|
\(a_{1}=+1.000000000\) |
\(a_{2}=-1.350488789\) |
\(a_{3}=+0.000000000\) |
\(a_{4}=+0.823819969\) |
\(a_{5}=+1.935581415\) |
\(a_{6}=+0.000000000\) |
\(a_{7}=+0.565816384\) |
\(a_{8}=+0.237929157\) |
\(a_{9}=+0.000000000\) |
\(a_{10}=-2.613981001\) |
\(a_{11}=-0.680290908\) |
\(a_{12}=+0.000000000\) |
\(a_{13}=-0.130932716\) |
\(a_{14}=-0.764128683\) |
\(a_{15}=+0.000000000\) |
\(a_{16}=-1.145140628\) |
\(a_{17}=-1.041516442\) |
\(a_{18}=+0.000000000\) |
\(a_{19}=-0.522302605\) |
\(a_{20}=+1.594570621\) |
\(a_{21}=+0.000000000\) |
\(a_{22}=+0.918725244\) |
\(a_{23}=-1.376912743\) |
\(a_{24}=+0.000000000\) |
\(a_{25}=+2.746475415\) |
\(a_{26}=+0.176823165\) |
\(a_{27}=+0.000000000\) |
\(a_{28}=+0.466130836\) |
\(a_{29}=-0.964008204\) |
\(a_{30}=+0.000000000\) |
\(a_{31}=+0.849381025\) |
\(a_{32}=+1.308570420\) |
\(a_{33}=+0.000000000\) |
\(a_{34}=+1.406556284\) |
\(a_{35}=+1.095183671\) |
\(a_{36}=+0.000000000\) |
\(a_{37}=-0.709933673\) |
\(a_{38}=+0.705363808\) |
\(a_{39}=+0.000000000\) |
\(a_{40}=+0.460531213\) |
\(a_{41}=-1.469293797\) |
\(a_{42}=+0.000000000\) |
\(a_{43}=-0.997396578\) |
\(a_{44}=-0.560436267\) |
\(a_{45}=+0.000000000\) |
\(a_{46}=+1.859501877\) |
\(a_{47}=+0.267207712\) |
\(a_{48}=+0.000000000\) |
\(a_{49}=-0.679869663\) |
\(a_{50}=-3.709053831\) |
\(a_{51}=+0.000000000\) |
\(a_{52}=-0.107948126\) |
\(a_{53}=-0.746337750\) |
\(a_{54}=+0.000000000\) |
\(a_{55}=-1.317107622\) |
\(a_{56}=+0.135181572\) |
\(a_{57}=+0.000000000\) |
\(a_{58}=+1.300541620\) |
\(a_{59}=-1.126383774\) |
\(a_{60}=+0.000000000\) |
\(a_{61}=+0.552450602\) |
\(a_{62}=-1.139711789\) |
\(a_{63}=+0.000000000\) |
\(a_{64}=-0.638612587\) |
\(a_{65}=-0.228957436\) |
\(a_{66}=+0.000000000\) |
\(a_{67}=+0.658408838\) |
\(a_{68}=-0.780929055\) |
\(a_{69}=+0.000000000\) |
\(a_{70}=-1.641281724\) |
Showing all 70 available coefficients