Properties

Label 1.104.a.a.1.1
Level 1
Weight 104
Character 1.1
Self dual Yes
Analytic conductor 67.184
Analytic rank 0
Dimension 8
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 104 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(67.1843880807\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: multiple of \( 2^{104}\cdot 3^{40}\cdot 5^{12}\cdot 7^{8}\cdot 11\cdot 13^{3}\cdot 17^{2} \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.50366e14\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q-5.46018e15 q^{2} -1.30099e24 q^{3} +1.96724e31 q^{4} -5.30727e35 q^{5} +7.10366e39 q^{6} +2.61912e43 q^{7} -5.20418e46 q^{8} -1.22226e49 q^{9} +O(q^{10})\) \(q-5.46018e15 q^{2} -1.30099e24 q^{3} +1.96724e31 q^{4} -5.30727e35 q^{5} +7.10366e39 q^{6} +2.61912e43 q^{7} -5.20418e46 q^{8} -1.22226e49 q^{9} +2.89786e51 q^{10} +4.50261e53 q^{11} -2.55936e55 q^{12} +2.00188e57 q^{13} -1.43009e59 q^{14} +6.90472e59 q^{15} +8.46561e61 q^{16} +3.55342e63 q^{17} +6.67376e64 q^{18} +1.06089e66 q^{19} -1.04406e67 q^{20} -3.40746e67 q^{21} -2.45850e69 q^{22} +1.51243e70 q^{23} +6.77060e70 q^{24} -7.04405e71 q^{25} -1.09306e73 q^{26} +3.40051e73 q^{27} +5.15243e74 q^{28} -1.95550e75 q^{29} -3.77010e75 q^{30} -6.33189e76 q^{31} +6.55289e76 q^{32} -5.85786e77 q^{33} -1.94023e79 q^{34} -1.39004e79 q^{35} -2.40447e80 q^{36} -3.73954e80 q^{37} -5.79264e81 q^{38} -2.60443e81 q^{39} +2.76200e82 q^{40} +1.79903e83 q^{41} +1.86054e83 q^{42} -4.86424e83 q^{43} +8.85768e84 q^{44} +6.48686e84 q^{45} -8.25816e85 q^{46} -1.62041e86 q^{47} -1.10137e86 q^{48} -4.23445e86 q^{49} +3.84618e87 q^{50} -4.62298e87 q^{51} +3.93817e88 q^{52} +7.08477e88 q^{53} -1.85674e89 q^{54} -2.38965e89 q^{55} -1.36304e90 q^{56} -1.38021e90 q^{57} +1.06774e91 q^{58} -2.20029e90 q^{59} +1.35832e91 q^{60} +4.53670e91 q^{61} +3.45732e92 q^{62} -3.20125e92 q^{63} -1.21631e93 q^{64} -1.06245e93 q^{65} +3.19850e93 q^{66} +1.42797e94 q^{67} +6.99042e94 q^{68} -1.96767e94 q^{69} +7.58986e94 q^{70} +1.63302e95 q^{71} +6.36086e95 q^{72} -1.05405e96 q^{73} +2.04186e96 q^{74} +9.16427e95 q^{75} +2.08702e97 q^{76} +1.17929e97 q^{77} +1.42207e97 q^{78} -7.93552e97 q^{79} -4.49292e97 q^{80} +1.25840e98 q^{81} -9.82303e98 q^{82} +5.44480e98 q^{83} -6.70328e98 q^{84} -1.88590e99 q^{85} +2.65596e99 q^{86} +2.54410e99 q^{87} -2.34324e100 q^{88} -3.14467e100 q^{89} -3.54194e100 q^{90} +5.24317e100 q^{91} +2.97532e101 q^{92} +8.23775e100 q^{93} +8.84774e101 q^{94} -5.63042e101 q^{95} -8.52526e100 q^{96} +6.67281e101 q^{97} +2.31208e102 q^{98} -5.50336e102 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 4388929556680440q^{2} + \)\(50\!\cdots\!40\)\(q^{3} + \)\(48\!\cdots\!64\)\(q^{4} + \)\(55\!\cdots\!20\)\(q^{5} + \)\(26\!\cdots\!36\)\(q^{6} + \)\(41\!\cdots\!00\)\(q^{7} + \)\(10\!\cdots\!80\)\(q^{8} + \)\(35\!\cdots\!16\)\(q^{9} + O(q^{10}) \) \( 8q + 4388929556680440q^{2} + \)\(50\!\cdots\!40\)\(q^{3} + \)\(48\!\cdots\!64\)\(q^{4} + \)\(55\!\cdots\!20\)\(q^{5} + \)\(26\!\cdots\!36\)\(q^{6} + \)\(41\!\cdots\!00\)\(q^{7} + \)\(10\!\cdots\!80\)\(q^{8} + \)\(35\!\cdots\!16\)\(q^{9} + \)\(20\!\cdots\!20\)\(q^{10} - \)\(53\!\cdots\!44\)\(q^{11} + \)\(25\!\cdots\!80\)\(q^{12} - \)\(15\!\cdots\!20\)\(q^{13} + \)\(20\!\cdots\!08\)\(q^{14} - \)\(30\!\cdots\!60\)\(q^{15} + \)\(36\!\cdots\!88\)\(q^{16} + \)\(20\!\cdots\!20\)\(q^{17} + \)\(26\!\cdots\!40\)\(q^{18} + \)\(14\!\cdots\!00\)\(q^{19} + \)\(25\!\cdots\!60\)\(q^{20} - \)\(46\!\cdots\!04\)\(q^{21} - \)\(13\!\cdots\!20\)\(q^{22} + \)\(40\!\cdots\!20\)\(q^{23} + \)\(41\!\cdots\!00\)\(q^{24} - \)\(36\!\cdots\!00\)\(q^{25} - \)\(14\!\cdots\!84\)\(q^{26} + \)\(63\!\cdots\!20\)\(q^{27} + \)\(51\!\cdots\!80\)\(q^{28} - \)\(11\!\cdots\!00\)\(q^{29} - \)\(31\!\cdots\!60\)\(q^{30} + \)\(10\!\cdots\!36\)\(q^{31} + \)\(10\!\cdots\!40\)\(q^{32} + \)\(16\!\cdots\!80\)\(q^{33} - \)\(16\!\cdots\!32\)\(q^{34} - \)\(15\!\cdots\!80\)\(q^{35} + \)\(80\!\cdots\!28\)\(q^{36} - \)\(92\!\cdots\!40\)\(q^{37} + \)\(19\!\cdots\!20\)\(q^{38} - \)\(78\!\cdots\!08\)\(q^{39} + \)\(19\!\cdots\!00\)\(q^{40} + \)\(22\!\cdots\!76\)\(q^{41} - \)\(18\!\cdots\!80\)\(q^{42} + \)\(96\!\cdots\!00\)\(q^{43} + \)\(26\!\cdots\!48\)\(q^{44} - \)\(14\!\cdots\!60\)\(q^{45} + \)\(27\!\cdots\!96\)\(q^{46} - \)\(29\!\cdots\!20\)\(q^{47} + \)\(12\!\cdots\!20\)\(q^{48} + \)\(26\!\cdots\!44\)\(q^{49} - \)\(65\!\cdots\!00\)\(q^{50} - \)\(20\!\cdots\!84\)\(q^{51} - \)\(36\!\cdots\!00\)\(q^{52} + \)\(16\!\cdots\!40\)\(q^{53} + \)\(24\!\cdots\!00\)\(q^{54} - \)\(60\!\cdots\!60\)\(q^{55} - \)\(50\!\cdots\!00\)\(q^{56} + \)\(55\!\cdots\!40\)\(q^{57} + \)\(10\!\cdots\!80\)\(q^{58} - \)\(37\!\cdots\!00\)\(q^{59} - \)\(44\!\cdots\!80\)\(q^{60} + \)\(56\!\cdots\!56\)\(q^{61} + \)\(70\!\cdots\!80\)\(q^{62} + \)\(10\!\cdots\!60\)\(q^{63} + \)\(26\!\cdots\!04\)\(q^{64} + \)\(51\!\cdots\!40\)\(q^{65} + \)\(36\!\cdots\!52\)\(q^{66} + \)\(36\!\cdots\!20\)\(q^{67} + \)\(12\!\cdots\!40\)\(q^{68} + \)\(14\!\cdots\!52\)\(q^{69} + \)\(85\!\cdots\!20\)\(q^{70} + \)\(13\!\cdots\!96\)\(q^{71} + \)\(56\!\cdots\!60\)\(q^{72} + \)\(44\!\cdots\!20\)\(q^{73} + \)\(94\!\cdots\!88\)\(q^{74} + \)\(15\!\cdots\!00\)\(q^{75} + \)\(62\!\cdots\!00\)\(q^{76} + \)\(37\!\cdots\!00\)\(q^{77} + \)\(44\!\cdots\!00\)\(q^{78} + \)\(24\!\cdots\!00\)\(q^{79} - \)\(25\!\cdots\!80\)\(q^{80} - \)\(31\!\cdots\!32\)\(q^{81} - \)\(34\!\cdots\!20\)\(q^{82} - \)\(25\!\cdots\!40\)\(q^{83} - \)\(14\!\cdots\!32\)\(q^{84} - \)\(77\!\cdots\!80\)\(q^{85} - \)\(22\!\cdots\!44\)\(q^{86} - \)\(19\!\cdots\!40\)\(q^{87} - \)\(40\!\cdots\!40\)\(q^{88} - \)\(24\!\cdots\!00\)\(q^{89} + \)\(19\!\cdots\!40\)\(q^{90} + \)\(15\!\cdots\!76\)\(q^{91} + \)\(77\!\cdots\!20\)\(q^{92} + \)\(10\!\cdots\!80\)\(q^{93} + \)\(72\!\cdots\!48\)\(q^{94} + \)\(27\!\cdots\!00\)\(q^{95} + \)\(88\!\cdots\!96\)\(q^{96} + \)\(50\!\cdots\!80\)\(q^{97} + \)\(88\!\cdots\!20\)\(q^{98} - \)\(72\!\cdots\!88\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.46018e15 −1.71460 −0.857299 0.514819i \(-0.827859\pi\)
−0.857299 + 0.514819i \(0.827859\pi\)
\(3\) −1.30099e24 −0.348763 −0.174382 0.984678i \(-0.555793\pi\)
−0.174382 + 0.984678i \(0.555793\pi\)
\(4\) 1.96724e31 1.93984
\(5\) −5.30727e35 −0.534461 −0.267230 0.963633i \(-0.586108\pi\)
−0.267230 + 0.963633i \(0.586108\pi\)
\(6\) 7.10366e39 0.597988
\(7\) 2.61912e43 0.786334 0.393167 0.919467i \(-0.371379\pi\)
0.393167 + 0.919467i \(0.371379\pi\)
\(8\) −5.20418e46 −1.61145
\(9\) −1.22226e49 −0.878364
\(10\) 2.89786e51 0.916385
\(11\) 4.50261e53 1.05133 0.525667 0.850691i \(-0.323816\pi\)
0.525667 + 0.850691i \(0.323816\pi\)
\(12\) −2.55936e55 −0.676546
\(13\) 2.00188e57 0.857739 0.428870 0.903366i \(-0.358912\pi\)
0.428870 + 0.903366i \(0.358912\pi\)
\(14\) −1.43009e59 −1.34825
\(15\) 6.90472e59 0.186400
\(16\) 8.46561e61 0.823150
\(17\) 3.55342e63 1.52239 0.761197 0.648520i \(-0.224612\pi\)
0.761197 + 0.648520i \(0.224612\pi\)
\(18\) 6.67376e64 1.50604
\(19\) 1.06089e66 1.47863 0.739315 0.673360i \(-0.235149\pi\)
0.739315 + 0.673360i \(0.235149\pi\)
\(20\) −1.04406e67 −1.03677
\(21\) −3.40746e67 −0.274244
\(22\) −2.45850e69 −1.80261
\(23\) 1.51243e70 1.12381 0.561905 0.827202i \(-0.310069\pi\)
0.561905 + 0.827202i \(0.310069\pi\)
\(24\) 6.77060e70 0.562016
\(25\) −7.04405e71 −0.714352
\(26\) −1.09306e73 −1.47068
\(27\) 3.40051e73 0.655104
\(28\) 5.15243e74 1.52536
\(29\) −1.95550e75 −0.950084 −0.475042 0.879963i \(-0.657567\pi\)
−0.475042 + 0.879963i \(0.657567\pi\)
\(30\) −3.77010e75 −0.319601
\(31\) −6.33189e76 −0.991759 −0.495879 0.868391i \(-0.665154\pi\)
−0.495879 + 0.868391i \(0.665154\pi\)
\(32\) 6.55289e76 0.200082
\(33\) −5.85786e77 −0.366666
\(34\) −1.94023e79 −2.61029
\(35\) −1.39004e79 −0.420264
\(36\) −2.40447e80 −1.70389
\(37\) −3.73954e80 −0.646293 −0.323147 0.946349i \(-0.604741\pi\)
−0.323147 + 0.946349i \(0.604741\pi\)
\(38\) −5.79264e81 −2.53526
\(39\) −2.60443e81 −0.299148
\(40\) 2.76200e82 0.861258
\(41\) 1.79903e83 1.57279 0.786394 0.617725i \(-0.211946\pi\)
0.786394 + 0.617725i \(0.211946\pi\)
\(42\) 1.86054e83 0.470218
\(43\) −4.86424e83 −0.365923 −0.182961 0.983120i \(-0.558568\pi\)
−0.182961 + 0.983120i \(0.558568\pi\)
\(44\) 8.85768e84 2.03942
\(45\) 6.48686e84 0.469451
\(46\) −8.25816e85 −1.92688
\(47\) −1.62041e86 −1.24907 −0.624534 0.780998i \(-0.714711\pi\)
−0.624534 + 0.780998i \(0.714711\pi\)
\(48\) −1.10137e86 −0.287085
\(49\) −4.23445e86 −0.381679
\(50\) 3.84618e87 1.22483
\(51\) −4.62298e87 −0.530955
\(52\) 3.93817e88 1.66388
\(53\) 7.08477e88 1.12232 0.561162 0.827706i \(-0.310355\pi\)
0.561162 + 0.827706i \(0.310355\pi\)
\(54\) −1.85674e89 −1.12324
\(55\) −2.38965e89 −0.561896
\(56\) −1.36304e90 −1.26714
\(57\) −1.38021e90 −0.515692
\(58\) 1.06774e91 1.62901
\(59\) −2.20029e90 −0.139188 −0.0695941 0.997575i \(-0.522170\pi\)
−0.0695941 + 0.997575i \(0.522170\pi\)
\(60\) 1.35832e91 0.361587
\(61\) 4.53670e91 0.515529 0.257765 0.966208i \(-0.417014\pi\)
0.257765 + 0.966208i \(0.417014\pi\)
\(62\) 3.45732e92 1.70047
\(63\) −3.20125e92 −0.690688
\(64\) −1.21631e93 −1.16621
\(65\) −1.06245e93 −0.458428
\(66\) 3.19850e93 0.628685
\(67\) 1.42797e94 1.29379 0.646897 0.762577i \(-0.276066\pi\)
0.646897 + 0.762577i \(0.276066\pi\)
\(68\) 6.99042e94 2.95321
\(69\) −1.96767e94 −0.391944
\(70\) 7.58986e94 0.720584
\(71\) 1.63302e95 0.746771 0.373386 0.927676i \(-0.378197\pi\)
0.373386 + 0.927676i \(0.378197\pi\)
\(72\) 6.36086e95 1.41544
\(73\) −1.05405e96 −1.15275 −0.576374 0.817186i \(-0.695533\pi\)
−0.576374 + 0.817186i \(0.695533\pi\)
\(74\) 2.04186e96 1.10813
\(75\) 9.16427e95 0.249140
\(76\) 2.08702e97 2.86831
\(77\) 1.17929e97 0.826699
\(78\) 1.42207e97 0.512918
\(79\) −7.93552e97 −1.48518 −0.742592 0.669744i \(-0.766404\pi\)
−0.742592 + 0.669744i \(0.766404\pi\)
\(80\) −4.49292e97 −0.439941
\(81\) 1.25840e98 0.649888
\(82\) −9.82303e98 −2.69670
\(83\) 5.44480e98 0.800682 0.400341 0.916366i \(-0.368892\pi\)
0.400341 + 0.916366i \(0.368892\pi\)
\(84\) −6.70328e98 −0.531991
\(85\) −1.88590e99 −0.813660
\(86\) 2.65596e99 0.627410
\(87\) 2.54410e99 0.331354
\(88\) −2.34324e100 −1.69418
\(89\) −3.14467e100 −1.27054 −0.635272 0.772289i \(-0.719112\pi\)
−0.635272 + 0.772289i \(0.719112\pi\)
\(90\) −3.54194e100 −0.804919
\(91\) 5.24317e100 0.674470
\(92\) 2.97532e101 2.18002
\(93\) 8.23775e100 0.345889
\(94\) 8.84774e101 2.14165
\(95\) −5.63042e101 −0.790269
\(96\) −8.52526e100 −0.0697813
\(97\) 6.67281e101 0.320305 0.160153 0.987092i \(-0.448801\pi\)
0.160153 + 0.987092i \(0.448801\pi\)
\(98\) 2.31208e102 0.654426
\(99\) −5.50336e102 −0.923454
\(100\) −1.38573e103 −1.38573
\(101\) 9.58727e102 0.574307 0.287154 0.957885i \(-0.407291\pi\)
0.287154 + 0.957885i \(0.407291\pi\)
\(102\) 2.52423e103 0.910374
\(103\) −3.71510e102 −0.0810688 −0.0405344 0.999178i \(-0.512906\pi\)
−0.0405344 + 0.999178i \(0.512906\pi\)
\(104\) −1.04181e104 −1.38221
\(105\) 1.80843e103 0.146573
\(106\) −3.86841e104 −1.92433
\(107\) −3.82474e104 −1.17311 −0.586553 0.809911i \(-0.699516\pi\)
−0.586553 + 0.809911i \(0.699516\pi\)
\(108\) 6.68961e104 1.27080
\(109\) 8.09300e104 0.956411 0.478206 0.878248i \(-0.341287\pi\)
0.478206 + 0.878248i \(0.341287\pi\)
\(110\) 1.30479e105 0.963426
\(111\) 4.86512e104 0.225403
\(112\) 2.21725e105 0.647271
\(113\) 4.33478e105 0.800621 0.400311 0.916379i \(-0.368902\pi\)
0.400311 + 0.916379i \(0.368902\pi\)
\(114\) 7.53619e105 0.884204
\(115\) −8.02689e105 −0.600632
\(116\) −3.84694e106 −1.84301
\(117\) −2.44682e106 −0.753408
\(118\) 1.20140e106 0.238652
\(119\) 9.30685e106 1.19711
\(120\) −3.59334e106 −0.300375
\(121\) 1.93146e106 0.105302
\(122\) −2.47712e107 −0.883925
\(123\) −2.34053e107 −0.548530
\(124\) −1.24563e108 −1.92386
\(125\) 8.97184e107 0.916253
\(126\) 1.74794e108 1.18425
\(127\) −8.30922e107 −0.374687 −0.187344 0.982294i \(-0.559988\pi\)
−0.187344 + 0.982294i \(0.559988\pi\)
\(128\) 5.97675e108 1.79950
\(129\) 6.32834e107 0.127620
\(130\) 5.80117e108 0.786019
\(131\) 3.82011e108 0.348823 0.174411 0.984673i \(-0.444198\pi\)
0.174411 + 0.984673i \(0.444198\pi\)
\(132\) −1.15238e109 −0.711276
\(133\) 2.77860e109 1.16270
\(134\) −7.79695e109 −2.21834
\(135\) −1.80474e109 −0.350127
\(136\) −1.84926e110 −2.45327
\(137\) 1.58709e110 1.44375 0.721874 0.692024i \(-0.243281\pi\)
0.721874 + 0.692024i \(0.243281\pi\)
\(138\) 1.07438e110 0.672026
\(139\) 1.90197e110 0.820242 0.410121 0.912031i \(-0.365487\pi\)
0.410121 + 0.912031i \(0.365487\pi\)
\(140\) −2.73453e110 −0.815247
\(141\) 2.10815e110 0.435629
\(142\) −8.91660e110 −1.28041
\(143\) 9.01367e110 0.901770
\(144\) −1.03472e111 −0.723026
\(145\) 1.03784e111 0.507782
\(146\) 5.75531e111 1.97650
\(147\) 5.50899e110 0.133116
\(148\) −7.35656e111 −1.25371
\(149\) 1.31408e112 1.58317 0.791585 0.611059i \(-0.209256\pi\)
0.791585 + 0.611059i \(0.209256\pi\)
\(150\) −5.00386e111 −0.427174
\(151\) 2.22106e112 1.34663 0.673314 0.739357i \(-0.264870\pi\)
0.673314 + 0.739357i \(0.264870\pi\)
\(152\) −5.52106e112 −2.38274
\(153\) −4.34321e112 −1.33722
\(154\) −6.43912e112 −1.41746
\(155\) 3.36050e112 0.530056
\(156\) −5.12353e112 −0.580300
\(157\) 1.03035e113 0.839755 0.419878 0.907581i \(-0.362073\pi\)
0.419878 + 0.907581i \(0.362073\pi\)
\(158\) 4.33294e113 2.54649
\(159\) −9.21723e112 −0.391425
\(160\) −3.47779e112 −0.106936
\(161\) 3.96125e113 0.883690
\(162\) −6.87106e113 −1.11430
\(163\) −1.34400e114 −1.58759 −0.793796 0.608184i \(-0.791898\pi\)
−0.793796 + 0.608184i \(0.791898\pi\)
\(164\) 3.53912e114 3.05096
\(165\) 3.10892e113 0.195969
\(166\) −2.97296e114 −1.37285
\(167\) −2.30653e114 −0.781737 −0.390868 0.920447i \(-0.627825\pi\)
−0.390868 + 0.920447i \(0.627825\pi\)
\(168\) 1.77330e114 0.441932
\(169\) −1.43958e114 −0.264283
\(170\) 1.02973e115 1.39510
\(171\) −1.29668e115 −1.29878
\(172\) −9.56910e114 −0.709833
\(173\) −6.66123e114 −0.366589 −0.183295 0.983058i \(-0.558676\pi\)
−0.183295 + 0.983058i \(0.558676\pi\)
\(174\) −1.38912e115 −0.568139
\(175\) −1.84492e115 −0.561719
\(176\) 3.81173e115 0.865406
\(177\) 2.86257e114 0.0485437
\(178\) 1.71705e116 2.17847
\(179\) 9.46546e115 0.899934 0.449967 0.893045i \(-0.351436\pi\)
0.449967 + 0.893045i \(0.351436\pi\)
\(180\) 1.27612e116 0.910662
\(181\) −6.71300e115 −0.360139 −0.180069 0.983654i \(-0.557632\pi\)
−0.180069 + 0.983654i \(0.557632\pi\)
\(182\) −2.86287e116 −1.15644
\(183\) −5.90221e115 −0.179798
\(184\) −7.87098e116 −1.81097
\(185\) 1.98467e116 0.345418
\(186\) −4.49796e116 −0.593060
\(187\) 1.59997e117 1.60054
\(188\) −3.18773e117 −2.42300
\(189\) 8.90636e116 0.515131
\(190\) 3.07431e117 1.35499
\(191\) −1.50316e117 −0.505577 −0.252789 0.967522i \(-0.581348\pi\)
−0.252789 + 0.967522i \(0.581348\pi\)
\(192\) 1.58242e117 0.406731
\(193\) 3.67640e117 0.723138 0.361569 0.932345i \(-0.382241\pi\)
0.361569 + 0.932345i \(0.382241\pi\)
\(194\) −3.64347e117 −0.549195
\(195\) 1.38224e117 0.159883
\(196\) −8.33015e117 −0.740398
\(197\) −1.11233e118 −0.760716 −0.380358 0.924839i \(-0.624199\pi\)
−0.380358 + 0.924839i \(0.624199\pi\)
\(198\) 3.00493e118 1.58335
\(199\) 2.74913e118 1.11754 0.558768 0.829324i \(-0.311274\pi\)
0.558768 + 0.829324i \(0.311274\pi\)
\(200\) 3.66585e118 1.15115
\(201\) −1.85777e118 −0.451228
\(202\) −5.23482e118 −0.984706
\(203\) −5.12171e118 −0.747083
\(204\) −9.09449e118 −1.02997
\(205\) −9.54794e118 −0.840593
\(206\) 2.02851e118 0.139000
\(207\) −1.84859e119 −0.987115
\(208\) 1.69471e119 0.706049
\(209\) 4.77676e119 1.55453
\(210\) −9.87436e118 −0.251313
\(211\) −5.77832e119 −1.15148 −0.575738 0.817634i \(-0.695285\pi\)
−0.575738 + 0.817634i \(0.695285\pi\)
\(212\) 1.39374e120 2.17713
\(213\) −2.12455e119 −0.260446
\(214\) 2.08838e120 2.01141
\(215\) 2.58158e119 0.195571
\(216\) −1.76969e120 −1.05567
\(217\) −1.65840e120 −0.779853
\(218\) −4.41892e120 −1.63986
\(219\) 1.37131e120 0.402036
\(220\) −4.70101e120 −1.08999
\(221\) 7.11352e120 1.30582
\(222\) −2.65644e120 −0.386476
\(223\) 6.96461e120 0.803889 0.401944 0.915664i \(-0.368334\pi\)
0.401944 + 0.915664i \(0.368334\pi\)
\(224\) 1.71628e120 0.157331
\(225\) 8.60967e120 0.627461
\(226\) −2.36687e121 −1.37274
\(227\) −2.51778e121 −1.16329 −0.581643 0.813444i \(-0.697590\pi\)
−0.581643 + 0.813444i \(0.697590\pi\)
\(228\) −2.71520e121 −1.00036
\(229\) 5.94832e121 1.74931 0.874656 0.484745i \(-0.161088\pi\)
0.874656 + 0.484745i \(0.161088\pi\)
\(230\) 4.38283e121 1.02984
\(231\) −1.53425e121 −0.288322
\(232\) 1.01768e122 1.53102
\(233\) −1.21145e122 −1.46041 −0.730207 0.683226i \(-0.760576\pi\)
−0.730207 + 0.683226i \(0.760576\pi\)
\(234\) 1.33601e122 1.29179
\(235\) 8.59996e121 0.667577
\(236\) −4.32850e121 −0.270003
\(237\) 1.03241e122 0.517977
\(238\) −5.08171e122 −2.05256
\(239\) −2.55458e122 −0.831434 −0.415717 0.909494i \(-0.636469\pi\)
−0.415717 + 0.909494i \(0.636469\pi\)
\(240\) 5.84527e121 0.153435
\(241\) −4.59650e122 −0.973980 −0.486990 0.873408i \(-0.661905\pi\)
−0.486990 + 0.873408i \(0.661905\pi\)
\(242\) −1.05461e122 −0.180551
\(243\) −6.36904e122 −0.881761
\(244\) 8.92475e122 1.00005
\(245\) 2.24733e122 0.203992
\(246\) 1.27797e123 0.940509
\(247\) 2.12377e123 1.26828
\(248\) 3.29523e123 1.59817
\(249\) −7.08365e122 −0.279248
\(250\) −4.89878e123 −1.57101
\(251\) −8.18914e122 −0.213817 −0.106908 0.994269i \(-0.534095\pi\)
−0.106908 + 0.994269i \(0.534095\pi\)
\(252\) −6.29762e123 −1.33983
\(253\) 6.80990e123 1.18150
\(254\) 4.53698e123 0.642437
\(255\) 2.45354e123 0.283775
\(256\) −2.02992e124 −1.91921
\(257\) 1.57942e124 1.22163 0.610817 0.791772i \(-0.290841\pi\)
0.610817 + 0.791772i \(0.290841\pi\)
\(258\) −3.45539e123 −0.218817
\(259\) −9.79432e123 −0.508202
\(260\) −2.09009e124 −0.889278
\(261\) 2.39014e124 0.834520
\(262\) −2.08585e124 −0.598090
\(263\) 2.58576e124 0.609351 0.304675 0.952456i \(-0.401452\pi\)
0.304675 + 0.952456i \(0.401452\pi\)
\(264\) 3.04854e124 0.590866
\(265\) −3.76007e124 −0.599838
\(266\) −1.51717e125 −1.99356
\(267\) 4.09120e124 0.443119
\(268\) 2.80914e125 2.50976
\(269\) −9.10642e124 −0.671592 −0.335796 0.941935i \(-0.609005\pi\)
−0.335796 + 0.941935i \(0.609005\pi\)
\(270\) 9.85421e124 0.600327
\(271\) 3.36714e125 1.69567 0.847837 0.530256i \(-0.177904\pi\)
0.847837 + 0.530256i \(0.177904\pi\)
\(272\) 3.00819e125 1.25316
\(273\) −6.82133e124 −0.235230
\(274\) −8.66578e125 −2.47545
\(275\) −3.17166e125 −0.751022
\(276\) −3.87087e125 −0.760310
\(277\) −4.58923e125 −0.748224 −0.374112 0.927384i \(-0.622052\pi\)
−0.374112 + 0.927384i \(0.622052\pi\)
\(278\) −1.03851e126 −1.40638
\(279\) 7.73922e125 0.871125
\(280\) 7.23401e125 0.677237
\(281\) 1.57573e126 1.22774 0.613871 0.789406i \(-0.289611\pi\)
0.613871 + 0.789406i \(0.289611\pi\)
\(282\) −1.15109e126 −0.746928
\(283\) 3.29385e125 0.178116 0.0890579 0.996026i \(-0.471614\pi\)
0.0890579 + 0.996026i \(0.471614\pi\)
\(284\) 3.21254e126 1.44862
\(285\) 7.32514e125 0.275617
\(286\) −4.92163e126 −1.54617
\(287\) 4.71189e126 1.23674
\(288\) −8.00934e125 −0.175745
\(289\) 7.17878e126 1.31769
\(290\) −5.66678e126 −0.870642
\(291\) −8.68128e125 −0.111711
\(292\) −2.07357e127 −2.23615
\(293\) 1.39826e127 1.26446 0.632229 0.774781i \(-0.282140\pi\)
0.632229 + 0.774781i \(0.282140\pi\)
\(294\) −3.00801e126 −0.228240
\(295\) 1.16775e126 0.0743906
\(296\) 1.94612e127 1.04147
\(297\) 1.53112e127 0.688733
\(298\) −7.17509e127 −2.71450
\(299\) 3.02771e127 0.963937
\(300\) 1.80283e127 0.483292
\(301\) −1.27400e127 −0.287737
\(302\) −1.21274e128 −2.30892
\(303\) −1.24730e127 −0.200297
\(304\) 8.98107e127 1.21713
\(305\) −2.40774e127 −0.275530
\(306\) 2.37147e128 2.29279
\(307\) −2.54064e127 −0.207643 −0.103822 0.994596i \(-0.533107\pi\)
−0.103822 + 0.994596i \(0.533107\pi\)
\(308\) 2.31994e128 1.60367
\(309\) 4.83333e126 0.0282738
\(310\) −1.83489e128 −0.908832
\(311\) −1.19727e127 −0.0502379 −0.0251190 0.999684i \(-0.507996\pi\)
−0.0251190 + 0.999684i \(0.507996\pi\)
\(312\) 1.35539e128 0.482063
\(313\) 2.34857e127 0.0708387 0.0354193 0.999373i \(-0.488723\pi\)
0.0354193 + 0.999373i \(0.488723\pi\)
\(314\) −5.62590e128 −1.43984
\(315\) 1.69899e128 0.369145
\(316\) −1.56110e129 −2.88102
\(317\) 4.05413e128 0.635837 0.317919 0.948118i \(-0.397016\pi\)
0.317919 + 0.948118i \(0.397016\pi\)
\(318\) 5.03278e128 0.671137
\(319\) −8.80486e128 −0.998855
\(320\) 6.45530e128 0.623294
\(321\) 4.97597e128 0.409136
\(322\) −2.16292e129 −1.51517
\(323\) 3.76979e129 2.25106
\(324\) 2.47556e129 1.26068
\(325\) −1.41014e129 −0.612728
\(326\) 7.33850e129 2.72208
\(327\) −1.05289e129 −0.333561
\(328\) −9.36248e129 −2.53447
\(329\) −4.24406e129 −0.982184
\(330\) −1.69753e129 −0.336007
\(331\) −3.80412e129 −0.644336 −0.322168 0.946682i \(-0.604412\pi\)
−0.322168 + 0.946682i \(0.604412\pi\)
\(332\) 1.07112e130 1.55320
\(333\) 4.57070e129 0.567681
\(334\) 1.25941e130 1.34036
\(335\) −7.57859e129 −0.691482
\(336\) −2.88463e129 −0.225744
\(337\) −1.67977e130 −1.12800 −0.564001 0.825774i \(-0.690739\pi\)
−0.564001 + 0.825774i \(0.690739\pi\)
\(338\) 7.86034e129 0.453139
\(339\) −5.63952e129 −0.279227
\(340\) −3.71000e130 −1.57837
\(341\) −2.85100e130 −1.04267
\(342\) 7.08012e130 2.22688
\(343\) −4.01478e130 −1.08646
\(344\) 2.53144e130 0.589667
\(345\) 1.04429e130 0.209478
\(346\) 3.63715e130 0.628553
\(347\) 2.25423e130 0.335760 0.167880 0.985807i \(-0.446308\pi\)
0.167880 + 0.985807i \(0.446308\pi\)
\(348\) 5.00484e130 0.642775
\(349\) −5.83015e130 −0.645908 −0.322954 0.946415i \(-0.604676\pi\)
−0.322954 + 0.946415i \(0.604676\pi\)
\(350\) 1.00736e131 0.963122
\(351\) 6.80742e130 0.561909
\(352\) 2.95051e130 0.210353
\(353\) 1.98835e130 0.122489 0.0612444 0.998123i \(-0.480493\pi\)
0.0612444 + 0.998123i \(0.480493\pi\)
\(354\) −1.56301e130 −0.0832329
\(355\) −8.66689e130 −0.399120
\(356\) −6.18631e131 −2.46466
\(357\) −1.21082e131 −0.417508
\(358\) −5.16831e131 −1.54302
\(359\) 3.69274e131 0.954960 0.477480 0.878643i \(-0.341550\pi\)
0.477480 + 0.878643i \(0.341550\pi\)
\(360\) −3.37588e131 −0.756499
\(361\) 6.10707e131 1.18635
\(362\) 3.66542e131 0.617493
\(363\) −2.51281e130 −0.0367256
\(364\) 1.03146e132 1.30837
\(365\) 5.59413e131 0.616099
\(366\) 3.22271e131 0.308280
\(367\) −1.08880e132 −0.904998 −0.452499 0.891765i \(-0.649467\pi\)
−0.452499 + 0.891765i \(0.649467\pi\)
\(368\) 1.28037e132 0.925065
\(369\) −2.19889e132 −1.38148
\(370\) −1.08367e132 −0.592253
\(371\) 1.85559e132 0.882521
\(372\) 1.62056e132 0.670970
\(373\) 3.00190e132 1.08241 0.541205 0.840891i \(-0.317968\pi\)
0.541205 + 0.840891i \(0.317968\pi\)
\(374\) −8.73610e132 −2.74429
\(375\) −1.16723e132 −0.319555
\(376\) 8.43292e132 2.01281
\(377\) −3.91468e132 −0.814924
\(378\) −4.86303e132 −0.883242
\(379\) 9.93644e132 1.57511 0.787556 0.616243i \(-0.211346\pi\)
0.787556 + 0.616243i \(0.211346\pi\)
\(380\) −1.10764e133 −1.53300
\(381\) 1.08102e132 0.130677
\(382\) 8.20753e132 0.866861
\(383\) −3.74392e132 −0.345613 −0.172806 0.984956i \(-0.555283\pi\)
−0.172806 + 0.984956i \(0.555283\pi\)
\(384\) −7.77572e132 −0.627599
\(385\) −6.25879e132 −0.441838
\(386\) −2.00738e133 −1.23989
\(387\) 5.94537e132 0.321413
\(388\) 1.31270e133 0.621342
\(389\) 2.61673e133 1.08481 0.542406 0.840116i \(-0.317513\pi\)
0.542406 + 0.840116i \(0.317513\pi\)
\(390\) −7.54729e132 −0.274135
\(391\) 5.37432e133 1.71088
\(392\) 2.20368e133 0.615058
\(393\) −4.96995e132 −0.121656
\(394\) 6.07352e133 1.30432
\(395\) 4.21159e133 0.793772
\(396\) −1.08264e134 −1.79136
\(397\) −7.05323e133 −1.02489 −0.512444 0.858720i \(-0.671260\pi\)
−0.512444 + 0.858720i \(0.671260\pi\)
\(398\) −1.50107e134 −1.91612
\(399\) −3.61494e133 −0.405506
\(400\) −5.96322e133 −0.588019
\(401\) 9.04492e132 0.0784277 0.0392138 0.999231i \(-0.487515\pi\)
0.0392138 + 0.999231i \(0.487515\pi\)
\(402\) 1.01438e134 0.773674
\(403\) −1.26757e134 −0.850671
\(404\) 1.88604e134 1.11407
\(405\) −6.67864e133 −0.347340
\(406\) 2.79654e134 1.28095
\(407\) −1.68377e134 −0.679470
\(408\) 2.40588e134 0.855610
\(409\) −1.98753e134 −0.623107 −0.311554 0.950229i \(-0.600849\pi\)
−0.311554 + 0.950229i \(0.600849\pi\)
\(410\) 5.21335e134 1.44128
\(411\) −2.06479e134 −0.503526
\(412\) −7.30849e133 −0.157261
\(413\) −5.76284e133 −0.109448
\(414\) 1.00936e135 1.69250
\(415\) −2.88970e134 −0.427933
\(416\) 1.31181e134 0.171618
\(417\) −2.47445e134 −0.286070
\(418\) −2.60820e135 −2.66540
\(419\) −1.34542e135 −1.21573 −0.607865 0.794040i \(-0.707974\pi\)
−0.607865 + 0.794040i \(0.707974\pi\)
\(420\) 3.55761e134 0.284328
\(421\) 2.13498e135 1.50961 0.754807 0.655947i \(-0.227730\pi\)
0.754807 + 0.655947i \(0.227730\pi\)
\(422\) 3.15507e135 1.97432
\(423\) 1.98057e135 1.09714
\(424\) −3.68704e135 −1.80857
\(425\) −2.50305e135 −1.08753
\(426\) 1.16004e135 0.446560
\(427\) 1.18822e135 0.405378
\(428\) −7.52417e135 −2.27564
\(429\) −1.17267e135 −0.314504
\(430\) −1.40959e135 −0.335326
\(431\) 9.22168e135 1.94639 0.973196 0.229976i \(-0.0738648\pi\)
0.973196 + 0.229976i \(0.0738648\pi\)
\(432\) 2.87874e135 0.539249
\(433\) −8.87148e135 −1.47526 −0.737632 0.675203i \(-0.764056\pi\)
−0.737632 + 0.675203i \(0.764056\pi\)
\(434\) 9.05516e135 1.33713
\(435\) −1.35022e135 −0.177096
\(436\) 1.59208e136 1.85529
\(437\) 1.60453e136 1.66170
\(438\) −7.48762e135 −0.689330
\(439\) −1.83247e136 −1.50008 −0.750041 0.661391i \(-0.769966\pi\)
−0.750041 + 0.661391i \(0.769966\pi\)
\(440\) 1.24362e136 0.905470
\(441\) 5.17560e135 0.335253
\(442\) −3.88411e136 −2.23895
\(443\) −1.12684e136 −0.578188 −0.289094 0.957301i \(-0.593354\pi\)
−0.289094 + 0.957301i \(0.593354\pi\)
\(444\) 9.57084e135 0.437247
\(445\) 1.66896e136 0.679056
\(446\) −3.80280e136 −1.37835
\(447\) −1.70960e136 −0.552151
\(448\) −3.18568e136 −0.917031
\(449\) 1.86589e135 0.0478849 0.0239425 0.999713i \(-0.492378\pi\)
0.0239425 + 0.999713i \(0.492378\pi\)
\(450\) −4.70104e136 −1.07584
\(451\) 8.10033e136 1.65352
\(452\) 8.52753e136 1.55308
\(453\) −2.88959e136 −0.469654
\(454\) 1.37475e137 1.99457
\(455\) −2.78269e136 −0.360477
\(456\) 7.18286e136 0.831013
\(457\) 1.50996e137 1.56056 0.780281 0.625429i \(-0.215076\pi\)
0.780281 + 0.625429i \(0.215076\pi\)
\(458\) −3.24789e137 −2.99936
\(459\) 1.20835e137 0.997327
\(460\) −1.57908e137 −1.16513
\(461\) −5.70758e136 −0.376577 −0.188289 0.982114i \(-0.560294\pi\)
−0.188289 + 0.982114i \(0.560294\pi\)
\(462\) 8.37726e136 0.494356
\(463\) −1.56763e137 −0.827602 −0.413801 0.910367i \(-0.635799\pi\)
−0.413801 + 0.910367i \(0.635799\pi\)
\(464\) −1.65545e137 −0.782062
\(465\) −4.37199e136 −0.184864
\(466\) 6.61474e137 2.50402
\(467\) 1.07059e137 0.362913 0.181456 0.983399i \(-0.441919\pi\)
0.181456 + 0.983399i \(0.441919\pi\)
\(468\) −4.81347e137 −1.46149
\(469\) 3.74002e137 1.01735
\(470\) −4.69573e137 −1.14463
\(471\) −1.34048e137 −0.292876
\(472\) 1.14507e137 0.224295
\(473\) −2.19017e137 −0.384707
\(474\) −5.63712e137 −0.888123
\(475\) −7.47296e137 −1.05626
\(476\) 1.83088e138 2.32221
\(477\) −8.65943e137 −0.985809
\(478\) 1.39485e138 1.42557
\(479\) −3.24976e137 −0.298244 −0.149122 0.988819i \(-0.547645\pi\)
−0.149122 + 0.988819i \(0.547645\pi\)
\(480\) 4.52458e136 0.0372954
\(481\) −7.48611e137 −0.554351
\(482\) 2.50977e138 1.66998
\(483\) −5.15357e137 −0.308199
\(484\) 3.79963e137 0.204270
\(485\) −3.54144e137 −0.171191
\(486\) 3.47761e138 1.51187
\(487\) −1.50996e138 −0.590504 −0.295252 0.955419i \(-0.595404\pi\)
−0.295252 + 0.955419i \(0.595404\pi\)
\(488\) −2.36098e138 −0.830751
\(489\) 1.74854e138 0.553694
\(490\) −1.22708e138 −0.349765
\(491\) 1.86965e138 0.479804 0.239902 0.970797i \(-0.422885\pi\)
0.239902 + 0.970797i \(0.422885\pi\)
\(492\) −4.60437e138 −1.06406
\(493\) −6.94873e138 −1.44640
\(494\) −1.15962e139 −2.17459
\(495\) 2.92078e138 0.493550
\(496\) −5.36033e138 −0.816367
\(497\) 4.27709e138 0.587211
\(498\) 3.86780e138 0.478799
\(499\) 1.11104e139 1.24037 0.620184 0.784456i \(-0.287058\pi\)
0.620184 + 0.784456i \(0.287058\pi\)
\(500\) 1.76497e139 1.77739
\(501\) 3.00078e138 0.272641
\(502\) 4.47142e138 0.366610
\(503\) 5.25435e138 0.388837 0.194419 0.980919i \(-0.437718\pi\)
0.194419 + 0.980919i \(0.437718\pi\)
\(504\) 1.66599e139 1.11301
\(505\) −5.08822e138 −0.306945
\(506\) −3.71833e139 −2.02580
\(507\) 1.87288e138 0.0921722
\(508\) −1.63462e139 −0.726834
\(509\) 1.69031e139 0.679204 0.339602 0.940569i \(-0.389708\pi\)
0.339602 + 0.940569i \(0.389708\pi\)
\(510\) −1.33968e139 −0.486559
\(511\) −2.76069e139 −0.906445
\(512\) 5.02261e139 1.49117
\(513\) 3.60757e139 0.968657
\(514\) −8.62390e139 −2.09461
\(515\) 1.97170e138 0.0433281
\(516\) 1.24493e139 0.247564
\(517\) −7.29608e139 −1.31319
\(518\) 5.34788e139 0.871362
\(519\) 8.66621e138 0.127853
\(520\) 5.52918e139 0.738735
\(521\) −1.49839e139 −0.181335 −0.0906677 0.995881i \(-0.528900\pi\)
−0.0906677 + 0.995881i \(0.528900\pi\)
\(522\) −1.30506e140 −1.43087
\(523\) 1.48013e140 1.47049 0.735244 0.677802i \(-0.237067\pi\)
0.735244 + 0.677802i \(0.237067\pi\)
\(524\) 7.51507e139 0.676661
\(525\) 2.40024e139 0.195907
\(526\) −1.41187e140 −1.04479
\(527\) −2.24999e140 −1.50985
\(528\) −4.95904e139 −0.301822
\(529\) 4.76256e139 0.262950
\(530\) 2.05307e140 1.02848
\(531\) 2.68933e139 0.122258
\(532\) 5.46616e140 2.25545
\(533\) 3.60144e140 1.34904
\(534\) −2.23387e140 −0.759770
\(535\) 2.02989e140 0.626979
\(536\) −7.43138e140 −2.08489
\(537\) −1.23145e140 −0.313864
\(538\) 4.97227e140 1.15151
\(539\) −1.90660e140 −0.401272
\(540\) −3.55035e140 −0.679192
\(541\) −2.50038e140 −0.434858 −0.217429 0.976076i \(-0.569767\pi\)
−0.217429 + 0.976076i \(0.569767\pi\)
\(542\) −1.83852e141 −2.90740
\(543\) 8.73357e139 0.125603
\(544\) 2.32852e140 0.304604
\(545\) −4.29517e140 −0.511164
\(546\) 3.72457e140 0.403325
\(547\) 1.55005e140 0.152756 0.0763781 0.997079i \(-0.475664\pi\)
0.0763781 + 0.997079i \(0.475664\pi\)
\(548\) 3.12217e141 2.80065
\(549\) −5.54503e140 −0.452822
\(550\) 1.73178e141 1.28770
\(551\) −2.07457e141 −1.40482
\(552\) 1.02401e141 0.631599
\(553\) −2.07841e141 −1.16785
\(554\) 2.50580e141 1.28290
\(555\) −2.58205e140 −0.120469
\(556\) 3.74163e141 1.59114
\(557\) 2.89920e141 1.12392 0.561959 0.827165i \(-0.310048\pi\)
0.561959 + 0.827165i \(0.310048\pi\)
\(558\) −4.22575e141 −1.49363
\(559\) −9.73762e140 −0.313866
\(560\) −1.17675e141 −0.345941
\(561\) −2.08154e141 −0.558211
\(562\) −8.60378e141 −2.10508
\(563\) 6.09221e139 0.0136017 0.00680084 0.999977i \(-0.497835\pi\)
0.00680084 + 0.999977i \(0.497835\pi\)
\(564\) 4.14722e141 0.845052
\(565\) −2.30058e141 −0.427901
\(566\) −1.79850e141 −0.305397
\(567\) 3.29589e141 0.511029
\(568\) −8.49855e141 −1.20339
\(569\) 1.48496e142 1.92058 0.960289 0.279006i \(-0.0900048\pi\)
0.960289 + 0.279006i \(0.0900048\pi\)
\(570\) −3.99966e141 −0.472572
\(571\) 5.27044e141 0.568968 0.284484 0.958681i \(-0.408178\pi\)
0.284484 + 0.958681i \(0.408178\pi\)
\(572\) 1.77320e142 1.74929
\(573\) 1.95560e141 0.176327
\(574\) −2.57277e142 −2.12050
\(575\) −1.06537e142 −0.802796
\(576\) 1.48665e142 1.02436
\(577\) 8.50107e141 0.535697 0.267849 0.963461i \(-0.413687\pi\)
0.267849 + 0.963461i \(0.413687\pi\)
\(578\) −3.91974e142 −2.25930
\(579\) −4.78297e141 −0.252204
\(580\) 2.04167e142 0.985018
\(581\) 1.42606e142 0.629604
\(582\) 4.74013e141 0.191539
\(583\) 3.18999e142 1.17994
\(584\) 5.48547e142 1.85760
\(585\) 1.29859e142 0.402667
\(586\) −7.63474e142 −2.16804
\(587\) 2.15480e142 0.560460 0.280230 0.959933i \(-0.409589\pi\)
0.280230 + 0.959933i \(0.409589\pi\)
\(588\) 1.08375e142 0.258224
\(589\) −6.71743e142 −1.46644
\(590\) −6.37615e141 −0.127550
\(591\) 1.44713e142 0.265310
\(592\) −3.16575e142 −0.531996
\(593\) −9.57113e142 −1.47451 −0.737253 0.675617i \(-0.763877\pi\)
−0.737253 + 0.675617i \(0.763877\pi\)
\(594\) −8.36017e142 −1.18090
\(595\) −4.93939e142 −0.639808
\(596\) 2.58510e143 3.07110
\(597\) −3.57660e142 −0.389755
\(598\) −1.65319e143 −1.65276
\(599\) 9.42752e142 0.864801 0.432401 0.901682i \(-0.357667\pi\)
0.432401 + 0.901682i \(0.357667\pi\)
\(600\) −4.76925e142 −0.401477
\(601\) 1.35464e143 1.04662 0.523310 0.852142i \(-0.324697\pi\)
0.523310 + 0.852142i \(0.324697\pi\)
\(602\) 6.95629e142 0.493354
\(603\) −1.74535e143 −1.13642
\(604\) 4.36935e143 2.61225
\(605\) −1.02508e142 −0.0562800
\(606\) 6.81047e142 0.343429
\(607\) 1.82567e143 0.845679 0.422839 0.906205i \(-0.361033\pi\)
0.422839 + 0.906205i \(0.361033\pi\)
\(608\) 6.95188e142 0.295848
\(609\) 6.66331e142 0.260555
\(610\) 1.31467e143 0.472423
\(611\) −3.24387e143 −1.07137
\(612\) −8.54411e143 −2.59399
\(613\) −4.77180e143 −1.33189 −0.665945 0.746001i \(-0.731971\pi\)
−0.665945 + 0.746001i \(0.731971\pi\)
\(614\) 1.38724e143 0.356024
\(615\) 1.24218e143 0.293168
\(616\) −6.13723e143 −1.33219
\(617\) 2.49860e143 0.498896 0.249448 0.968388i \(-0.419751\pi\)
0.249448 + 0.968388i \(0.419751\pi\)
\(618\) −2.63908e142 −0.0484782
\(619\) 4.34805e143 0.734896 0.367448 0.930044i \(-0.380232\pi\)
0.367448 + 0.930044i \(0.380232\pi\)
\(620\) 6.61090e143 1.02823
\(621\) 5.14305e143 0.736213
\(622\) 6.53730e142 0.0861378
\(623\) −8.23628e143 −0.999072
\(624\) −2.20481e143 −0.246244
\(625\) 2.18438e143 0.224651
\(626\) −1.28236e143 −0.121460
\(627\) −6.21454e143 −0.542164
\(628\) 2.02694e144 1.62899
\(629\) −1.32882e144 −0.983913
\(630\) −9.27679e143 −0.632935
\(631\) −2.31627e143 −0.145639 −0.0728196 0.997345i \(-0.523200\pi\)
−0.0728196 + 0.997345i \(0.523200\pi\)
\(632\) 4.12979e144 2.39331
\(633\) 7.51756e143 0.401593
\(634\) −2.21363e144 −1.09021
\(635\) 4.40992e143 0.200255
\(636\) −1.81325e144 −0.759304
\(637\) −8.47685e143 −0.327381
\(638\) 4.80761e144 1.71263
\(639\) −1.99598e144 −0.655937
\(640\) −3.17202e144 −0.961762
\(641\) 1.76803e144 0.494655 0.247327 0.968932i \(-0.420448\pi\)
0.247327 + 0.968932i \(0.420448\pi\)
\(642\) −2.71697e144 −0.701504
\(643\) 5.06126e144 1.20613 0.603064 0.797692i \(-0.293946\pi\)
0.603064 + 0.797692i \(0.293946\pi\)
\(644\) 7.79272e144 1.71422
\(645\) −3.35862e143 −0.0682080
\(646\) −2.05837e145 −3.85966
\(647\) 3.35045e144 0.580140 0.290070 0.957005i \(-0.406321\pi\)
0.290070 + 0.957005i \(0.406321\pi\)
\(648\) −6.54891e144 −1.04726
\(649\) −9.90706e143 −0.146333
\(650\) 7.69959e144 1.05058
\(651\) 2.15757e144 0.271984
\(652\) −2.64397e145 −3.07968
\(653\) 1.16215e145 1.25093 0.625465 0.780252i \(-0.284909\pi\)
0.625465 + 0.780252i \(0.284909\pi\)
\(654\) 5.74899e144 0.571923
\(655\) −2.02744e144 −0.186432
\(656\) 1.52299e145 1.29464
\(657\) 1.28833e145 1.01253
\(658\) 2.31733e145 1.68405
\(659\) 6.04023e144 0.405933 0.202967 0.979186i \(-0.434942\pi\)
0.202967 + 0.979186i \(0.434942\pi\)
\(660\) 6.11598e144 0.380149
\(661\) −1.76758e144 −0.101626 −0.0508129 0.998708i \(-0.516181\pi\)
−0.0508129 + 0.998708i \(0.516181\pi\)
\(662\) 2.07712e145 1.10478
\(663\) −9.25465e144 −0.455421
\(664\) −2.83357e145 −1.29026
\(665\) −1.47468e145 −0.621416
\(666\) −2.49568e145 −0.973344
\(667\) −2.95757e145 −1.06771
\(668\) −4.53748e145 −1.51645
\(669\) −9.06091e144 −0.280367
\(670\) 4.13805e145 1.18561
\(671\) 2.04269e145 0.541993
\(672\) −2.23287e144 −0.0548714
\(673\) −3.31245e145 −0.754004 −0.377002 0.926212i \(-0.623045\pi\)
−0.377002 + 0.926212i \(0.623045\pi\)
\(674\) 9.17185e145 1.93407
\(675\) −2.39534e145 −0.467975
\(676\) −2.83198e145 −0.512668
\(677\) −8.09936e145 −1.35873 −0.679367 0.733799i \(-0.737746\pi\)
−0.679367 + 0.733799i \(0.737746\pi\)
\(678\) 3.07928e145 0.478762
\(679\) 1.74769e145 0.251867
\(680\) 9.81454e145 1.31118
\(681\) 3.27562e145 0.405711
\(682\) 1.55670e146 1.78776
\(683\) 7.49413e144 0.0798096 0.0399048 0.999203i \(-0.487295\pi\)
0.0399048 + 0.999203i \(0.487295\pi\)
\(684\) −2.55088e146 −2.51942
\(685\) −8.42309e145 −0.771627
\(686\) 2.19214e146 1.86284
\(687\) −7.73873e145 −0.610095
\(688\) −4.11787e145 −0.301209
\(689\) 1.41828e146 0.962661
\(690\) −5.70203e145 −0.359171
\(691\) 1.42862e146 0.835215 0.417608 0.908628i \(-0.362869\pi\)
0.417608 + 0.908628i \(0.362869\pi\)
\(692\) −1.31042e146 −0.711126
\(693\) −1.44140e146 −0.726143
\(694\) −1.23085e146 −0.575694
\(695\) −1.00943e146 −0.438387
\(696\) −1.32399e146 −0.533962
\(697\) 6.39272e146 2.39440
\(698\) 3.18337e146 1.10747
\(699\) 1.57609e146 0.509339
\(700\) −3.62940e146 −1.08965
\(701\) −1.30604e146 −0.364317 −0.182158 0.983269i \(-0.558308\pi\)
−0.182158 + 0.983269i \(0.558308\pi\)
\(702\) −3.71697e146 −0.963447
\(703\) −3.96724e146 −0.955629
\(704\) −5.47658e146 −1.22608
\(705\) −1.11885e146 −0.232826
\(706\) −1.08568e146 −0.210019
\(707\) 2.51103e146 0.451597
\(708\) 5.63135e145 0.0941672
\(709\) −1.50306e146 −0.233719 −0.116860 0.993148i \(-0.537283\pi\)
−0.116860 + 0.993148i \(0.537283\pi\)
\(710\) 4.73228e146 0.684330
\(711\) 9.69928e146 1.30453
\(712\) 1.63654e147 2.04742
\(713\) −9.57657e146 −1.11455
\(714\) 6.61127e146 0.715858
\(715\) −4.78380e146 −0.481961
\(716\) 1.86208e147 1.74573
\(717\) 3.32349e146 0.289974
\(718\) −2.01630e147 −1.63737
\(719\) 4.52946e146 0.342380 0.171190 0.985238i \(-0.445239\pi\)
0.171190 + 0.985238i \(0.445239\pi\)
\(720\) 5.49153e146 0.386429
\(721\) −9.73032e145 −0.0637472
\(722\) −3.33457e147 −2.03411
\(723\) 5.98002e146 0.339688
\(724\) −1.32060e147 −0.698613
\(725\) 1.37747e147 0.678694
\(726\) 1.37204e146 0.0629697
\(727\) −7.96559e146 −0.340562 −0.170281 0.985396i \(-0.554468\pi\)
−0.170281 + 0.985396i \(0.554468\pi\)
\(728\) −2.72864e147 −1.08688
\(729\) −9.22473e146 −0.342362
\(730\) −3.05450e147 −1.05636
\(731\) −1.72847e147 −0.557079
\(732\) −1.16110e147 −0.348779
\(733\) 3.53939e147 0.990999 0.495500 0.868608i \(-0.334985\pi\)
0.495500 + 0.868608i \(0.334985\pi\)
\(734\) 5.94507e147 1.55171
\(735\) −2.92377e146 −0.0711450
\(736\) 9.91081e146 0.224855
\(737\) 6.42956e147 1.36021
\(738\) 1.20063e148 2.36868
\(739\) −4.95197e147 −0.911150 −0.455575 0.890198i \(-0.650566\pi\)
−0.455575 + 0.890198i \(0.650566\pi\)
\(740\) 3.90432e147 0.670057
\(741\) −2.76301e147 −0.442329
\(742\) −1.01318e148 −1.51317
\(743\) 5.33251e147 0.743033 0.371516 0.928426i \(-0.378838\pi\)
0.371516 + 0.928426i \(0.378838\pi\)
\(744\) −4.28707e147 −0.557384
\(745\) −6.97415e147 −0.846142
\(746\) −1.63909e148 −1.85590
\(747\) −6.65497e147 −0.703291
\(748\) 3.14751e148 3.10481
\(749\) −1.00175e148 −0.922454
\(750\) 6.37329e147 0.547909
\(751\) 5.96070e147 0.478454 0.239227 0.970964i \(-0.423106\pi\)
0.239227 + 0.970964i \(0.423106\pi\)
\(752\) −1.37178e148 −1.02817
\(753\) 1.06540e147 0.0745714
\(754\) 2.13749e148 1.39727
\(755\) −1.17878e148 −0.719719
\(756\) 1.75209e148 0.999273
\(757\) 8.31494e147 0.443018 0.221509 0.975158i \(-0.428902\pi\)
0.221509 + 0.975158i \(0.428902\pi\)
\(758\) −5.42547e148 −2.70068
\(759\) −8.85963e147 −0.412064
\(760\) 2.93017e148 1.27348
\(761\) −4.38910e148 −1.78265 −0.891325 0.453365i \(-0.850223\pi\)
−0.891325 + 0.453365i \(0.850223\pi\)
\(762\) −5.90259e147 −0.224058
\(763\) 2.11966e148 0.752059
\(764\) −2.95707e148 −0.980741
\(765\) 2.30506e148 0.714690
\(766\) 2.04425e148 0.592586
\(767\) −4.40473e147 −0.119387
\(768\) 2.64092e148 0.669349
\(769\) −9.80404e147 −0.232380 −0.116190 0.993227i \(-0.537068\pi\)
−0.116190 + 0.993227i \(0.537068\pi\)
\(770\) 3.41741e148 0.757574
\(771\) −2.05481e148 −0.426061
\(772\) 7.23234e148 1.40277
\(773\) 3.27776e148 0.594748 0.297374 0.954761i \(-0.403889\pi\)
0.297374 + 0.954761i \(0.403889\pi\)
\(774\) −3.24628e148 −0.551095
\(775\) 4.46022e148 0.708465
\(776\) −3.47265e148 −0.516157
\(777\) 1.27424e148 0.177242
\(778\) −1.42878e149 −1.86002
\(779\) 1.90857e149 2.32557
\(780\) 2.71920e148 0.310148
\(781\) 7.35286e148 0.785106
\(782\) −2.93447e149 −2.93348
\(783\) −6.64972e148 −0.622404
\(784\) −3.58472e148 −0.314179
\(785\) −5.46834e148 −0.448816
\(786\) 2.71368e148 0.208592
\(787\) −2.62026e148 −0.188645 −0.0943225 0.995542i \(-0.530068\pi\)
−0.0943225 + 0.995542i \(0.530068\pi\)
\(788\) −2.18821e149 −1.47567
\(789\) −3.36406e148 −0.212519
\(790\) −2.29960e149 −1.36100
\(791\) 1.13533e149 0.629556
\(792\) 2.86405e149 1.48810
\(793\) 9.08192e148 0.442190
\(794\) 3.85119e149 1.75727
\(795\) 4.89183e148 0.209201
\(796\) 5.40818e149 2.16784
\(797\) −8.15941e148 −0.306588 −0.153294 0.988181i \(-0.548988\pi\)
−0.153294 + 0.988181i \(0.548988\pi\)
\(798\) 1.97382e149 0.695279
\(799\) −5.75801e149 −1.90157
\(800\) −4.61589e148 −0.142929
\(801\) 3.84361e149 1.11600
\(802\) −4.93869e148 −0.134472
\(803\) −4.74598e149 −1.21192
\(804\) −3.65468e149 −0.875311
\(805\) −2.10234e149 −0.472297
\(806\) 6.92115e149 1.45856
\(807\) 1.18474e149 0.234226
\(808\) −4.98939e149 −0.925470
\(809\) −3.06884e149 −0.534104 −0.267052 0.963682i \(-0.586050\pi\)
−0.267052 + 0.963682i \(0.586050\pi\)
\(810\) 3.64666e149 0.595547
\(811\) 1.75625e149 0.269161 0.134580 0.990903i \(-0.457031\pi\)
0.134580 + 0.990903i \(0.457031\pi\)
\(812\) −1.00756e150 −1.44922
\(813\) −4.38063e149 −0.591389
\(814\) 9.19367e149 1.16502
\(815\) 7.13299e149 0.848505
\(816\) −3.91363e149 −0.437056
\(817\) −5.16042e149 −0.541064
\(818\) 1.08523e150 1.06838
\(819\) −6.40852e149 −0.592430
\(820\) −1.87830e150 −1.63062
\(821\) 8.24093e149 0.671898 0.335949 0.941880i \(-0.390943\pi\)
0.335949 + 0.941880i \(0.390943\pi\)
\(822\) 1.12741e150 0.863345
\(823\) −1.47424e149 −0.106042 −0.0530210 0.998593i \(-0.516885\pi\)
−0.0530210 + 0.998593i \(0.516885\pi\)
\(824\) 1.93341e149 0.130639
\(825\) 4.12631e149 0.261929
\(826\) 3.14662e149 0.187660
\(827\) 4.73345e149 0.265243 0.132622 0.991167i \(-0.457661\pi\)
0.132622 + 0.991167i \(0.457661\pi\)
\(828\) −3.63661e150 −1.91485
\(829\) 1.42057e150 0.702918 0.351459 0.936203i \(-0.385686\pi\)
0.351459 + 0.936203i \(0.385686\pi\)
\(830\) 1.57783e150 0.733733
\(831\) 5.97056e149 0.260953
\(832\) −2.43492e150 −1.00031
\(833\) −1.50468e150 −0.581066
\(834\) 1.35110e150 0.490495
\(835\) 1.22414e150 0.417807
\(836\) 9.39702e150 3.01555
\(837\) −2.15317e150 −0.649705
\(838\) 7.34626e150 2.08449
\(839\) −1.36874e150 −0.365242 −0.182621 0.983183i \(-0.558458\pi\)
−0.182621 + 0.983183i \(0.558458\pi\)
\(840\) −9.41140e149 −0.236195
\(841\) −4.12372e149 −0.0973409
\(842\) −1.16574e151 −2.58838
\(843\) −2.05002e150 −0.428191
\(844\) −1.13673e151 −2.23369
\(845\) 7.64021e149 0.141249
\(846\) −1.08143e151 −1.88115
\(847\) 5.05873e149 0.0828029
\(848\) 5.99769e150 0.923841
\(849\) −4.28528e149 −0.0621202
\(850\) 1.36671e151 1.86467
\(851\) −5.65581e150 −0.726311
\(852\) −4.17950e150 −0.505225
\(853\) 7.71668e150 0.878123 0.439062 0.898457i \(-0.355311\pi\)
0.439062 + 0.898457i \(0.355311\pi\)
\(854\) −6.48788e150 −0.695060
\(855\) 6.88184e150 0.694144
\(856\) 1.99046e151 1.89041
\(857\) 1.36517e151 1.22088 0.610440 0.792063i \(-0.290993\pi\)
0.610440 + 0.792063i \(0.290993\pi\)
\(858\) 6.40301e150 0.539248
\(859\) −4.88128e150 −0.387156 −0.193578 0.981085i \(-0.562009\pi\)
−0.193578 + 0.981085i \(0.562009\pi\)
\(860\) 5.07858e150 0.379378
\(861\) −6.13013e150 −0.431328
\(862\) −5.03520e151 −3.33728
\(863\) 2.58884e151 1.61640 0.808201 0.588906i \(-0.200441\pi\)
0.808201 + 0.588906i \(0.200441\pi\)
\(864\) 2.22832e150 0.131075
\(865\) 3.53529e150 0.195928
\(866\) 4.84399e151 2.52948
\(867\) −9.33955e150 −0.459560
\(868\) −3.26246e151 −1.51279
\(869\) −3.57305e151 −1.56142
\(870\) 7.37245e150 0.303648
\(871\) 2.85861e151 1.10974
\(872\) −4.21174e151 −1.54121
\(873\) −8.15591e150 −0.281345
\(874\) −8.76100e151 −2.84915
\(875\) 2.34983e151 0.720481
\(876\) 2.69770e151 0.779888
\(877\) 5.48140e150 0.149421 0.0747107 0.997205i \(-0.476197\pi\)
0.0747107 + 0.997205i \(0.476197\pi\)
\(878\) 1.00056e152 2.57204
\(879\) −1.81912e151 −0.440997
\(880\) −2.02299e151 −0.462525
\(881\) 3.41155e151 0.735685 0.367843 0.929888i \(-0.380097\pi\)
0.367843 + 0.929888i \(0.380097\pi\)
\(882\) −2.82597e151 −0.574824
\(883\) −8.15917e151 −1.56556 −0.782780 0.622299i \(-0.786199\pi\)
−0.782780 + 0.622299i \(0.786199\pi\)
\(884\) 1.39940e152 2.53308
\(885\) −1.51924e150 −0.0259447
\(886\) 6.15273e151 0.991359
\(887\) −9.60570e151 −1.46037 −0.730184 0.683250i \(-0.760566\pi\)
−0.730184 + 0.683250i \(0.760566\pi\)
\(888\) −2.53190e151 −0.363227
\(889\) −2.17629e151 −0.294629
\(890\) −9.11282e151 −1.16431
\(891\) 5.66606e151 0.683249
\(892\) 1.37010e152 1.55942
\(893\) −1.71908e152 −1.84691
\(894\) 9.33474e151 0.946717
\(895\) −5.02357e151 −0.480979
\(896\) 1.56539e152 1.41501
\(897\) −3.93904e151 −0.336186
\(898\) −1.01881e151 −0.0821034
\(899\) 1.23820e152 0.942254
\(900\) 1.69373e152 1.21718
\(901\) 2.51752e152 1.70862
\(902\) −4.42292e152 −2.83513
\(903\) 1.65747e151 0.100352
\(904\) −2.25590e152 −1.29016
\(905\) 3.56277e151 0.192480
\(906\) 1.57777e152 0.805268
\(907\) −2.92428e152 −1.41008 −0.705039 0.709168i \(-0.749071\pi\)
−0.705039 + 0.709168i \(0.749071\pi\)
\(908\) −4.95307e152 −2.25659
\(909\) −1.17181e152 −0.504451
\(910\) 1.51940e152 0.618073
\(911\) 3.06739e152 1.17916 0.589580 0.807710i \(-0.299293\pi\)
0.589580 + 0.807710i \(0.299293\pi\)
\(912\) −1.16843e152 −0.424492
\(913\) 2.45158e152 0.841784
\(914\) −8.24465e152 −2.67573
\(915\) 3.13246e151 0.0960947
\(916\) 1.17017e153 3.39339
\(917\) 1.00054e152 0.274291
\(918\) −6.59778e152 −1.71001
\(919\) 2.60238e152 0.637709 0.318854 0.947804i \(-0.396702\pi\)
0.318854 + 0.947804i \(0.396702\pi\)
\(920\) 4.17734e152 0.967891
\(921\) 3.30536e151 0.0724182
\(922\) 3.11644e152 0.645678
\(923\) 3.26912e152 0.640535
\(924\) −3.01822e152 −0.559300
\(925\) 2.63415e152 0.461681
\(926\) 8.55952e152 1.41900
\(927\) 4.54083e151 0.0712080
\(928\) −1.28142e152 −0.190095
\(929\) −1.69956e152 −0.238521 −0.119260 0.992863i \(-0.538052\pi\)
−0.119260 + 0.992863i \(0.538052\pi\)
\(930\) 2.38719e152 0.316967
\(931\) −4.49228e152 −0.564362
\(932\) −2.38321e153 −2.83298
\(933\) 1.55764e151 0.0175211
\(934\) −5.84560e152 −0.622250
\(935\) −8.49144e152 −0.855428
\(936\) 1.27337e153 1.21408
\(937\) −1.54910e153 −1.39794 −0.698971 0.715150i \(-0.746359\pi\)
−0.698971 + 0.715150i \(0.746359\pi\)
\(938\) −2.04212e153 −1.74435
\(939\) −3.05548e151 −0.0247059
\(940\) 1.69181e153 1.29500
\(941\) 1.95873e153 1.41941 0.709707 0.704497i \(-0.248827\pi\)
0.709707 + 0.704497i \(0.248827\pi\)
\(942\) 7.31926e152 0.502164
\(943\) 2.72092e153 1.76752
\(944\) −1.86268e152 −0.114573
\(945\) −4.72684e152 −0.275317
\(946\) 1.19587e153 0.659617
\(947\) −3.18920e153 −1.66594 −0.832968 0.553321i \(-0.813360\pi\)
−0.832968 + 0.553321i \(0.813360\pi\)
\(948\) 2.03099e153 1.00480
\(949\) −2.11008e153 −0.988758
\(950\) 4.08037e153 1.81106
\(951\) −5.27440e152 −0.221757
\(952\) −4.84345e153 −1.92909
\(953\) −1.81979e153 −0.686654 −0.343327 0.939216i \(-0.611554\pi\)
−0.343327 + 0.939216i \(0.611554\pi\)
\(954\) 4.72820e153 1.69027
\(955\) 7.97768e152 0.270211
\(956\) −5.02546e153 −1.61285
\(957\) 1.14551e153 0.348364
\(958\) 1.77442e153 0.511368
\(959\) 4.15678e153 1.13527
\(960\) −8.39831e152 −0.217382
\(961\) −6.69097e151 −0.0164148
\(962\) 4.08755e153 0.950489
\(963\) 4.67483e153 1.03042
\(964\) −9.04240e153 −1.88937
\(965\) −1.95116e153 −0.386489
\(966\) 2.81394e153 0.528436
\(967\) −4.30897e153 −0.767202 −0.383601 0.923499i \(-0.625316\pi\)
−0.383601 + 0.923499i \(0.625316\pi\)
\(968\) −1.00517e153 −0.169690
\(969\) −4.90447e153 −0.785086
\(970\) 1.93369e153 0.293523
\(971\) 7.26145e152 0.104528 0.0522641 0.998633i \(-0.483356\pi\)
0.0522641 + 0.998633i \(0.483356\pi\)
\(972\) −1.25294e154 −1.71048
\(973\) 4.98150e153 0.644984
\(974\) 8.24463e153 1.01248
\(975\) 1.83458e153 0.213697
\(976\) 3.84059e153 0.424358
\(977\) 4.14163e153 0.434112 0.217056 0.976159i \(-0.430355\pi\)
0.217056 + 0.976159i \(0.430355\pi\)
\(978\) −9.54735e153 −0.949362
\(979\) −1.41592e154 −1.33577
\(980\) 4.42103e153 0.395713
\(981\) −9.89175e153 −0.840078
\(982\) −1.02086e154 −0.822671
\(983\) −4.71221e153 −0.360345 −0.180172 0.983635i \(-0.557666\pi\)
−0.180172 + 0.983635i \(0.557666\pi\)
\(984\) 1.21805e154 0.883931
\(985\) 5.90343e153 0.406573
\(986\) 3.79413e154 2.48000
\(987\) 5.52150e153 0.342550
\(988\) 4.17796e154 2.46026
\(989\) −7.35684e153 −0.411228
\(990\) −1.59480e154 −0.846239
\(991\) 2.54041e154 1.27971 0.639854 0.768497i \(-0.278995\pi\)
0.639854 + 0.768497i \(0.278995\pi\)
\(992\) −4.14921e153 −0.198433
\(993\) 4.94914e153 0.224721
\(994\) −2.33537e154 −1.00683
\(995\) −1.45903e154 −0.597279
\(996\) −1.39352e154 −0.541698
\(997\) 1.47094e154 0.542991 0.271496 0.962440i \(-0.412482\pi\)
0.271496 + 0.962440i \(0.412482\pi\)
\(998\) −6.06646e154 −2.12673
\(999\) −1.27164e154 −0.423389
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))