Maass form invariants
Level: | \( 87 = 3 \cdot 29 \) |
Weight: | \( 0 \) |
Character: | 87.1 |
Symmetry: | even |
Fricke sign: | not computed rigorously |
Spectral parameter: | \(12.2854018983053064108688518402 \pm 2 \cdot 10^{-4}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.66212665 \pm 1.3 \cdot 10^{-1} \) | \(a_{3}= \pm0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +1.76266499 \pm 1.4 \cdot 10^{-1} \) | \(a_{5}= -1.11766954 \pm 1.2 \cdot 10^{-1} \) | \(a_{6}= \pm0.95962927 \pm 7.9 \cdot 10^{-2} \) |
\(a_{7}= -0.89727870 \pm 1.1 \cdot 10^{-1} \) | \(a_{8}= +1.26764579 \pm 1.4 \cdot 10^{-1} \) | \(a_{9}= \pm0.33333333 \pm 1.0 \cdot 10^{-8} \) |
\(a_{10}= -1.85770832 \pm 1.5 \cdot 10^{-1} \) | \(a_{11}= -1.16607076 \pm 1.1 \cdot 10^{-1} \) | \(a_{12}= \pm1.01767510 \pm 8.4 \cdot 10^{-2} \) |
\(a_{13}= -0.86629166 \pm 1.0 \cdot 10^{-1} \) | \(a_{14}= -1.49139084 \pm 1.5 \cdot 10^{-1} \) | \(a_{15}= \pm0.64528681 \pm 7.1 \cdot 10^{-2} \) |
\(a_{16}= +0.34432286 \pm 1.2 \cdot 10^{-1} \) | \(a_{17}= +0.41611929 \pm 1.1 \cdot 10^{-1} \) | \(a_{18}= \pm0.55404222 \pm 4.5 \cdot 10^{-2} \) |
\(a_{19}= -0.05952101 \pm 1.1 \cdot 10^{-1} \) | \(a_{20}= -1.97007696 \pm 1.5 \cdot 10^{-1} \) | \(a_{21}= \pm0.51804410 \pm 6.6 \cdot 10^{-2} \) |
\(a_{22}= -1.93815729 \pm 1.4 \cdot 10^{-1} \) | \(a_{23}= -1.46377847 \pm 1.1 \cdot 10^{-1} \) | \(a_{24}= \pm0.73187564 \pm 8.1 \cdot 10^{-2} \) |
\(a_{25}= +0.24918520 \pm 1.2 \cdot 10^{-1} \) | \(a_{26}= -1.43988645 \pm 1.3 \cdot 10^{-1} \) | \(a_{27}= \pm0.19245009 \pm 1.0 \cdot 10^{-8} \) |
\(a_{28}= -1.58160175 \pm 1.5 \cdot 10^{-1} \) | \(a_{29}= \pm0.18569534 \pm 1.0 \cdot 10^{-8} \) | \(a_{30}= \pm1.07254840 \pm 8.7 \cdot 10^{-2} \) |
\(a_{31}= -0.82189777 \pm 1.1 \cdot 10^{-1} \) | \(a_{32}= -0.69533759 \pm 1.3 \cdot 10^{-1} \) | \(a_{33}= \pm0.67323127 \pm 6.6 \cdot 10^{-2} \) |
\(a_{34}= +0.69164296 \pm 1.4 \cdot 10^{-1} \) | \(a_{35}= +1.00286107 \pm 1.2 \cdot 10^{-1} \) | \(a_{36}= \pm0.58755500 \pm 4.8 \cdot 10^{-2} \) |
\(a_{37}= +0.67965918 \pm 1.1 \cdot 10^{-1} \) | \(a_{38}= -0.09893145 \pm 1.3 \cdot 10^{-1} \) | \(a_{39}= \pm0.50015372 \pm 6.0 \cdot 10^{-2} \) |
\(a_{40}= -1.41680909 \pm 1.4 \cdot 10^{-1} \) | \(a_{41}= -1.17534618 \pm 1.0 \cdot 10^{-1} \) | \(a_{42}= \pm0.86105490 \pm 8.6 \cdot 10^{-2} \) |
\(a_{43}= -1.23853826 \pm 1.1 \cdot 10^{-1} \) | \(a_{44}= -2.05539210 \pm 1.6 \cdot 10^{-1} \) | \(a_{45}= \pm0.37255651 \pm 4.1 \cdot 10^{-2} \) |
\(a_{46}= -2.43298520 \pm 1.3 \cdot 10^{-1} \) | \(a_{47}= -0.72440775 \pm 1.1 \cdot 10^{-1} \) | \(a_{48}= \pm0.19879490 \pm 7.4 \cdot 10^{-2} \) |
\(a_{49}= -0.19489093 \pm 1.2 \cdot 10^{-1} \) | \(a_{50}= +0.41417735 \pm 1.5 \cdot 10^{-1} \) | \(a_{51}= \pm0.24024659 \pm 6.6 \cdot 10^{-2} \) |
\(a_{52}= -1.52698198 \pm 1.4 \cdot 10^{-1} \) | \(a_{53}= +1.02764607 \pm 1.0 \cdot 10^{-1} \) | \(a_{54}= \pm0.31987642 \pm 2.6 \cdot 10^{-2} \) |
\(a_{55}= +1.30328177 \pm 1.3 \cdot 10^{-1} \) | \(a_{56}= -1.13743157 \pm 1.5 \cdot 10^{-1} \) | \(a_{57}= \pm0.03436447 \pm 6.7 \cdot 10^{-2} \) |
\(a_{58}= \pm0.30864917 \pm 2.5 \cdot 10^{-2} \) | \(a_{59}= +1.24573320 \pm 1.1 \cdot 10^{-1} \) | \(a_{60}= \pm1.13742446 \pm 8.8 \cdot 10^{-2} \) |
\(a_{61}= -0.55607255 \pm 1.0 \cdot 10^{-1} \) | \(a_{62}= -1.36609819 \pm 1.5 \cdot 10^{-1} \) | \(a_{63}= \pm0.29909290 \pm 3.8 \cdot 10^{-2} \) |
\(a_{64}= -1.50006199 \pm 1.2 \cdot 10^{-1} \) | \(a_{65}= +0.96822780 \pm 1.1 \cdot 10^{-1} \) | \(a_{66}= \pm1.11899563 \pm 8.1 \cdot 10^{-2} \) |
\(a_{67}= +1.04852340 \pm 1.2 \cdot 10^{-1} \) | \(a_{68}= +0.73347891 \pm 1.6 \cdot 10^{-1} \) | \(a_{69}= \pm0.84511290 \pm 6.4 \cdot 10^{-2} \) |
\(a_{70}= +1.66688211 \pm 1.4 \cdot 10^{-1} \) | \(a_{71}= -1.10650519 \pm 1.0 \cdot 10^{-1} \) | \(a_{72}= \pm0.42254860 \pm 4.7 \cdot 10^{-2} \) |
\(a_{73}= -0.72658319 \pm 1.0 \cdot 10^{-1} \) | \(a_{74}= +1.12967963 \pm 1.4 \cdot 10^{-1} \) | \(a_{75}= \pm0.14386714 \pm 7.2 \cdot 10^{-2} \) |
\(a_{76}= -0.10491560 \pm 1.3 \cdot 10^{-1} \) | \(a_{77}= +1.04629046 \pm 1.2 \cdot 10^{-1} \) | \(a_{78}= \pm0.83131883 \pm 8.0 \cdot 10^{-2} \) |
\(a_{79}= -0.66662247 \pm 1.1 \cdot 10^{-1} \) | \(a_{80}= -0.38483918 \pm 1.2 \cdot 10^{-1} \) | \(a_{81}= \pm0.11111111 \pm 1.0 \cdot 10^{-8} \) |
\(a_{82}= -1.95357421 \pm 1.3 \cdot 10^{-1} \) | \(a_{83}= +1.60338219 \pm 1.1 \cdot 10^{-1} \) | \(a_{84}= \pm0.91313819 \pm 9.0 \cdot 10^{-2} \) |
\(a_{85}= -0.46508386 \pm 1.1 \cdot 10^{-1} \) | \(a_{86}= -2.05860745 \pm 1.4 \cdot 10^{-1} \) | \(a_{87}= \pm0.10721125 \pm 1.0 \cdot 10^{-8} \) |
\(a_{88}= -1.47816470 \pm 1.5 \cdot 10^{-1} \) | \(a_{89}= -0.21863702 \pm 1.0 \cdot 10^{-1} \) | \(a_{90}= \pm0.61923611 \pm 5.0 \cdot 10^{-2} \) |
\(a_{91}= +0.77730506 \pm 1.0 \cdot 10^{-1} \) | \(a_{92}= -2.58015106 \pm 1.3 \cdot 10^{-1} \) | \(a_{93}= \pm0.47452290 \pm 6.7 \cdot 10^{-2} \) |
\(a_{94}= -1.20405742 \pm 1.3 \cdot 10^{-1} \) | \(a_{95}= +0.06652482 \pm 1.2 \cdot 10^{-1} \) | \(a_{96}= \pm0.40145334 \pm 7.8 \cdot 10^{-2} \) |
\(a_{97}= +1.48566231 \pm 1.1 \cdot 10^{-1} \) | \(a_{98}= -0.32393341 \pm 1.5 \cdot 10^{-1} \) | \(a_{99}= \pm0.38869025 \pm 3.8 \cdot 10^{-2} \) |
\(a_{100}= +0.43923002 \pm 1.5 \cdot 10^{-1} \) | \(a_{101}= -0.95627687 \pm 1.0 \cdot 10^{-1} \) | \(a_{102}= \pm0.39932025 \pm 8.6 \cdot 10^{-2} \) |
\(a_{103}= +0.52632130 \pm 1.2 \cdot 10^{-1} \) | \(a_{104}= -1.09815098 \pm 1.4 \cdot 10^{-1} \) | \(a_{105}= \pm0.57900211 \pm 7.1 \cdot 10^{-2} \) |
\(a_{106}= +1.70807792 \pm 1.2 \cdot 10^{-1} \) | \(a_{107}= -0.61978066 \pm 1.2 \cdot 10^{-1} \) | \(a_{108}= \pm0.33922503 \pm 2.8 \cdot 10^{-2} \) |
\(a_{109}= +1.30603936 \pm 1.1 \cdot 10^{-1} \) | \(a_{110}= +2.16621936 \pm 1.6 \cdot 10^{-1} \) | \(a_{111}= \pm0.39240141 \pm 6.9 \cdot 10^{-2} \) |
\(a_{112}= -0.30895357 \pm 1.5 \cdot 10^{-1} \) | \(a_{113}= -1.15666627 \pm 1.0 \cdot 10^{-1} \) | \(a_{114}= \pm0.05711810 \pm 7.6 \cdot 10^{-2} \) |
\(a_{115}= +1.63602061 \pm 1.2 \cdot 10^{-1} \) | \(a_{116}= \pm0.32731867 \pm 2.7 \cdot 10^{-2} \) | \(a_{117}= \pm0.28876389 \pm 3.5 \cdot 10^{-2} \) |
\(a_{118}= +2.07056634 \pm 1.2 \cdot 10^{-1} \) | \(a_{119}= -0.37337498 \pm 1.1 \cdot 10^{-1} \) | \(a_{120}= \pm0.81799511 \pm 8.2 \cdot 10^{-2} \) |
\(a_{121}= +0.35972103 \pm 1.1 \cdot 10^{-1} \) | \(a_{122}= -0.92426300 \pm 1.1 \cdot 10^{-1} \) | \(a_{123}= \pm0.67858643 \pm 6.3 \cdot 10^{-2} \) |
\(a_{124}= -1.44873043 \pm 1.7 \cdot 10^{-1} \) | \(a_{125}= +0.83916284 \pm 1.2 \cdot 10^{-1} \) | \(a_{126}= \pm0.49713028 \pm 5.0 \cdot 10^{-2} \) |
\(a_{127}= -0.42996011 \pm 1.2 \cdot 10^{-1} \) | \(a_{128}= -1.79795542 \pm 1.2 \cdot 10^{-1} \) | \(a_{129}= \pm0.71507040 \pm 6.4 \cdot 10^{-2} \) |
\(a_{130}= +1.60931723 \pm 1.4 \cdot 10^{-1} \) | \(a_{131}= -1.14287435 \pm 1.0 \cdot 10^{-1} \) | \(a_{132}= \pm1.18668119 \pm 9.2 \cdot 10^{-2} \) |
\(a_{133}= +0.05340693 \pm 1.2 \cdot 10^{-1} \) | \(a_{134}= +1.74277868 \pm 1.4 \cdot 10^{-1} \) | \(a_{135}= \pm0.21509560 \pm 2.3 \cdot 10^{-2} \) |
\(a_{136}= +0.52749187 \pm 1.6 \cdot 10^{-1} \) | \(a_{137}= +1.05216191 \pm 1.1 \cdot 10^{-1} \) | \(a_{138}= \pm1.40468466 \pm 8.0 \cdot 10^{-2} \) |
\(a_{139}= -0.97232755 \pm 9.4 \cdot 10^{-2} \) | \(a_{140}= +1.76770809 \pm 1.5 \cdot 10^{-1} \) | \(a_{141}= \pm0.41823701 \pm 6.5 \cdot 10^{-2} \) |
\(a_{142}= -1.83915175 \pm 1.1 \cdot 10^{-1} \) | \(a_{143}= +1.01015738 \pm 9.9 \cdot 10^{-2} \) | \(a_{144}= \pm0.11477429 \pm 4.3 \cdot 10^{-2} \) |
\(a_{145}= \pm0.20754602 \pm 2.3 \cdot 10^{-2} \) | \(a_{146}= -1.20767329 \pm 1.3 \cdot 10^{-1} \) | \(a_{147}= \pm0.11252033 \pm 7.0 \cdot 10^{-2} \) |
\(a_{148}= +1.19801143 \pm 1.5 \cdot 10^{-1} \) | \(a_{149}= +0.98006176 \pm 1.1 \cdot 10^{-1} \) | \(a_{150}= \pm0.23912541 \pm 9.0 \cdot 10^{-2} \) |
\(a_{151}= +1.56956424 \pm 1.0 \cdot 10^{-1} \) | \(a_{152}= -0.07545156 \pm 1.1 \cdot 10^{-1} \) | \(a_{153}= \pm0.13870643 \pm 3.8 \cdot 10^{-2} \) |
\(a_{154}= +1.73906725 \pm 1.5 \cdot 10^{-1} \) | \(a_{155}= +0.91861011 \pm 1.3 \cdot 10^{-1} \) | \(a_{156}= \pm0.88160346 \pm 8.2 \cdot 10^{-2} \) |
\(a_{157}= -0.32102205 \pm 1.0 \cdot 10^{-1} \) | \(a_{158}= -1.10801097 \pm 1.3 \cdot 10^{-1} \) | \(a_{159}= \pm0.59331174 \pm 6.2 \cdot 10^{-2} \) |
\(a_{160}= +0.77715764 \pm 1.3 \cdot 10^{-1} \) | \(a_{161}= +1.31341725 \pm 1.1 \cdot 10^{-1} \) | \(a_{162}= \pm0.18468074 \pm 1.5 \cdot 10^{-2} \) |
\(a_{163}= +1.14572572 \pm 1.1 \cdot 10^{-1} \) | \(a_{164}= -2.07174156 \pm 1.3 \cdot 10^{-1} \) | \(a_{165}= \pm0.75245008 \pm 7.5 \cdot 10^{-2} \) |
\(a_{166}= +2.66502426 \pm 1.3 \cdot 10^{-1} \) | \(a_{167}= -0.00263372 \pm 1.1 \cdot 10^{-1} \) | \(a_{168}= \pm0.65669642 \pm 8.9 \cdot 10^{-2} \) |
\(a_{169}= -0.24953876 \pm 1.0 \cdot 10^{-1} \) | \(a_{170}= -0.77302827 \pm 1.4 \cdot 10^{-1} \) | \(a_{171}= \pm0.01984034 \pm 3.9 \cdot 10^{-2} \) |
\(a_{172}= -2.18312803 \pm 1.4 \cdot 10^{-1} \) | \(a_{173}= -1.34836049 \pm 1.0 \cdot 10^{-1} \) | \(a_{174}= \pm0.17819868 \pm 1.4 \cdot 10^{-2} \) |
\(a_{175}= -0.22358857 \pm 1.0 \cdot 10^{-1} \) | \(a_{176}= -0.40150482 \pm 1.3 \cdot 10^{-1} \) | \(a_{177}= \pm0.71922440 \pm 6.4 \cdot 10^{-2} \) |
\(a_{178}= -0.36340242 \pm 1.3 \cdot 10^{-1} \) | \(a_{179}= +1.28650985 \pm 1.1 \cdot 10^{-1} \) | \(a_{180}= \pm0.65669232 \pm 5.1 \cdot 10^{-2} \) |
\(a_{181}= -0.73353783 \pm 1.2 \cdot 10^{-1} \) | \(a_{182}= +1.29197945 \pm 1.5 \cdot 10^{-1} \) | \(a_{183}= \pm0.32104864 \pm 6.0 \cdot 10^{-2} \) |
\(a_{184}= -1.85555262 \pm 1.2 \cdot 10^{-1} \) | \(a_{185}= -0.75963436 \pm 1.3 \cdot 10^{-1} \) | \(a_{186}= \pm0.78871716 \pm 8.8 \cdot 10^{-2} \) |
\(a_{187}= -0.48522454 \pm 1.2 \cdot 10^{-1} \) | \(a_{188}= -1.27688817 \pm 1.5 \cdot 10^{-1} \) | \(a_{189}= \pm0.17268137 \pm 2.2 \cdot 10^{-2} \) |
\(a_{190}= +0.11057267 \pm 1.3 \cdot 10^{-1} \) | \(a_{191}= +0.91675323 \pm 9.5 \cdot 10^{-2} \) | \(a_{192}= \pm0.86606120 \pm 7.4 \cdot 10^{-2} \) |
\(a_{193}= -0.64494415 \pm 1.0 \cdot 10^{-1} \) | \(a_{194}= +2.46935891 \pm 1.3 \cdot 10^{-1} \) | \(a_{195}= \pm0.55900658 \pm 6.5 \cdot 10^{-2} \) |
\(a_{196}= -0.34352743 \pm 1.6 \cdot 10^{-1} \) | \(a_{197}= +0.12583275 \pm 9.4 \cdot 10^{-2} \) | \(a_{198}= \pm0.64605243 \pm 4.6 \cdot 10^{-2} \) |
\(a_{199}= +0.43994463 \pm 1.2 \cdot 10^{-1} \) | \(a_{200}= +0.31587857 \pm 1.3 \cdot 10^{-1} \) | \(a_{201}= \pm0.60536527 \pm 7.0 \cdot 10^{-2} \) |
\(a_{202}= -1.58945327 \pm 1.2 \cdot 10^{-1} \) | \(a_{203}= \pm0.16662047 \pm 2.1 \cdot 10^{-2} \) | \(a_{204}= \pm0.42347424 \pm 9.3 \cdot 10^{-2} \) |
\(a_{205}= +1.31364862 \pm 1.2 \cdot 10^{-1} \) | \(a_{206}= +0.87481266 \pm 1.5 \cdot 10^{-1} \) | \(a_{207}= \pm0.48792616 \pm 3.7 \cdot 10^{-2} \) |
\(a_{208}= -0.29828403 \pm 1.3 \cdot 10^{-1} \) | \(a_{209}= +0.06940571 \pm 1.0 \cdot 10^{-1} \) | \(a_{210}= \pm0.96237483 \pm 8.5 \cdot 10^{-2} \) |
\(a_{211}= +0.95266283 \pm 1.1 \cdot 10^{-1} \) | \(a_{212}= +1.81139575 \pm 1.2 \cdot 10^{-1} \) | \(a_{213}= \pm0.63884107 \pm 5.8 \cdot 10^{-2} \) |
\(a_{214}= -1.03015395 \pm 1.4 \cdot 10^{-1} \) | \(a_{215}= +1.38427649 \pm 1.1 \cdot 10^{-1} \) | \(a_{216}= \pm0.24395855 \pm 2.7 \cdot 10^{-2} \) |
\(a_{217}= +0.73747137 \pm 1.1 \cdot 10^{-1} \) | \(a_{218}= +2.17080282 \pm 1.3 \cdot 10^{-1} \) | \(a_{219}= \pm0.41949300 \pm 5.9 \cdot 10^{-2} \) |
\(a_{220}= +2.29724914 \pm 1.8 \cdot 10^{-1} \) | \(a_{221}= -0.36048067 \pm 1.1 \cdot 10^{-1} \) | \(a_{222}= \pm0.65222084 \pm 8.3 \cdot 10^{-2} \) |
\(a_{223}= -1.00725589 \pm 1.2 \cdot 10^{-1} \) | \(a_{224}= +0.62391161 \pm 1.4 \cdot 10^{-1} \) | \(a_{225}= \pm0.08306173 \pm 4.1 \cdot 10^{-2} \) |
\(a_{226}= -1.92252584 \pm 1.2 \cdot 10^{-1} \) | \(a_{227}= -0.07751158 \pm 1.1 \cdot 10^{-1} \) | \(a_{228}= \pm0.06057305 \pm 7.5 \cdot 10^{-2} \) |
\(a_{229}= -0.43739442 \pm 1.1 \cdot 10^{-1} \) | \(a_{230}= +2.71927345 \pm 1.5 \cdot 10^{-1} \) | \(a_{231}= \pm0.60407608 \pm 7.1 \cdot 10^{-2} \) |
\(a_{232}= \pm0.23539591 \pm 2.6 \cdot 10^{-2} \) | \(a_{233}= -1.72280517 \pm 1.0 \cdot 10^{-1} \) | \(a_{234}= \pm0.47996215 \pm 4.6 \cdot 10^{-2} \) |
\(a_{235}= +0.80964847 \pm 1.0 \cdot 10^{-1} \) | \(a_{236}= +2.19581028 \pm 1.1 \cdot 10^{-1} \) | \(a_{237}= \pm0.38487466 \pm 6.6 \cdot 10^{-2} \) |
\(a_{238}= -0.62059650 \pm 1.5 \cdot 10^{-1} \) | \(a_{239}= -0.36787580 \pm 1.1 \cdot 10^{-1} \) | \(a_{240}= \pm0.22218700 \pm 7.1 \cdot 10^{-2} \) |
\(a_{241}= -0.70707023 \pm 1.1 \cdot 10^{-1} \) | \(a_{242}= +0.59790190 \pm 1.4 \cdot 10^{-1} \) | \(a_{243}= \pm0.06415003 \pm 1.0 \cdot 10^{-8} \) |
\(a_{244}= -0.98016961 \pm 1.1 \cdot 10^{-1} \) | \(a_{245}= +0.21782366 \pm 1.3 \cdot 10^{-1} \) | \(a_{246}= \pm1.12789659 \pm 7.6 \cdot 10^{-2} \) |
\(a_{247}= +0.05156255 \pm 1.0 \cdot 10^{-1} \) | \(a_{248}= -1.04187525 \pm 1.6 \cdot 10^{-1} \) | \(a_{249}= \pm0.92571314 \pm 6.4 \cdot 10^{-2} \) |
\(a_{250}= +1.39479491 \pm 1.6 \cdot 10^{-1} \) | \(a_{251}= +1.42993793 \pm 1.1 \cdot 10^{-1} \) | \(a_{252}= \pm0.52720058 \pm 5.2 \cdot 10^{-2} \) |
\(a_{253}= +1.70686928 \pm 1.1 \cdot 10^{-1} \) | \(a_{254}= -0.71464815 \pm 1.3 \cdot 10^{-1} \) | \(a_{255}= \pm0.26851629 \pm 6.4 \cdot 10^{-2} \) |
\(a_{256}= -1.48836762 \pm 1.2 \cdot 10^{-1} \) | \(a_{257}= -0.99030091 \pm 1.0 \cdot 10^{-1} \) | \(a_{258}= \pm1.18853756 \pm 8.1 \cdot 10^{-2} \) |
\(a_{259}= -0.60984370 \pm 1.2 \cdot 10^{-1} \) | \(a_{260}= +1.70666124 \pm 1.3 \cdot 10^{-1} \) | \(a_{261}= \pm0.06189845 \pm 1.0 \cdot 10^{-8} \) |
\(a_{262}= -1.89960191 \pm 1.3 \cdot 10^{-1} \) | \(a_{263}= +0.93854282 \pm 1.1 \cdot 10^{-1} \) | \(a_{264}= \pm0.85341879 \pm 9.0 \cdot 10^{-2} \) |
\(a_{265}= -1.14856871 \pm 1.2 \cdot 10^{-1} \) | \(a_{266}= +0.08876909 \pm 1.3 \cdot 10^{-1} \) | \(a_{267}= \pm0.12623015 \pm 6.1 \cdot 10^{-2} \) |
\(a_{268}= +1.84819548 \pm 1.4 \cdot 10^{-1} \) | \(a_{269}= -0.47360743 \pm 1.1 \cdot 10^{-1} \) | \(a_{270}= \pm0.35751613 \pm 2.9 \cdot 10^{-2} \) |
\(a_{271}= -0.28041702 \pm 1.1 \cdot 10^{-1} \) | \(a_{272}= +0.14327939 \pm 1.5 \cdot 10^{-1} \) | \(a_{273}= \pm0.44877728 \pm 6.3 \cdot 10^{-2} \) |
\(a_{274}= +1.74882634 \pm 1.1 \cdot 10^{-1} \) | \(a_{275}= -0.29056757 \pm 1.3 \cdot 10^{-1} \) | \(a_{276}= \pm1.48965091 \pm 7.9 \cdot 10^{-2} \) |
\(a_{277}= -0.85746065 \pm 1.1 \cdot 10^{-1} \) | \(a_{278}= -1.61613152 \pm 1.2 \cdot 10^{-1} \) | \(a_{279}= \pm0.27396592 \pm 3.8 \cdot 10^{-2} \) |
\(a_{280}= +1.27127262 \pm 1.4 \cdot 10^{-1} \) | \(a_{281}= +0.22218463 \pm 1.1 \cdot 10^{-1} \) | \(a_{282}= \pm0.69516288 \pm 7.5 \cdot 10^{-2} \) |
\(a_{283}= -1.97125403 \pm 1.0 \cdot 10^{-1} \) | \(a_{284}= -1.95039795 \pm 1.1 \cdot 10^{-1} \) | \(a_{285}= \pm0.03840812 \pm 7.2 \cdot 10^{-2} \) |
\(a_{286}= +1.67900950 \pm 1.4 \cdot 10^{-1} \) | \(a_{287}= +1.05461309 \pm 1.0 \cdot 10^{-1} \) | \(a_{288}= \pm0.23177920 \pm 4.5 \cdot 10^{-2} \) |
\(a_{289}= -0.82684474 \pm 1.1 \cdot 10^{-1} \) | \(a_{290}= \pm0.34496777 \pm 2.8 \cdot 10^{-2} \) | \(a_{291}= \pm0.85774753 \pm 6.4 \cdot 10^{-2} \) |
\(a_{292}= -1.28072276 \pm 1.4 \cdot 10^{-1} \) | \(a_{293}= +0.38886134 \pm 1.2 \cdot 10^{-1} \) | \(a_{294}= \pm0.18702304 \pm 9.0 \cdot 10^{-2} \) |
\(a_{295}= -1.39231804 \pm 1.3 \cdot 10^{-1} \) | \(a_{296}= +0.86156709 \pm 1.6 \cdot 10^{-1} \) | \(a_{297}= \pm0.22441042 \pm 2.2 \cdot 10^{-2} \) |
\(a_{298}= +1.62898676 \pm 1.4 \cdot 10^{-1} \) | \(a_{299}= +1.26805909 \pm 1.0 \cdot 10^{-1} \) | \(a_{300}= \pm0.25358957 \pm 8.8 \cdot 10^{-2} \) |
\(a_{301}= +1.11131400 \pm 1.2 \cdot 10^{-1} \) | \(a_{302}= +2.60881454 \pm 1.2 \cdot 10^{-1} \) | \(a_{303}= \pm0.55210671 \pm 5.9 \cdot 10^{-2} \) |
\(a_{304}= -0.02049444 \pm 1.1 \cdot 10^{-1} \) | \(a_{305}= +0.62150535 \pm 1.2 \cdot 10^{-1} \) | \(a_{306}= \pm0.23054765 \pm 4.9 \cdot 10^{-2} \) |
\(a_{307}= +0.13542780 \pm 9.8 \cdot 10^{-2} \) | \(a_{308}= +1.84425956 \pm 1.8 \cdot 10^{-1} \) | \(a_{309}= \pm0.30387174 \pm 7.2 \cdot 10^{-2} \) |
\(a_{310}= +1.52684633 \pm 1.7 \cdot 10^{-1} \) | \(a_{311}= +0.68741052 \pm 1.0 \cdot 10^{-1} \) | \(a_{312}= \pm0.63401776 \pm 8.1 \cdot 10^{-2} \) |
\(a_{313}= +1.64077387 \pm 1.2 \cdot 10^{-1} \) | \(a_{314}= -0.53357930 \pm 1.2 \cdot 10^{-1} \) | \(a_{315}= \pm0.33428702 \pm 4.1 \cdot 10^{-2} \) |
\(a_{316}= -1.17503209 \pm 1.4 \cdot 10^{-1} \) | \(a_{317}= +0.08630214 \pm 1.1 \cdot 10^{-1} \) | \(a_{318}= \pm0.98615925 \pm 7.4 \cdot 10^{-2} \) |
\(a_{319}= \pm0.21653390 \pm 2.1 \cdot 10^{-2} \) | \(a_{320}= +1.67657360 \pm 1.3 \cdot 10^{-1} \) | \(a_{321}= \pm0.35783053 \pm 6.9 \cdot 10^{-2} \) |
\(a_{322}= +2.18306580 \pm 1.4 \cdot 10^{-1} \) | \(a_{323}= -0.02476784 \pm 1.1 \cdot 10^{-1} \) | \(a_{324}= \pm0.19585167 \pm 1.6 \cdot 10^{-2} \) |
\(a_{325}= -0.21586706 \pm 1.0 \cdot 10^{-1} \) | \(a_{326}= +1.90434124 \pm 1.4 \cdot 10^{-1} \) | \(a_{327}= \pm0.75404218 \pm 6.7 \cdot 10^{-2} \) |
\(a_{328}= -1.48992264 \pm 1.2 \cdot 10^{-1} \) | \(a_{329}= +0.64999564 \pm 1.0 \cdot 10^{-1} \) | \(a_{330}= \pm1.25066733 \pm 9.5 \cdot 10^{-2} \) |
\(a_{331}= -0.82429573 \pm 1.0 \cdot 10^{-1} \) | \(a_{332}= +2.82622564 \pm 1.4 \cdot 10^{-1} \) | \(a_{333}= \pm0.22655306 \pm 3.9 \cdot 10^{-2} \) |
\(a_{334}= -0.00437758 \pm 1.3 \cdot 10^{-1} \) | \(a_{335}= -1.17190266 \pm 1.3 \cdot 10^{-1} \) | \(a_{336}= \pm0.17837443 \pm 8.8 \cdot 10^{-2} \) |
\(a_{337}= -1.19056268 \pm 1.1 \cdot 10^{-1} \) | \(a_{338}= -0.41476502 \pm 1.3 \cdot 10^{-1} \) | \(a_{339}= \pm0.66780159 \pm 6.1 \cdot 10^{-2} \) |
\(a_{340}= -0.81978703 \pm 1.5 \cdot 10^{-1} \) | \(a_{341}= +0.95839096 \pm 1.2 \cdot 10^{-1} \) | \(a_{342}= \pm0.03297715 \pm 4.4 \cdot 10^{-2} \) |
\(a_{343}= +1.07215018 \pm 1.1 \cdot 10^{-1} \) | \(a_{344}= -1.57002782 \pm 1.4 \cdot 10^{-1} \) | \(a_{345}= \pm0.94455694 \pm 7.0 \cdot 10^{-2} \) |
\(a_{346}= -2.24114589 \pm 1.2 \cdot 10^{-1} \) | \(a_{347}= -0.83086778 \pm 1.0 \cdot 10^{-1} \) | \(a_{348}= \pm0.18897752 \pm 1.5 \cdot 10^{-2} \) |
\(a_{349}= +1.59184497 \pm 1.2 \cdot 10^{-1} \) | \(a_{350}= -0.37163252 \pm 1.2 \cdot 10^{-1} \) | \(a_{351}= \pm0.16671791 \pm 2.0 \cdot 10^{-2} \) |
\(a_{352}= +0.81081283 \pm 1.3 \cdot 10^{-1} \) | \(a_{353}= -0.44945276 \pm 1.0 \cdot 10^{-1} \) | \(a_{354}= \pm1.19544203 \pm 7.0 \cdot 10^{-2} \) |
\(a_{355}= +1.23670714 \pm 1.1 \cdot 10^{-1} \) | \(a_{356}= -0.38538383 \pm 1.3 \cdot 10^{-1} \) | \(a_{357}= \pm0.21556814 \pm 6.7 \cdot 10^{-2} \) |
\(a_{358}= +2.13834230 \pm 1.5 \cdot 10^{-1} \) | \(a_{359}= -1.19596180 \pm 1.0 \cdot 10^{-1} \) | \(a_{360}= \pm0.47226970 \pm 4.7 \cdot 10^{-2} \) |
\(a_{361}= -0.99645725 \pm 1.3 \cdot 10^{-1} \) | \(a_{362}= -1.21923277 \pm 1.6 \cdot 10^{-1} \) | \(a_{363}= \pm0.20768503 \pm 6.5 \cdot 10^{-2} \) |
\(a_{364}= +1.37012841 \pm 1.5 \cdot 10^{-1} \) | \(a_{365}= +0.81207990 \pm 1.0 \cdot 10^{-1} \) | \(a_{366}= \pm0.53362349 \pm 6.5 \cdot 10^{-2} \) |
\(a_{367}= +0.89523442 \pm 1.0 \cdot 10^{-1} \) | \(a_{368}= -0.50401240 \pm 1.2 \cdot 10^{-1} \) | \(a_{369}= \pm0.39178206 \pm 3.6 \cdot 10^{-2} \) |
\(a_{370}= -1.26260851 \pm 1.5 \cdot 10^{-1} \) | \(a_{371}= -0.92208493 \pm 1.2 \cdot 10^{-1} \) | \(a_{372}= \pm0.83642490 \pm 9.8 \cdot 10^{-2} \) |
\(a_{373}= -1.49952974 \pm 1.1 \cdot 10^{-1} \) | \(a_{374}= -0.80650464 \pm 1.5 \cdot 10^{-1} \) | \(a_{375}= \pm0.48449089 \pm 7.4 \cdot 10^{-2} \) |
\(a_{376}= -0.91829243 \pm 1.6 \cdot 10^{-1} \) | \(a_{377}= \pm0.16086632 \pm 1.9 \cdot 10^{-2} \) | \(a_{378}= \pm0.28701830 \pm 2.8 \cdot 10^{-2} \) |
\(a_{379}= +1.65379032 \pm 1.1 \cdot 10^{-1} \) | \(a_{380}= +0.11726097 \pm 1.2 \cdot 10^{-1} \) | \(a_{381}= \pm0.24823758 \pm 7.0 \cdot 10^{-2} \) |
\(a_{382}= +1.52375998 \pm 1.2 \cdot 10^{-1} \) | \(a_{383}= +0.90386383 \pm 1.0 \cdot 10^{-1} \) | \(a_{384}= \pm1.03805005 \pm 7.3 \cdot 10^{-2} \) |
\(a_{385}= -1.16940697 \pm 1.3 \cdot 10^{-1} \) | \(a_{386}= -1.07197885 \pm 1.1 \cdot 10^{-1} \) | \(a_{387}= \pm0.41284609 \pm 3.7 \cdot 10^{-2} \) |
\(a_{388}= +2.61872493 \pm 1.4 \cdot 10^{-1} \) | \(a_{389}= +1.18479246 \pm 1.1 \cdot 10^{-1} \) | \(a_{390}= \pm0.92913973 \pm 8.2 \cdot 10^{-2} \) |
\(a_{391}= -0.60910646 \pm 1.0 \cdot 10^{-1} \) | \(a_{392}= -0.24705267 \pm 1.6 \cdot 10^{-1} \) | \(a_{393}= \pm0.65983881 \pm 6.2 \cdot 10^{-2} \) |
\(a_{394}= +0.20914996 \pm 1.2 \cdot 10^{-1} \) | \(a_{395}= +0.74506363 \pm 1.2 \cdot 10^{-1} \) | \(a_{396}= \pm0.68513070 \pm 5.3 \cdot 10^{-2} \) |
\(a_{397}= -1.75839312 \pm 9.7 \cdot 10^{-2} \) | \(a_{398}= +0.73124369 \pm 1.4 \cdot 10^{-1} \) | \(a_{399}= \pm0.03083451 \pm 7.0 \cdot 10^{-2} \) |
\(a_{400}= +0.08580016 \pm 9.8 \cdot 10^{-2} \) | \(a_{401}= +1.02529138 \pm 1.0 \cdot 10^{-1} \) | \(a_{402}= \pm1.00619374 \pm 8.6 \cdot 10^{-2} \) |
\(a_{403}= +0.71200319 \pm 1.0 \cdot 10^{-1} \) | \(a_{404}= -1.68559576 \pm 1.3 \cdot 10^{-1} \) | \(a_{405}= \pm0.12418550 \pm 1.3 \cdot 10^{-2} \) |
\(a_{406}= \pm0.27694433 \pm 2.7 \cdot 10^{-2} \) | \(a_{407}= -0.79253069 \pm 1.1 \cdot 10^{-1} \) | \(a_{408}= \pm0.30454757 \pm 9.2 \cdot 10^{-2} \) |
\(a_{409}= +0.60606908 \pm 1.1 \cdot 10^{-1} \) | \(a_{410}= +2.18345038 \pm 1.4 \cdot 10^{-1} \) | \(a_{411}= \pm0.60746596 \pm 6.4 \cdot 10^{-2} \) |
\(a_{412}= +0.92772813 \pm 1.7 \cdot 10^{-1} \) | \(a_{413}= -1.11776986 \pm 1.0 \cdot 10^{-1} \) | \(a_{414}= \pm0.81099507 \pm 4.6 \cdot 10^{-2} \) |
\(a_{415}= -1.79205143 \pm 1.2 \cdot 10^{-1} \) | \(a_{416}= +0.60236515 \pm 1.3 \cdot 10^{-1} \) | \(a_{417}= \pm0.56137357 \pm 5.4 \cdot 10^{-2} \) |
\(a_{418}= +0.11536108 \pm 1.0 \cdot 10^{-1} \) | \(a_{419}= +1.87632254 \pm 1.0 \cdot 10^{-1} \) | \(a_{420}= \pm1.02058674 \pm 8.6 \cdot 10^{-2} \) |
\(a_{421}= +1.37223916 \pm 1.0 \cdot 10^{-1} \) | \(a_{422}= +1.58344627 \pm 1.3 \cdot 10^{-1} \) | \(a_{423}= \pm0.24146925 \pm 3.7 \cdot 10^{-2} \) |
\(a_{424}= +1.30269122 \pm 1.2 \cdot 10^{-1} \) | \(a_{425}= +0.10369077 \pm 1.0 \cdot 10^{-1} \) | \(a_{426}= \pm1.06183476 \pm 6.8 \cdot 10^{-2} \) |
\(a_{427}= +0.49895205 \pm 1.0 \cdot 10^{-1} \) | \(a_{428}= -1.09246566 \pm 1.5 \cdot 10^{-1} \) | \(a_{429}= \pm0.58321464 \pm 5.7 \cdot 10^{-2} \) |
\(a_{430}= +2.30084284 \pm 1.3 \cdot 10^{-1} \) | \(a_{431}= -1.46778041 \pm 1.0 \cdot 10^{-1} \) | \(a_{432}= \pm0.06626497 \pm 2.4 \cdot 10^{-2} \) |
\(a_{433}= +0.82532286 \pm 1.0 \cdot 10^{-1} \) | \(a_{434}= +1.22577081 \pm 1.5 \cdot 10^{-1} \) | \(a_{435}= \pm0.11982675 \pm 1.3 \cdot 10^{-2} \) |
\(a_{436}= +2.30210985 \pm 1.4 \cdot 10^{-1} \) | \(a_{437}= +0.08712557 \pm 9.8 \cdot 10^{-2} \) | \(a_{438}= \pm0.69725050 \pm 7.6 \cdot 10^{-2} \) |
\(a_{439}= +1.03866815 \pm 1.1 \cdot 10^{-1} \) | \(a_{440}= +1.65209965 \pm 1.6 \cdot 10^{-1} \) | \(a_{441}= \pm0.06496364 \pm 4.0 \cdot 10^{-2} \) |
\(a_{442}= -0.59916453 \pm 1.5 \cdot 10^{-1} \) | \(a_{443}= -1.12254211 \pm 1.0 \cdot 10^{-1} \) | \(a_{444}= \pm0.69167222 \pm 9.1 \cdot 10^{-2} \) |
\(a_{445}= +0.24436394 \pm 1.1 \cdot 10^{-1} \) | \(a_{446}= -1.67418685 \pm 1.3 \cdot 10^{-1} \) | \(a_{447}= \pm0.56583892 \pm 6.6 \cdot 10^{-2} \) |
\(a_{448}= +1.34597368 \pm 1.1 \cdot 10^{-1} \) | \(a_{449}= -0.45001803 \pm 1.2 \cdot 10^{-1} \) | \(a_{450}= \pm0.13805912 \pm 5.2 \cdot 10^{-2} \) |
\(a_{451}= +1.37053682 \pm 1.0 \cdot 10^{-1} \) | \(a_{452}= -2.03881514 \pm 1.2 \cdot 10^{-1} \) | \(a_{453}= \pm0.90618833 \pm 5.8 \cdot 10^{-2} \) |
\(a_{454}= -0.12883406 \pm 1.3 \cdot 10^{-1} \) | \(a_{455}= -0.86877018 \pm 1.1 \cdot 10^{-1} \) | \(a_{456}= \pm0.04356198 \pm 6.7 \cdot 10^{-2} \) |
\(a_{457}= -0.84154243 \pm 1.1 \cdot 10^{-1} \) | \(a_{458}= -0.72700492 \pm 1.2 \cdot 10^{-1} \) | \(a_{459}= \pm0.08008220 \pm 2.2 \cdot 10^{-2} \) |
\(a_{460}= +2.88375624 \pm 1.4 \cdot 10^{-1} \) | \(a_{461}= -0.87948506 \pm 1.1 \cdot 10^{-1} \) | \(a_{462}= \pm1.00405095 \pm 9.1 \cdot 10^{-2} \) |
\(a_{463}= -0.48380516 \pm 9.6 \cdot 10^{-2} \) | \(a_{464}= \pm0.06393915 \pm 2.4 \cdot 10^{-2} \) | \(a_{465}= \pm0.53035979 \pm 7.6 \cdot 10^{-2} \) |
\(a_{466}= -2.86352037 \pm 1.3 \cdot 10^{-1} \) | \(a_{467}= -0.62944549 \pm 1.0 \cdot 10^{-1} \) | \(a_{468}= \pm0.50899399 \pm 4.7 \cdot 10^{-2} \) |
\(a_{469}= -0.94081771 \pm 1.2 \cdot 10^{-1} \) | \(a_{470}= +1.34573830 \pm 1.2 \cdot 10^{-1} \) | \(a_{471}= \pm0.18534217 \pm 6.0 \cdot 10^{-2} \) |
\(a_{472}= +1.57914844 \pm 1.3 \cdot 10^{-1} \) | \(a_{473}= +1.44422326 \pm 1.0 \cdot 10^{-1} \) | \(a_{474}= \pm0.63971043 \pm 7.6 \cdot 10^{-2} \) |
\(a_{475}= -0.01483175 \pm 1.1 \cdot 10^{-1} \) | \(a_{476}= -0.65813500 \pm 1.6 \cdot 10^{-1} \) | \(a_{477}= \pm0.34254869 \pm 3.6 \cdot 10^{-2} \) |
\(a_{478}= -0.61145617 \pm 1.3 \cdot 10^{-1} \) | \(a_{479}= +0.96165660 \pm 1.1 \cdot 10^{-1} \) | \(a_{480}= \pm0.44869217 \pm 8.0 \cdot 10^{-2} \) |
\(a_{481}= -0.58878308 \pm 9.9 \cdot 10^{-2} \) | \(a_{482}= -1.17524028 \pm 1.5 \cdot 10^{-1} \) | \(a_{483}= \pm0.75830180 \pm 6.8 \cdot 10^{-2} \) |
\(a_{484}= +0.63406766 \pm 1.5 \cdot 10^{-1} \) | \(a_{485}= -1.66047950 \pm 1.2 \cdot 10^{-1} \) | \(a_{486}= \pm0.10662547 \pm 8.8 \cdot 10^{-3} \) |
\(a_{487}= -0.74745638 \pm 1.0 \cdot 10^{-1} \) | \(a_{488}= -0.70490303 \pm 1.1 \cdot 10^{-1} \) | \(a_{489}= \pm0.66148505 \pm 6.9 \cdot 10^{-2} \) |
\(a_{490}= +0.36205051 \pm 1.5 \cdot 10^{-1} \) | \(a_{491}= -1.08928256 \pm 1.2 \cdot 10^{-1} \) | \(a_{492}= \pm1.19612055 \pm 7.8 \cdot 10^{-2} \) |
\(a_{493}= \pm0.07727141 \pm 2.1 \cdot 10^{-2} \) | \(a_{494}= +0.08570349 \pm 1.3 \cdot 10^{-1} \) | \(a_{495}= \pm0.43442726 \pm 4.3 \cdot 10^{-2} \) |
\(a_{496}= -0.28299820 \pm 1.4 \cdot 10^{-1} \) | \(a_{497}= +0.99284354 \pm 1.0 \cdot 10^{-1} \) | \(a_{498}= \pm1.53865247 \pm 8.0 \cdot 10^{-2} \) |
\(a_{499}= -1.08219238 \pm 1.0 \cdot 10^{-1} \) | \(a_{500}= +1.47916295 \pm 1.7 \cdot 10^{-1} \) | \(a_{501}= \pm0.00152058 \pm 6.4 \cdot 10^{-2} \) |
\(a_{502}= +2.37673793 \pm 1.4 \cdot 10^{-1} \) | \(a_{503}= +0.53569700 \pm 1.0 \cdot 10^{-1} \) | \(a_{504}= \pm0.37914386 \pm 5.1 \cdot 10^{-2} \) |
\(a_{505}= +1.06880153 \pm 1.0 \cdot 10^{-1} \) | \(a_{506}= +2.83703291 \pm 1.1 \cdot 10^{-1} \) | \(a_{507}= \pm0.14407127 \pm 6.1 \cdot 10^{-2} \) |
\(a_{508}= -0.75787563 \pm 1.4 \cdot 10^{-1} \) | \(a_{509}= +0.45832800 \pm 1.1 \cdot 10^{-1} \) | \(a_{510}= \pm0.44630808 \pm 8.4 \cdot 10^{-2} \) |
\(a_{511}= +0.65194762 \pm 1.0 \cdot 10^{-1} \) | \(a_{512}= -0.67590006 \pm 1.1 \cdot 10^{-1} \) | \(a_{513}= \pm0.01145482 \pm 2.2 \cdot 10^{-2} \) |
\(a_{514}= -1.64600553 \pm 1.3 \cdot 10^{-1} \) | \(a_{515}= -0.58825329 \pm 1.4 \cdot 10^{-1} \) | \(a_{516}= \pm1.26042956 \pm 8.5 \cdot 10^{-2} \) |
\(a_{517}= +0.84471070 \pm 1.1 \cdot 10^{-1} \) | \(a_{518}= -1.01363747 \pm 1.7 \cdot 10^{-1} \) | \(a_{519}= \pm0.77847629 \pm 6.0 \cdot 10^{-2} \) |
\(a_{520}= +1.22736990 \pm 1.3 \cdot 10^{-1} \) | \(a_{521}= -1.32529012 \pm 1.2 \cdot 10^{-1} \) | \(a_{522}= \pm0.10288306 \pm 8.4 \cdot 10^{-3} \) |
\(a_{523}= +0.23588148 \pm 1.0 \cdot 10^{-1} \) | \(a_{524}= -2.01450460 \pm 1.4 \cdot 10^{-1} \) | \(a_{525}= \pm0.12908892 \pm 6.1 \cdot 10^{-2} \) |
\(a_{526}= +1.55997703 \pm 1.4 \cdot 10^{-1} \) | \(a_{527}= -0.34200752 \pm 1.2 \cdot 10^{-1} \) | \(a_{528}= \pm0.23180892 \pm 7.5 \cdot 10^{-2} \) |
\(a_{529}= +1.14264742 \pm 1.1 \cdot 10^{-1} \) | \(a_{530}= -1.90906666 \pm 1.5 \cdot 10^{-1} \) | \(a_{531}= \pm0.41524440 \pm 3.7 \cdot 10^{-2} \) |
\(a_{532}= +0.09413853 \pm 1.3 \cdot 10^{-1} \) | \(a_{533}= +1.01819260 \pm 1.0 \cdot 10^{-1} \) | \(a_{534}= \pm0.20981049 \pm 7.6 \cdot 10^{-2} \) |
\(a_{535}= +0.69270996 \pm 1.3 \cdot 10^{-1} \) | \(a_{536}= +1.32915627 \pm 1.2 \cdot 10^{-1} \) | \(a_{537}= \pm0.74276681 \pm 6.7 \cdot 10^{-2} \) |
\(a_{538}= -0.78719553 \pm 1.4 \cdot 10^{-1} \) | \(a_{539}= +0.22725662 \pm 1.2 \cdot 10^{-1} \) | \(a_{540}= \pm0.37914149 \pm 2.9 \cdot 10^{-2} \) |
\(a_{541}= -1.57303747 \pm 1.1 \cdot 10^{-1} \) | \(a_{542}= -0.46608861 \pm 1.5 \cdot 10^{-1} \) | \(a_{543}= \pm0.42350826 \pm 7.4 \cdot 10^{-2} \) |
\(a_{544}= -0.28934338 \pm 1.5 \cdot 10^{-1} \) | \(a_{545}= -1.45972041 \pm 1.3 \cdot 10^{-1} \) | \(a_{546}= \pm0.74592468 \pm 8.8 \cdot 10^{-2} \) |
\(a_{547}= +1.29564495 \pm 1.2 \cdot 10^{-1} \) | \(a_{548}= +1.85460895 \pm 1.2 \cdot 10^{-1} \) | \(a_{549}= \pm0.18535752 \pm 3.4 \cdot 10^{-2} \) |
\(a_{550}= -0.48296010 \pm 1.7 \cdot 10^{-1} \) | \(a_{551}= \pm0.01105277 \pm 2.1 \cdot 10^{-2} \) | \(a_{552}= \pm1.07130381 \pm 7.4 \cdot 10^{-2} \) |
\(a_{553}= +0.59814614 \pm 1.1 \cdot 10^{-1} \) | \(a_{554}= -1.42520820 \pm 1.2 \cdot 10^{-1} \) | \(a_{555}= \pm0.43857510 \pm 7.5 \cdot 10^{-2} \) |
\(a_{556}= -1.71388772 \pm 1.3 \cdot 10^{-1} \) | \(a_{557}= +1.00502219 \pm 9.8 \cdot 10^{-2} \) | \(a_{558}= \pm0.45536606 \pm 5.0 \cdot 10^{-2} \) |
\(a_{559}= +1.07293537 \pm 1.1 \cdot 10^{-1} \) | \(a_{560}= +0.34530800 \pm 1.4 \cdot 10^{-1} \) | \(a_{561}= \pm0.28014452 \pm 6.9 \cdot 10^{-2} \) |
\(a_{562}= +0.36929899 \pm 1.4 \cdot 10^{-1} \) | \(a_{563}= +0.45869279 \pm 1.1 \cdot 10^{-1} \) | \(a_{564}= \pm0.73721173 \pm 8.6 \cdot 10^{-2} \) |
\(a_{565}= +1.29277066 \pm 1.0 \cdot 10^{-1} \) | \(a_{566}= -3.27647384 \pm 1.3 \cdot 10^{-1} \) | \(a_{567}= \pm0.09969763 \pm 1.2 \cdot 10^{-2} \) |
\(a_{568}= -1.40265664 \pm 1.0 \cdot 10^{-1} \) | \(a_{569}= -1.02638105 \pm 1.0 \cdot 10^{-1} \) | \(a_{570}= \pm0.06383916 \pm 8.0 \cdot 10^{-2} \) |
\(a_{571}= -1.46000558 \pm 1.0 \cdot 10^{-1} \) | \(a_{572}= +1.78056904 \pm 1.6 \cdot 10^{-1} \) | \(a_{573}= \pm0.52928773 \pm 5.5 \cdot 10^{-2} \) |
\(a_{574}= +1.75290052 \pm 1.2 \cdot 10^{-1} \) | \(a_{575}= -0.36475193 \pm 1.2 \cdot 10^{-1} \) | \(a_{576}= \pm0.50002066 \pm 4.3 \cdot 10^{-2} \) |
\(a_{577}= -0.74659753 \pm 1.0 \cdot 10^{-1} \) | \(a_{578}= -1.37432067 \pm 1.3 \cdot 10^{-1} \) | \(a_{579}= \pm0.37235868 \pm 5.9 \cdot 10^{-2} \) |
\(a_{580}= \pm0.36583411 \pm 2.8 \cdot 10^{-2} \) | \(a_{581}= -1.43868068 \pm 1.1 \cdot 10^{-1} \) | \(a_{582}= \pm1.42568503 \pm 7.5 \cdot 10^{-2} \) |
\(a_{583}= -1.19830804 \pm 1.0 \cdot 10^{-1} \) | \(a_{584}= -0.92105013 \pm 1.4 \cdot 10^{-1} \) | \(a_{585}= \pm0.32274260 \pm 3.7 \cdot 10^{-2} \) |
\(a_{586}= +0.64633679 \pm 1.5 \cdot 10^{-1} \) | \(a_{587}= -0.78778303 \pm 1.1 \cdot 10^{-1} \) | \(a_{588}= \pm0.19833565 \pm 9.6 \cdot 10^{-2} \) |
\(a_{589}= +0.04892018 \pm 1.1 \cdot 10^{-1} \) | \(a_{590}= -2.31420892 \pm 1.4 \cdot 10^{-1} \) | \(a_{591}= \pm0.07264957 \pm 5.4 \cdot 10^{-2} \) |
\(a_{592}= +0.23402219 \pm 1.5 \cdot 10^{-1} \) | \(a_{593}= -1.23468616 \pm 1.1 \cdot 10^{-1} \) | \(a_{594}= \pm0.37299854 \pm 2.7 \cdot 10^{-2} \) |
\(a_{595}= +0.41730984 \pm 1.0 \cdot 10^{-1} \) | \(a_{596}= +1.72752055 \pm 1.4 \cdot 10^{-1} \) | \(a_{597}= \pm0.25400215 \pm 7.0 \cdot 10^{-2} \) |
\(a_{598}= +2.10767479 \pm 1.3 \cdot 10^{-1} \) | \(a_{599}= -0.81618501 \pm 1.0 \cdot 10^{-1} \) | \(a_{600}= \pm0.18237257 \pm 8.0 \cdot 10^{-2} \) |
\(a_{601}= -0.44245069 \pm 1.1 \cdot 10^{-1} \) | \(a_{602}= +1.84714462 \pm 1.7 \cdot 10^{-1} \) | \(a_{603}= \pm0.34950780 \pm 4.0 \cdot 10^{-2} \) |
\(a_{604}= +2.76661592 \pm 1.1 \cdot 10^{-1} \) | \(a_{605}= -0.40204923 \pm 1.2 \cdot 10^{-1} \) | \(a_{606}= \pm0.91767127 \pm 7.2 \cdot 10^{-2} \) |
\(a_{607}= -0.40527834 \pm 1.0 \cdot 10^{-1} \) | \(a_{608}= +0.04138719 \pm 1.3 \cdot 10^{-1} \) | \(a_{609}= \pm0.09619837 \pm 1.2 \cdot 10^{-2} \) |
\(a_{610}= +1.03302060 \pm 1.4 \cdot 10^{-1} \) | \(a_{611}= +0.62754839 \pm 1.1 \cdot 10^{-1} \) | \(a_{612}= \pm0.24449297 \pm 5.4 \cdot 10^{-2} \) |
\(a_{613}= -1.67320711 \pm 1.1 \cdot 10^{-1} \) | \(a_{614}= +0.22509816 \pm 1.1 \cdot 10^{-1} \) | \(a_{615}= \pm0.75843539 \pm 6.9 \cdot 10^{-2} \) |
\(a_{616}= +1.32632570 \pm 1.7 \cdot 10^{-1} \) | \(a_{617}= -1.30037139 \pm 1.1 \cdot 10^{-1} \) | \(a_{618}= \pm0.50507332 \pm 9.0 \cdot 10^{-2} \) |
\(a_{619}= +0.88734600 \pm 1.2 \cdot 10^{-1} \) | \(a_{620}= +1.61920187 \pm 1.8 \cdot 10^{-1} \) | \(a_{621}= \pm0.28170430 \pm 2.1 \cdot 10^{-2} \) |
\(a_{622}= +1.14256334 \pm 1.2 \cdot 10^{-1} \) | \(a_{623}= +0.19617835 \pm 1.0 \cdot 10^{-1} \) | \(a_{624}= \pm0.17221436 \pm 7.7 \cdot 10^{-2} \) |
\(a_{625}= -1.18709193 \pm 1.2 \cdot 10^{-1} \) | \(a_{626}= +2.72717397 \pm 1.2 \cdot 10^{-1} \) | \(a_{627}= \pm0.04007140 \pm 5.8 \cdot 10^{-2} \) |
\(a_{628}= -0.56585432 \pm 1.1 \cdot 10^{-1} \) | \(a_{629}= +0.28281930 \pm 1.2 \cdot 10^{-1} \) | \(a_{630}= \pm0.55562737 \pm 4.9 \cdot 10^{-2} \) |
\(a_{631}= -0.12418531 \pm 1.1 \cdot 10^{-1} \) | \(a_{632}= -0.84504117 \pm 1.4 \cdot 10^{-1} \) | \(a_{633}= \pm0.55002014 \pm 6.4 \cdot 10^{-2} \) |
\(a_{634}= +0.14344509 \pm 1.3 \cdot 10^{-1} \) | \(a_{635}= +0.48055332 \pm 1.3 \cdot 10^{-1} \) | \(a_{636}= \pm1.04580982 \pm 7.2 \cdot 10^{-2} \) |
\(a_{637}= +0.16883239 \pm 9.5 \cdot 10^{-2} \) | \(a_{638}= \pm0.35990677 \pm 2.6 \cdot 10^{-2} \) | \(a_{639}= \pm0.36883506 \pm 3.3 \cdot 10^{-2} \) |
\(a_{640}= +2.00952001 \pm 1.3 \cdot 10^{-1} \) | \(a_{641}= -0.82196673 \pm 1.1 \cdot 10^{-1} \) | \(a_{642}= \pm0.59475966 \pm 8.4 \cdot 10^{-2} \) |
\(a_{643}= +0.16434680 \pm 1.1 \cdot 10^{-1} \) | \(a_{644}= +2.31511459 \pm 1.1 \cdot 10^{-1} \) | \(a_{645}= \pm0.79921240 \pm 6.5 \cdot 10^{-2} \) |
\(a_{646}= -0.04116729 \pm 1.2 \cdot 10^{-1} \) | \(a_{647}= -0.11677386 \pm 1.1 \cdot 10^{-1} \) | \(a_{648}= \pm0.14084953 \pm 1.5 \cdot 10^{-2} \) |
\(a_{649}= -1.45261306 \pm 1.1 \cdot 10^{-1} \) | \(a_{650}= -0.35879839 \pm 1.3 \cdot 10^{-1} \) | \(a_{651}= \pm0.42577929 \pm 6.3 \cdot 10^{-2} \) |
\(a_{652}= +2.01953061 \pm 1.4 \cdot 10^{-1} \) | \(a_{653}= -0.15665617 \pm 1.1 \cdot 10^{-1} \) | \(a_{654}= \pm1.25331359 \pm 7.8 \cdot 10^{-2} \) |
\(a_{655}= +1.27735585 \pm 1.2 \cdot 10^{-1} \) | \(a_{656}= -0.40469856 \pm 1.2 \cdot 10^{-1} \) | \(a_{657}= \pm0.24219440 \pm 3.4 \cdot 10^{-2} \) |
\(a_{658}= +1.08037508 \pm 1.3 \cdot 10^{-1} \) | \(a_{659}= -0.76563412 \pm 1.1 \cdot 10^{-1} \) | \(a_{660}= \pm1.32631741 \pm 1.0 \cdot 10^{-1} \) |
\(a_{661}= -1.80605889 \pm 9.7 \cdot 10^{-2} \) | \(a_{662}= -1.37008390 \pm 1.3 \cdot 10^{-1} \) | \(a_{663}= \pm0.20812361 \pm 6.7 \cdot 10^{-2} \) |
\(a_{664}= +2.03252068 \pm 1.2 \cdot 10^{-1} \) | \(a_{665}= -0.05969130 \pm 1.4 \cdot 10^{-1} \) | \(a_{666}= \pm0.37655988 \pm 4.7 \cdot 10^{-2} \) |
\(a_{667}= \pm0.27181684 \pm 2.0 \cdot 10^{-2} \) | \(a_{668}= -0.00464237 \pm 1.5 \cdot 10^{-1} \) | \(a_{669}= \pm0.58153946 \pm 6.9 \cdot 10^{-2} \) |
\(a_{670}= -1.94785064 \pm 1.6 \cdot 10^{-1} \) | \(a_{671}= +0.64841994 \pm 1.1 \cdot 10^{-1} \) | \(a_{672}= \pm0.36021553 \pm 8.3 \cdot 10^{-2} \) |
\(a_{673}= +0.01503297 \pm 1.1 \cdot 10^{-1} \) | \(a_{674}= -1.97886596 \pm 1.4 \cdot 10^{-1} \) | \(a_{675}= \pm0.04795571 \pm 2.4 \cdot 10^{-2} \) |
\(a_{676}= -0.43985323 \pm 1.3 \cdot 10^{-1} \) | \(a_{677}= -0.00413947 \pm 1.0 \cdot 10^{-1} \) | \(a_{678}= \pm1.10997081 \pm 7.0 \cdot 10^{-2} \) |
\(a_{679}= -1.33305314 \pm 1.0 \cdot 10^{-1} \) | \(a_{680}= -0.58956159 \pm 1.4 \cdot 10^{-1} \) | \(a_{681}= \pm0.04475133 \pm 6.4 \cdot 10^{-2} \) |
\(a_{682}= +1.59296716 \pm 1.6 \cdot 10^{-1} \) | \(a_{683}= -0.91772827 \pm 1.1 \cdot 10^{-1} \) | \(a_{684}= \pm0.03497187 \pm 4.3 \cdot 10^{-2} \) |
\(a_{685}= -1.17596931 \pm 1.0 \cdot 10^{-1} \) | \(a_{686}= +1.78204939 \pm 1.4 \cdot 10^{-1} \) | \(a_{687}= \pm0.25252979 \pm 6.4 \cdot 10^{-2} \) |
\(a_{688}= -0.42645704 \pm 1.3 \cdot 10^{-1} \) | \(a_{689}= -0.89024122 \pm 1.0 \cdot 10^{-1} \) | \(a_{690}= \pm1.56997326 \pm 8.7 \cdot 10^{-2} \) |
\(a_{691}= +0.46670169 \pm 1.0 \cdot 10^{-1} \) | \(a_{692}= -2.37670782 \pm 1.3 \cdot 10^{-1} \) | \(a_{693}= \pm0.34876349 \pm 4.1 \cdot 10^{-2} \) |
\(a_{694}= -1.38100748 \pm 1.2 \cdot 10^{-1} \) | \(a_{695}= +1.08674088 \pm 1.1 \cdot 10^{-1} \) | \(a_{696}= \pm0.13590589 \pm 1.5 \cdot 10^{-2} \) |
\(a_{697}= -0.48908422 \pm 1.0 \cdot 10^{-1} \) | \(a_{698}= +2.64584795 \pm 1.4 \cdot 10^{-1} \) | \(a_{699}= \pm0.99466203 \pm 6.0 \cdot 10^{-2} \) |
\(a_{700}= -0.39411174 \pm 1.1 \cdot 10^{-1} \) | \(a_{701}= -0.17984157 \pm 1.1 \cdot 10^{-1} \) | \(a_{702}= \pm0.27710628 \pm 2.6 \cdot 10^{-2} \) |
\(a_{703}= -0.04045400 \pm 1.3 \cdot 10^{-1} \) | \(a_{704}= +1.74917843 \pm 1.2 \cdot 10^{-1} \) | \(a_{705}= \pm0.46745076 \pm 6.3 \cdot 10^{-2} \) |
\(a_{706}= -0.74704740 \pm 1.1 \cdot 10^{-1} \) | \(a_{707}= +0.85804687 \pm 1.0 \cdot 10^{-1} \) | \(a_{708}= \pm1.26775166 \pm 6.9 \cdot 10^{-2} \) |
\(a_{709}= +0.26964282 \pm 1.1 \cdot 10^{-1} \) | \(a_{710}= +2.05556389 \pm 1.4 \cdot 10^{-1} \) | \(a_{711}= \pm0.22220749 \pm 3.8 \cdot 10^{-2} \) |
\(a_{712}= -0.27715430 \pm 1.0 \cdot 10^{-1} \) | \(a_{713}= +1.20307627 \pm 1.0 \cdot 10^{-1} \) | \(a_{714}= \pm0.35830156 \pm 8.9 \cdot 10^{-2} \) |
\(a_{715}= -1.12902213 \pm 1.0 \cdot 10^{-1} \) | \(a_{716}= +2.26768586 \pm 1.6 \cdot 10^{-1} \) | \(a_{717}= \pm0.21239319 \pm 6.8 \cdot 10^{-2} \) |
\(a_{718}= -1.98783998 \pm 1.3 \cdot 10^{-1} \) | \(a_{719}= +0.72765404 \pm 9.5 \cdot 10^{-2} \) | \(a_{720}= \pm0.12827973 \pm 4.1 \cdot 10^{-2} \) |
\(a_{721}= -0.47225689 \pm 1.2 \cdot 10^{-1} \) | \(a_{722}= -1.65623815 \pm 1.4 \cdot 10^{-1} \) | \(a_{723}= \pm0.40822719 \pm 6.7 \cdot 10^{-2} \) |
\(a_{724}= -1.29298144 \pm 1.7 \cdot 10^{-1} \) | \(a_{725}= \pm0.04627253 \pm 2.3 \cdot 10^{-2} \) | \(a_{726}= \pm0.34519882 \pm 8.3 \cdot 10^{-2} \) |
\(a_{727}= +0.81735471 \pm 1.1 \cdot 10^{-1} \) | \(a_{728}= +0.98534748 \pm 1.5 \cdot 10^{-1} \) | \(a_{729}= \pm0.03703704 \pm 1.0 \cdot 10^{-8} \) |
\(a_{730}= +1.34977965 \pm 1.4 \cdot 10^{-1} \) | \(a_{731}= -0.51537966 \pm 1.1 \cdot 10^{-1} \) | \(a_{732}= \pm0.56590119 \pm 6.6 \cdot 10^{-2} \) |
\(a_{733}= +1.69177464 \pm 1.0 \cdot 10^{-1} \) | \(a_{734}= +1.48799298 \pm 1.2 \cdot 10^{-1} \) | \(a_{735}= \pm0.12576055 \pm 7.5 \cdot 10^{-2} \) |
\(a_{736}= +1.01782019 \pm 1.4 \cdot 10^{-1} \) | \(a_{737}= -1.22265248 \pm 1.1 \cdot 10^{-1} \) | \(a_{738}= \pm0.65119140 \pm 4.4 \cdot 10^{-2} \) |
\(a_{739}= +0.20668854 \pm 9.9 \cdot 10^{-2} \) | \(a_{740}= -1.33898088 \pm 1.6 \cdot 10^{-1} \) | \(a_{741}= \pm0.02976965 \pm 6.1 \cdot 10^{-2} \) |
\(a_{742}= -1.53262193 \pm 1.5 \cdot 10^{-1} \) | \(a_{743}= +0.39339464 \pm 1.0 \cdot 10^{-1} \) | \(a_{744}= \pm0.60152696 \pm 9.3 \cdot 10^{-2} \) |
\(a_{745}= -1.09538517 \pm 1.2 \cdot 10^{-1} \) | \(a_{746}= -2.49240833 \pm 1.2 \cdot 10^{-1} \) | \(a_{747}= \pm0.53446073 \pm 3.6 \cdot 10^{-2} \) |
\(a_{748}= -0.85528831 \pm 1.7 \cdot 10^{-1} \) | \(a_{749}= +0.55611598 \pm 1.1 \cdot 10^{-1} \) | \(a_{750}= \pm0.80528522 \pm 9.7 \cdot 10^{-2} \) |
\(a_{751}= -1.47199826 \pm 1.1 \cdot 10^{-1} \) | \(a_{752}= -0.24943015 \pm 1.4 \cdot 10^{-1} \) | \(a_{753}= \pm0.82557505 \pm 6.4 \cdot 10^{-2} \) |
\(a_{754}= \pm0.26738020 \pm 2.5 \cdot 10^{-2} \) | \(a_{755}= -1.75425413 \pm 1.0 \cdot 10^{-1} \) | \(a_{756}= \pm0.30437940 \pm 3.0 \cdot 10^{-2} \) |
\(a_{757}= -0.36608616 \pm 1.1 \cdot 10^{-1} \) | \(a_{758}= +2.74880895 \pm 1.4 \cdot 10^{-1} \) | \(a_{759}= \pm0.98546144 \pm 6.3 \cdot 10^{-2} \) |
\(a_{760}= +0.08432991 \pm 9.9 \cdot 10^{-2} \) | \(a_{761}= +0.54637222 \pm 1.1 \cdot 10^{-1} \) | \(a_{762}= \pm0.41260230 \pm 8.0 \cdot 10^{-2} \) |
\(a_{763}= -1.17188130 \pm 1.1 \cdot 10^{-1} \) | \(a_{764}= +1.61592883 \pm 1.4 \cdot 10^{-1} \) | \(a_{765}= \pm0.15502795 \pm 3.7 \cdot 10^{-2} \) |
\(a_{766}= +1.50233615 \pm 1.4 \cdot 10^{-1} \) | \(a_{767}= -1.07916828 \pm 1.1 \cdot 10^{-1} \) | \(a_{768}= \pm0.85930945 \pm 7.1 \cdot 10^{-2} \) |
\(a_{769}= -1.51734067 \pm 1.0 \cdot 10^{-1} \) | \(a_{770}= -1.94370249 \pm 1.5 \cdot 10^{-1} \) | \(a_{771}= \pm0.57175050 \pm 6.2 \cdot 10^{-2} \) |
\(a_{772}= -1.13682046 \pm 1.0 \cdot 10^{-1} \) | \(a_{773}= -0.86052611 \pm 1.1 \cdot 10^{-1} \) | \(a_{774}= \pm0.68620248 \pm 4.6 \cdot 10^{-2} \) |
\(a_{775}= -0.20480476 \pm 1.4 \cdot 10^{-1} \) | \(a_{776}= +1.88329357 \pm 1.4 \cdot 10^{-1} \) | \(a_{777}= \pm0.35209343 \pm 7.2 \cdot 10^{-2} \) |
\(a_{778}= +1.96927512 \pm 1.3 \cdot 10^{-1} \) | \(a_{779}= +0.06995779 \pm 1.3 \cdot 10^{-1} \) | \(a_{780}= \pm0.98534133 \pm 7.9 \cdot 10^{-2} \) |
\(a_{781}= +1.29026335 \pm 1.0 \cdot 10^{-1} \) | \(a_{782}= -1.01241208 \pm 1.5 \cdot 10^{-1} \) | \(a_{783}= \pm0.03573708 \pm 1.0 \cdot 10^{-8} \) |
\(a_{784}= -0.06710540 \pm 1.5 \cdot 10^{-1} \) | \(a_{785}= +0.35879656 \pm 1.2 \cdot 10^{-1} \) | \(a_{786}= \pm1.09673568 \pm 7.9 \cdot 10^{-2} \) |
\(a_{787}= -1.25827568 \pm 1.2 \cdot 10^{-1} \) | \(a_{788}= +0.22180097 \pm 1.2 \cdot 10^{-1} \) | \(a_{789}= \pm0.54186795 \pm 6.3 \cdot 10^{-2} \) |
\(a_{790}= +1.23839011 \pm 1.4 \cdot 10^{-1} \) | \(a_{791}= +1.03785201 \pm 1.1 \cdot 10^{-1} \) | \(a_{792}= \pm0.49272157 \pm 5.2 \cdot 10^{-2} \) |
\(a_{793}= +0.48172101 \pm 9.5 \cdot 10^{-2} \) | \(a_{794}= -2.92267206 \pm 1.2 \cdot 10^{-1} \) | \(a_{795}= \pm0.66312645 \pm 7.2 \cdot 10^{-2} \) |
\(a_{796}= +0.77547499 \pm 1.4 \cdot 10^{-1} \) | \(a_{797}= -1.46679891 \pm 1.1 \cdot 10^{-1} \) | \(a_{798}= \pm0.05125086 \pm 7.7 \cdot 10^{-2} \) |
\(a_{799}= -0.30144004 \pm 1.2 \cdot 10^{-1} \) | \(a_{800}= -0.17326783 \pm 1.2 \cdot 10^{-1} \) | \(a_{801}= \pm0.07287901 \pm 3.5 \cdot 10^{-2} \) |
\(a_{802}= +1.70416413 \pm 1.1 \cdot 10^{-1} \) | \(a_{803}= +0.84724742 \pm 1.0 \cdot 10^{-1} \) | \(a_{804}= \pm1.06705616 \pm 8.2 \cdot 10^{-2} \) |
\(a_{805}= -1.46796645 \pm 1.1 \cdot 10^{-1} \) | \(a_{806}= +1.18343947 \pm 1.4 \cdot 10^{-1} \) | \(a_{807}= \pm0.27343738 \pm 6.8 \cdot 10^{-2} \) |
\(a_{808}= -1.21222036 \pm 1.3 \cdot 10^{-1} \) | \(a_{809}= +1.92111525 \pm 1.0 \cdot 10^{-1} \) | \(a_{810}= \pm0.20641204 \pm 1.6 \cdot 10^{-2} \) |
\(a_{811}= +0.01927806 \pm 1.1 \cdot 10^{-1} \) | \(a_{812}= \pm0.29369607 \pm 2.9 \cdot 10^{-2} \) | \(a_{813}= \pm0.16189884 \pm 6.8 \cdot 10^{-2} \) |
\(a_{814}= -1.31728638 \pm 1.4 \cdot 10^{-1} \) | \(a_{815}= -1.28054273 \pm 1.2 \cdot 10^{-1} \) | \(a_{816}= \pm0.08272239 \pm 8.7 \cdot 10^{-2} \) |
\(a_{817}= +0.07371905 \pm 1.1 \cdot 10^{-1} \) | \(a_{818}= +1.00736356 \pm 1.2 \cdot 10^{-1} \) | \(a_{819}= \pm0.25910169 \pm 3.6 \cdot 10^{-2} \) |
\(a_{820}= +2.31552243 \pm 1.5 \cdot 10^{-1} \) | \(a_{821}= +1.06185641 \pm 1.0 \cdot 10^{-1} \) | \(a_{822}= \pm1.00968536 \pm 6.8 \cdot 10^{-2} \) |
\(a_{823}= +0.45244572 \pm 1.1 \cdot 10^{-1} \) | \(a_{824}= +0.66718898 \pm 1.7 \cdot 10^{-1} \) | \(a_{825}= \pm0.16775927 \pm 7.7 \cdot 10^{-2} \) |
\(a_{826}= -1.85787507 \pm 1.3 \cdot 10^{-1} \) | \(a_{827}= +0.59285534 \pm 1.1 \cdot 10^{-1} \) | \(a_{828}= \pm0.86005035 \pm 4.6 \cdot 10^{-2} \) |
\(a_{829}= +1.32576140 \pm 1.1 \cdot 10^{-1} \) | \(a_{830}= -2.97861643 \pm 1.6 \cdot 10^{-1} \) | \(a_{831}= \pm0.49505514 \pm 6.4 \cdot 10^{-2} \) |
\(a_{832}= +1.29949120 \pm 1.3 \cdot 10^{-1} \) | \(a_{833}= -0.08109788 \pm 1.1 \cdot 10^{-1} \) | \(a_{834}= \pm0.93307397 \pm 7.4 \cdot 10^{-2} \) |
\(a_{835}= +0.00294363 \pm 1.1 \cdot 10^{-1} \) | \(a_{836}= +0.12233901 \pm 1.2 \cdot 10^{-1} \) | \(a_{837}= \pm0.15817430 \pm 2.2 \cdot 10^{-2} \) |
\(a_{838}= +3.11868568 \pm 1.2 \cdot 10^{-1} \) | \(a_{839}= -0.13001647 \pm 1.0 \cdot 10^{-1} \) | \(a_{840}= \pm0.73396959 \pm 8.3 \cdot 10^{-2} \) |
\(a_{841}= \pm0.03448276 \pm 1.0 \cdot 10^{-8} \) | \(a_{842}= +2.28083527 \pm 1.2 \cdot 10^{-1} \) | \(a_{843}= \pm0.12827835 \pm 6.5 \cdot 10^{-2} \) |
\(a_{844}= +1.67922541 \pm 1.4 \cdot 10^{-1} \) | \(a_{845}= +0.27890187 \pm 1.0 \cdot 10^{-1} \) | \(a_{846}= \pm0.40135247 \pm 4.3 \cdot 10^{-2} \) |
\(a_{847}= -0.32277001 \pm 1.1 \cdot 10^{-1} \) | \(a_{848}= +0.35384204 \pm 1.2 \cdot 10^{-1} \) | \(a_{849}= \pm1.13810404 \pm 6.2 \cdot 10^{-2} \) |
\(a_{850}= +0.17234719 \pm 1.3 \cdot 10^{-1} \) | \(a_{851}= -0.99487047 \pm 1.0 \cdot 10^{-1} \) | \(a_{852}= \pm1.12606278 \pm 6.7 \cdot 10^{-2} \) |
\(a_{853}= +0.52612300 \pm 1.0 \cdot 10^{-1} \) | \(a_{854}= +0.82932150 \pm 1.2 \cdot 10^{-1} \) | \(a_{855}= \pm0.02217494 \pm 4.1 \cdot 10^{-2} \) |
\(a_{856}= -0.78566234 \pm 1.4 \cdot 10^{-1} \) | \(a_{857}= +0.15553841 \pm 1.1 \cdot 10^{-1} \) | \(a_{858}= \pm0.96937659 \pm 8.2 \cdot 10^{-2} \) |
\(a_{859}= -0.87250275 \pm 1.0 \cdot 10^{-1} \) | \(a_{860}= +2.44001570 \pm 1.3 \cdot 10^{-1} \) | \(a_{861}= \pm0.60888115 \pm 6.0 \cdot 10^{-2} \) |
\(a_{862}= -2.43963692 \pm 1.2 \cdot 10^{-1} \) | \(a_{863}= -1.25137765 \pm 1.0 \cdot 10^{-1} \) | \(a_{864}= \pm0.13381778 \pm 2.6 \cdot 10^{-2} \) |
\(a_{865}= +1.50702144 \pm 1.1 \cdot 10^{-1} \) | \(a_{866}= +1.37179112 \pm 1.3 \cdot 10^{-1} \) | \(a_{867}= \pm0.47737903 \pm 6.4 \cdot 10^{-2} \) |
\(a_{868}= +1.29991495 \pm 1.7 \cdot 10^{-1} \) | \(a_{869}= +0.77732897 \pm 1.1 \cdot 10^{-1} \) | \(a_{870}= \pm0.19916724 \pm 1.6 \cdot 10^{-2} \) |
\(a_{871}= -0.90832708 \pm 1.2 \cdot 10^{-1} \) | \(a_{872}= +1.65559530 \pm 1.4 \cdot 10^{-1} \) | \(a_{873}= \pm0.49522077 \pm 3.7 \cdot 10^{-2} \) |
\(a_{874}= +0.14481373 \pm 1.2 \cdot 10^{-1} \) | \(a_{875}= -0.75296294 \pm 1.1 \cdot 10^{-1} \) | \(a_{876}= \pm0.73942563 \pm 8.4 \cdot 10^{-2} \) |
\(a_{877}= -1.30555558 \pm 1.1 \cdot 10^{-1} \) | \(a_{878}= +1.72639801 \pm 1.5 \cdot 10^{-1} \) | \(a_{879}= \pm0.22450920 \pm 7.1 \cdot 10^{-2} \) |
\(a_{880}= +0.44874971 \pm 1.1 \cdot 10^{-1} \) | \(a_{881}= -1.68390760 \pm 1.0 \cdot 10^{-1} \) | \(a_{882}= \pm0.10797780 \pm 5.2 \cdot 10^{-2} \) |
\(a_{883}= -0.20331201 \pm 1.0 \cdot 10^{-1} \) | \(a_{884}= -0.63540666 \pm 1.6 \cdot 10^{-1} \) | \(a_{885}= \pm0.80385520 \pm 7.5 \cdot 10^{-2} \) |
\(a_{886}= -1.86580716 \pm 1.1 \cdot 10^{-1} \) | \(a_{887}= +1.45366830 \pm 8.9 \cdot 10^{-2} \) | \(a_{888}= \pm0.49742599 \pm 9.5 \cdot 10^{-2} \) |
\(a_{889}= +0.38579405 \pm 1.1 \cdot 10^{-1} \) | \(a_{890}= +0.40616382 \pm 1.5 \cdot 10^{-1} \) | \(a_{891}= \pm0.12956342 \pm 1.2 \cdot 10^{-2} \) |
\(a_{892}= -1.77545469 \pm 1.4 \cdot 10^{-1} \) | \(a_{893}= +0.04311748 \pm 1.1 \cdot 10^{-1} \) | \(a_{894}= \pm0.94049595 \pm 8.4 \cdot 10^{-2} \) |
\(a_{895}= -1.43789287 \pm 1.3 \cdot 10^{-1} \) | \(a_{896}= +1.61326710 \pm 1.1 \cdot 10^{-1} \) | \(a_{897}= \pm0.73211425 \pm 5.8 \cdot 10^{-2} \) |
\(a_{898}= -0.74798695 \pm 1.4 \cdot 10^{-1} \) | \(a_{899}= \pm0.15262259 \pm 2.1 \cdot 10^{-2} \) | \(a_{900}= \pm0.14641001 \pm 5.1 \cdot 10^{-2} \) |
\(a_{901}= +0.42762336 \pm 1.0 \cdot 10^{-1} \) | \(a_{902}= +2.27800577 \pm 1.2 \cdot 10^{-1} \) | \(a_{903}= \pm0.64161744 \pm 7.4 \cdot 10^{-2} \) |
\(a_{904}= -1.46624314 \pm 1.2 \cdot 10^{-1} \) | \(a_{905}= +0.81985288 \pm 1.3 \cdot 10^{-1} \) | \(a_{906}= \pm1.50619978 \pm 7.0 \cdot 10^{-2} \) |
\(a_{907}= -1.86197165 \pm 1.1 \cdot 10^{-1} \) | \(a_{908}= -0.13662695 \pm 1.4 \cdot 10^{-1} \) | \(a_{909}= \pm0.31875896 \pm 3.4 \cdot 10^{-2} \) |
\(a_{910}= -1.44400607 \pm 1.5 \cdot 10^{-1} \) | \(a_{911}= -0.49511599 \pm 1.2 \cdot 10^{-1} \) | \(a_{912}= \pm0.01183247 \pm 6.6 \cdot 10^{-2} \) |
\(a_{913}= -1.86965709 \pm 1.1 \cdot 10^{-1} \) | \(a_{914}= -1.39875009 \pm 1.2 \cdot 10^{-1} \) | \(a_{915}= \pm0.35882628 \pm 6.9 \cdot 10^{-2} \) |
\(a_{916}= -0.77097983 \pm 1.3 \cdot 10^{-1} \) | \(a_{917}= +1.02547681 \pm 1.1 \cdot 10^{-1} \) | \(a_{918}= \pm0.13310675 \pm 2.8 \cdot 10^{-2} \) |
\(a_{919}= -0.73031174 \pm 9.9 \cdot 10^{-2} \) | \(a_{920}= +2.07389464 \pm 1.3 \cdot 10^{-1} \) | \(a_{921}= \pm0.07818928 \pm 5.6 \cdot 10^{-2} \) |
\(a_{922}= -1.46181555 \pm 1.4 \cdot 10^{-1} \) | \(a_{923}= +0.95855622 \pm 9.5 \cdot 10^{-2} \) | \(a_{924}= \pm1.06478375 \pm 1.0 \cdot 10^{-1} \) |
\(a_{925}= +0.16936101 \pm 1.2 \cdot 10^{-1} \) | \(a_{926}= -0.80414544 \pm 1.0 \cdot 10^{-1} \) | \(a_{927}= \pm0.17544043 \pm 4.1 \cdot 10^{-2} \) |
\(a_{928}= \pm0.12912095 \pm 2.5 \cdot 10^{-2} \) | \(a_{929}= +0.02883950 \pm 1.1 \cdot 10^{-1} \) | \(a_{930}= \pm0.88152514 \pm 1.0 \cdot 10^{-1} \) |
\(a_{931}= +0.01160010 \pm 1.2 \cdot 10^{-1} \) | \(a_{932}= -3.03672834 \pm 1.4 \cdot 10^{-1} \) | \(a_{933}= \pm0.39687665 \pm 5.8 \cdot 10^{-2} \) |
\(a_{934}= -1.04621811 \pm 1.3 \cdot 10^{-1} \) | \(a_{935}= +0.54232069 \pm 1.2 \cdot 10^{-1} \) | \(a_{936}= \pm0.36605033 \pm 4.7 \cdot 10^{-2} \) |
\(a_{937}= +1.90627702 \pm 1.0 \cdot 10^{-1} \) | \(a_{938}= -1.56375819 \pm 1.4 \cdot 10^{-1} \) | \(a_{939}= \pm0.94730123 \pm 6.9 \cdot 10^{-2} \) |
\(a_{940}= +1.42713901 \pm 1.2 \cdot 10^{-1} \) | \(a_{941}= +1.27851851 \pm 1.1 \cdot 10^{-1} \) | \(a_{942}= \pm0.30806215 \pm 7.0 \cdot 10^{-2} \) |
\(a_{943}= +1.72044644 \pm 1.0 \cdot 10^{-1} \) | \(a_{944}= +0.42893442 \pm 1.1 \cdot 10^{-1} \) | \(a_{945}= \pm0.19300070 \pm 2.3 \cdot 10^{-2} \) |
\(a_{946}= +2.40048196 \pm 1.3 \cdot 10^{-1} \) | \(a_{947}= +1.54538630 \pm 1.1 \cdot 10^{-1} \) | \(a_{948}= \pm0.67840509 \pm 8.4 \cdot 10^{-2} \) |
\(a_{949}= +0.62943296 \pm 8.7 \cdot 10^{-2} \) | \(a_{950}= -0.02465225 \pm 1.4 \cdot 10^{-1} \) | \(a_{951}= \pm0.04982656 \pm 6.7 \cdot 10^{-2} \) |
\(a_{952}= -0.47330722 \pm 1.5 \cdot 10^{-1} \) | \(a_{953}= -1.71850886 \pm 1.2 \cdot 10^{-1} \) | \(a_{954}= \pm0.56935931 \pm 4.3 \cdot 10^{-2} \) |
\(a_{955}= -1.02462716 \pm 1.0 \cdot 10^{-1} \) | \(a_{956}= -0.64844179 \pm 1.4 \cdot 10^{-1} \) | \(a_{957}= \pm0.12501591 \pm 1.2 \cdot 10^{-2} \) |
\(a_{958}= +1.59839507 \pm 1.3 \cdot 10^{-1} \) | \(a_{959}= -0.94408247 \pm 9.3 \cdot 10^{-2} \) | \(a_{960}= \pm0.96797022 \pm 7.9 \cdot 10^{-2} \) |
\(a_{961}= -0.32448405 \pm 1.1 \cdot 10^{-1} \) | \(a_{962}= -0.97863204 \pm 1.2 \cdot 10^{-1} \) | \(a_{963}= \pm0.20659355 \pm 4.0 \cdot 10^{-2} \) |
\(a_{964}= -1.24632794 \pm 1.6 \cdot 10^{-1} \) | \(a_{965}= +0.72083443 \pm 1.0 \cdot 10^{-1} \) | \(a_{966}= \pm1.26039363 \pm 8.5 \cdot 10^{-2} \) |
\(a_{967}= +0.72944172 \pm 1.1 \cdot 10^{-1} \) | \(a_{968}= +0.45599884 \pm 1.5 \cdot 10^{-1} \) | \(a_{969}= \pm0.01429972 \pm 6.8 \cdot 10^{-2} \) |
\(a_{970}= -2.75992723 \pm 1.4 \cdot 10^{-1} \) | \(a_{971}= -0.46238172 \pm 1.0 \cdot 10^{-1} \) | \(a_{972}= \pm0.11307501 \pm 9.3 \cdot 10^{-3} \) |
\(a_{973}= +0.87244880 \pm 1.0 \cdot 10^{-1} \) | \(a_{974}= -1.24236716 \pm 1.3 \cdot 10^{-1} \) | \(a_{975}= \pm0.12463090 \pm 6.0 \cdot 10^{-2} \) |
\(a_{976}= -0.19146849 \pm 1.0 \cdot 10^{-1} \) | \(a_{977}= -0.88827110 \pm 1.0 \cdot 10^{-1} \) | \(a_{978}= \pm1.09947193 \pm 8.5 \cdot 10^{-2} \) |
\(a_{979}= +0.25494624 \pm 9.5 \cdot 10^{-2} \) | \(a_{980}= +0.38395014 \pm 1.6 \cdot 10^{-1} \) | \(a_{981}= \pm0.43534645 \pm 3.8 \cdot 10^{-2} \) |
\(a_{982}= -1.81052557 \pm 1.4 \cdot 10^{-1} \) | \(a_{983}= +0.07602317 \pm 1.0 \cdot 10^{-1} \) | \(a_{984}= \pm0.86020724 \pm 7.4 \cdot 10^{-2} \) |
\(a_{985}= -0.14063943 \pm 1.0 \cdot 10^{-1} \) | \(a_{986}= \pm0.12843487 \pm 2.7 \cdot 10^{-2} \) | \(a_{987}= \pm0.37527516 \pm 5.9 \cdot 10^{-2} \) |
\(a_{988}= +0.09088751 \pm 1.2 \cdot 10^{-1} \) | \(a_{989}= +1.81294565 \pm 1.1 \cdot 10^{-1} \) | \(a_{990}= \pm0.72207312 \pm 5.5 \cdot 10^{-2} \) |
\(a_{991}= +1.14495978 \pm 1.1 \cdot 10^{-1} \) | \(a_{992}= +0.57149641 \pm 1.3 \cdot 10^{-1} \) | \(a_{993}= \pm0.47590736 \pm 5.8 \cdot 10^{-2} \) |
\(a_{994}= +1.65023170 \pm 1.3 \cdot 10^{-1} \) | \(a_{995}= -0.49171271 \pm 1.2 \cdot 10^{-1} \) | \(a_{996}= \pm1.63172213 \pm 8.2 \cdot 10^{-2} \) |
\(a_{997}= -0.30074926 \pm 1.1 \cdot 10^{-1} \) | \(a_{998}= -1.79874079 \pm 1.3 \cdot 10^{-1} \) | \(a_{999}= \pm0.13080047 \pm 2.3 \cdot 10^{-2} \) |
\(a_{1000}= +1.06376124 \pm 1.6 \cdot 10^{-1} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000