149 0.632314
\(801\) −5.78340e147 −0.0167922
\(802\) −4.65247e149 −1.26679
\(803\) −3.50686e149 −0.895503
\(804\) 1.26318e149 0.302538
\(805\) −6.35367e149 −1.42737
\(806\) 2.58218e149 0.544166
\(807\) 3.35001e149 0.662307
\(808\) 5.74203e148 0.106508
\(809\) −5.26882e149 −0.916989 −0.458495 0.888697i \(-0.651611\pi\)
−0.458495 + 0.888697i \(0.651611\pi\)
\(810\) 9.92987e149 1.62168
\(811\) 3.54979e149 0.544037 0.272019 0.962292i \(-0.412309\pi\)
0.272019 + 0.962292i \(0.412309\pi\)
\(812\) −3.75046e149 −0.539447
\(813\) −5.03420e149 −0.679622
\(814\) −9.73539e149 −1.23366
\(815\) −3.23871e149 −0.385262
\(816\) −7.58266e149 −0.846796
\(817\) 1.28407e150 1.34633
\(818\) 2.06703e149 0.203494
\(819\) 1.90412e148 0.0176025
\(820\) −8.56787e149 −0.743806
\(821\) 2.35660e150 1.92138 0.960689 0.277627i \(-0.0895481\pi\)
0.960689 + 0.277627i \(0.0895481\pi\)
\(822\) −1.01449e150 −0.776871
\(823\) −1.59227e150 −1.14532 −0.572659 0.819793i \(-0.694088\pi\)
−0.572659 + 0.819793i \(0.694088\pi\)
\(824\) 9.70035e149 0.655445
\(825\) −1.79688e150 −1.14062
\(826\) 4.52244e150 2.69712
\(827\) −3.02253e150 −1.69370 −0.846851 0.531831i \(-0.821504\pi\)
−0.846851 + 0.531831i \(0.821504\pi\)
\(828\) 1.01374e148 0.00533782
\(829\) −1.41411e150 −0.699719 −0.349860 0.936802i \(-0.613771\pi\)
−0.349860 + 0.936802i \(0.613771\pi\)
\(830\) 4.79935e150 2.23183
\(831\) 1.71992e149 0.0751720
\(832\) −3.15949e149 −0.129797
\(833\) 3.08306e150 1.19060
\(834\) −4.31790e150 −1.56755
\(835\) 7.16048e150 2.44393
\(836\) −1.72967e150 −0.555061
\(837\) −2.51691e150 −0.759463
\(838\) −4.11835e150 −1.16857
\(839\) 2.15421e150 0.574840 0.287420 0.957805i \(-0.407202\pi\)
0.287420 + 0.957805i \(0.407202\pi\)
\(840\) −5.79007e150 −1.45312
\(841\) −2.10610e150 −0.497146
\(842\) 4.25469e150 0.944703
\(843\) 7.35588e150 1.53644
\(844\) 2.11912e150 0.416408
\(845\) −4.67077e150 −0.863511
\(846\) 7.08267e148 0.0123204
\(847\) −1.33826e151 −2.19051
\(848\) −9.10836e150 −1.40299
\(849\) 1.69889e150 0.246274
\(850\) −4.41926e150 −0.602941
\(851\) −3.39691e150 −0.436226
\(852\) −4.64959e148 −0.00562051
\(853\) 9.16686e150 1.04315 0.521574 0.853206i \(-0.325345\pi\)
0.521574 + 0.853206i \(0.325345\pi\)
\(854\) 2.09855e151 2.24822
\(855\) 1.87811e149 0.0189437
\(856\) 9.59748e150 0.911504
\(857\) −1.70515e150 −0.152493 −0.0762465 0.997089i \(-0.524294\pi\)
−0.0762465 + 0.997089i \(0.524294\pi\)
\(858\) −1.29434e151 −1.09007
\(859\) 8.41943e150 0.667782 0.333891 0.942612i \(-0.391638\pi\)
0.333891 + 0.942612i \(0.391638\pi\)
\(860\) 1.36258e151 1.01787
\(861\) 2.94245e151 2.07037
\(862\) −5.22451e150 −0.346275
\(863\) 4.44420e150 0.277484 0.138742 0.990329i \(-0.455694\pi\)
0.138742 + 0.990329i \(0.455694\pi\)
\(864\) −1.43377e151 −0.843378
\(865\) −2.42979e151 −1.34660
\(866\) −9.52746e150 −0.497514
\(867\) −1.12335e151 −0.552754
\(868\) −1.25751e151 −0.583102
\(869\) 3.26418e151 1.42645
\(870\) −2.76819e151 −1.14013
\(871\) −9.93998e150 −0.385879
\(872\) 5.59965e149 0.0204910
\(873\) 2.48812e149 0.00858297
\(874\) −1.92408e151 −0.625725
\(875\) 1.84298e151 0.565075
\(876\) 9.38575e150 0.271336
\(877\) −5.66585e151 −1.54449 −0.772246 0.635323i \(-0.780867\pi\)
−0.772246 + 0.635323i \(0.780867\pi\)
\(878\) −1.42869e150 −0.0367256
\(879\) −1.41807e151 −0.343773
\(880\) 1.09679e152 2.50765
\(881\) 3.86876e151 0.834280 0.417140 0.908842i \(-0.363032\pi\)
0.417140 + 0.908842i \(0.363032\pi\)
\(882\) −1.88927e150 −0.0384292
\(883\) −7.05117e151 −1.35296 −0.676480 0.736461i \(-0.736496\pi\)
−0.676480 + 0.736461i \(0.736496\pi\)
\(884\) −9.98513e150 −0.180743
\(885\) 1.04702e152 1.78805
\(886\) 2.17925e151 0.351132
\(887\) −7.64125e151 −1.16171 −0.580855 0.814007i \(-0.697282\pi\)
−0.580855 + 0.814007i \(0.697282\pi\)
\(888\) −3.09559e151 −0.444095
\(889\) −2.16759e152 −2.93451
\(890\) 1.16480e152 1.48822
\(891\) 1.28432e152 1.54871
\(892\) 6.22962e150 0.0709041
\(893\) −4.21664e151 −0.453019
\(894\) −6.67408e151 −0.676877
\(895\) 8.20218e151 0.785313
\(896\) 2.05794e152 1.86025
\(897\) −4.51628e151 −0.385452
\(898\) 1.72811e152 1.39264
\(899\) 7.14269e151 0.543548
\(900\) 8.49444e149 0.00610443
\(901\) 1.11366e152 0.755835
\(902\) −3.53289e152 −2.26461
\(903\) −4.67948e152 −2.83321
\(904\) −7.05426e151 −0.403439
\(905\) −2.36798e152 −1.27931
\(906\) 1.91169e152 0.975695
\(907\) 3.92186e152 1.89111 0.945554 0.325464i \(-0.105521\pi\)
0.945554 + 0.325464i \(0.105521\pi\)
\(908\) −4.00142e151 −0.182303
\(909\) 6.78753e149 0.00292194
\(910\) −3.83499e152 −1.56003
\(911\) 2.05812e151 0.0791177 0.0395589 0.999217i \(-0.487405\pi\)
0.0395589 + 0.999217i \(0.487405\pi\)
\(912\) −2.76632e152 −1.00501
\(913\) 6.20743e152 2.13141
\(914\) −3.86669e152 −1.25490
\(915\) 4.85851e152 1.49045
\(916\) −2.33995e151 −0.0678563
\(917\) −7.00379e152 −1.92005
\(918\) 3.10286e152 0.804201
\(919\) 2.59673e152 0.636324 0.318162 0.948036i \(-0.396934\pi\)
0.318162 + 0.948036i \(0.396934\pi\)
\(920\) 2.42569e152 0.562033
\(921\) 8.34153e152 1.82757
\(922\) −1.69085e152 −0.350317
\(923\) 3.65876e150 0.00716880
\(924\) 6.30338e152 1.16807
\(925\) −2.84638e152 −0.498877
\(926\) −3.44981e152 −0.571913
\(927\) 1.14666e151 0.0179816
\(928\) 4.06887e152 0.603606
\(929\) −2.59624e152 −0.364364 −0.182182 0.983265i \(-0.558316\pi\)
−0.182182 + 0.983265i \(0.558316\pi\)
\(930\) −9.28158e152 −1.23240
\(931\) 1.12477e153 1.41304
\(932\) −7.68265e151 −0.0913254
\(933\) −7.85670e152 −0.883763
\(934\) −5.64351e152 −0.600739
\(935\) −1.34103e153 −1.35095
\(936\) −7.26951e150 −0.00693105
\(937\) −1.02749e153 −0.927228 −0.463614 0.886037i \(-0.653448\pi\)
−0.463614 + 0.886037i \(0.653448\pi\)
\(938\) 1.54325e153 1.31823
\(939\) −1.32616e153 −1.07231
\(940\) −4.47445e152 −0.342496
\(941\) 7.21108e152 0.522558 0.261279 0.965263i \(-0.415856\pi\)
0.261279 + 0.965263i \(0.415856\pi\)
\(942\) 8.34091e152 0.572258
\(943\) −1.23271e153 −0.800771
\(944\) −2.72398e153 −1.67551
\(945\) 3.73805e153 2.17725
\(946\) 5.61846e153 3.09902
\(947\) 4.75065e151 0.0248158 0.0124079 0.999923i \(-0.496050\pi\)
0.0124079 + 0.999923i \(0.496050\pi\)
\(948\) −8.73625e152 −0.432211
\(949\) −7.38565e152 −0.346082
\(950\) −1.61224e153 −0.715592
\(951\) 1.83011e152 0.0769451
\(952\) −1.84181e153 −0.733571
\(953\) 1.91062e153 0.720925 0.360462 0.932774i \(-0.382619\pi\)
0.360462 + 0.932774i \(0.382619\pi\)
\(954\) −6.82442e151 −0.0243963
\(955\) 2.96457e153 1.00413
\(956\) 1.47031e152 0.0471874
\(957\) −3.58035e153 −1.08883
\(958\) 3.30220e153 0.951654
\(959\) −3.88769e153 −1.06178
\(960\) 1.13567e153 0.293957
\(961\) −1.68129e153 −0.412465
\(962\) −2.05033e153 −0.476769
\(963\) 1.13450e152 0.0250063
\(964\) −2.94046e153 −0.614396
\(965\) 7.79649e153 1.54434
\(966\) 7.01184e153 1.31677
\(967\) −8.30473e153 −1.47864 −0.739320 0.673355i \(-0.764853\pi\)
−0.739320 + 0.673355i \(0.764853\pi\)
\(968\) 5.10918e153 0.862523
\(969\) 3.38233e153 0.541430
\(970\) −5.01119e153 −0.760670
\(971\) 2.58933e153 0.372732 0.186366 0.982480i \(-0.440329\pi\)
0.186366 + 0.982480i \(0.440329\pi\)
\(972\) −1.20375e152 −0.0164332
\(973\) −1.65469e154 −2.14243
\(974\) −5.17036e153 −0.634943
\(975\) −3.78433e153 −0.440810
\(976\) −1.26401e154 −1.39664
\(977\) −5.51224e153 −0.577774 −0.288887 0.957363i \(-0.593285\pi\)
−0.288887 + 0.957363i \(0.593285\pi\)
\(978\) 3.57421e153 0.355410
\(979\) 1.50655e154 1.42126
\(980\) 1.19354e154 1.06830
\(981\) 6.61923e150 0.000562152 0
\(982\) 2.45040e154 1.97467
\(983\) −1.10834e153 −0.0847555 −0.0423778 0.999102i \(-0.513493\pi\)
−0.0423778 + 0.999102i \(0.513493\pi\)
\(984\) −1.12336e154 −0.815216
\(985\) 3.51404e153 0.242014
\(986\) −8.80555e153 −0.575566
\(987\) 1.53665e154 0.953328
\(988\) −3.64280e153 −0.214512
\(989\) 1.96042e154 1.09582
\(990\) 8.21770e152 0.0436052
\(991\) 2.95774e154 1.48993 0.744967 0.667101i \(-0.232465\pi\)
0.744967 + 0.667101i \(0.232465\pi\)
\(992\) 1.36427e154 0.652453
\(993\) −4.03634e154 −1.83274
\(994\) −5.68049e152 −0.0244899
\(995\) 3.76096e153 0.153961
\(996\) −1.66136e154 −0.645813
\(997\) −3.32744e154 −1.22832 −0.614158 0.789183i \(-0.710504\pi\)
−0.614158 + 0.789183i \(0.710504\pi\)
\(998\) −1.98671e154 −0.696486
\(999\) 1.99851e154 0.665400
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))