|
\(a_{1}=+1.000000000\) |
\(a_{2}=+0.110208130\) |
\(a_{3}=+0.000000000\) |
\(a_{4}=-0.987854168\) |
\(a_{5}=+1.211005416\) |
\(a_{6}=+0.000000000\) |
\(a_{7}=-0.359576759\) |
\(a_{8}=-0.219077691\) |
\(a_{9}=+0.000000000\) |
\(a_{10}=+0.133462643\) |
\(a_{11}=+1.109006968\) |
\(a_{12}=+0.000000000\) |
\(a_{13}=-0.685022985\) |
\(a_{14}=-0.039628282\) |
\(a_{15}=+0.000000000\) |
\(a_{16}=+0.963710025\) |
\(a_{17}=-1.661644162\) |
\(a_{18}=+0.000000000\) |
\(a_{19}=-0.928089520\) |
\(a_{20}=-1.196296748\) |
\(a_{21}=+0.000000000\) |
\(a_{22}=+0.122221584\) |
\(a_{23}=-1.515904480\) |
\(a_{24}=+0.000000000\) |
\(a_{25}=+0.466534118\) |
\(a_{26}=-0.075495102\) |
\(a_{27}=+0.000000000\) |
\(a_{28}=+0.355209400\) |
\(a_{29}=-0.943887381\) |
\(a_{30}=+0.000000000\) |
\(a_{31}=-1.175826346\) |
\(a_{32}=+0.325286371\) |
\(a_{33}=+0.000000000\) |
\(a_{34}=-0.183126697\) |
\(a_{35}=-0.435449403\) |
\(a_{36}=+0.000000000\) |
\(a_{37}=+1.502349170\) |
\(a_{38}=-0.102283006\) |
\(a_{39}=+0.000000000\) |
\(a_{40}=-0.265304280\) |
\(a_{41}=+0.648727127\) |
\(a_{42}=+0.000000000\) |
\(a_{43}=-0.451976166\) |
\(a_{44}=-1.095536983\) |
\(a_{45}=+0.000000000\) |
\(a_{46}=-0.167064906\) |
\(a_{47}=+0.743108796\) |
\(a_{48}=+0.000000000\) |
\(a_{49}=-0.870703877\) |
\(a_{50}=+0.051419061\) |
\(a_{51}=+0.000000000\) |
\(a_{52}=+0.676706814\) |
\(a_{53}=-0.426670494\) |
\(a_{54}=+0.000000000\) |
\(a_{55}=+1.343023823\) |
\(a_{56}=+0.078819011\) |
\(a_{57}=+0.000000000\) |
\(a_{58}=-0.104003369\) |
\(a_{59}=+0.340755488\) |
\(a_{60}=+0.000000000\) |
\(a_{61}=-0.777852617\) |
\(a_{62}=-0.130284185\) |
\(a_{63}=+0.000000000\) |
\(a_{64}=-0.930413000\) |
\(a_{65}=-0.831384225\) |
\(a_{66}=+0.000000000\) |
\(a_{67}=+0.304966452\) |
\(a_{68}=+1.640181255\) |
\(a_{69}=+0.000000000\) |
\(a_{70}=-0.093161959\) |
\(a_{71}=-1.229128599\) |
Showing all 71 available coefficients