|
\(a_{1}=+1.000000000\) |
\(a_{2}=-1.321785678\) |
\(a_{3}=+0.000000000\) |
\(a_{4}=+0.747117378\) |
\(a_{5}=+0.287699156\) |
\(a_{6}=+0.000000000\) |
\(a_{7}=+0.570658424\) |
\(a_{8}=+0.334256628\) |
\(a_{9}=+0.000000000\) |
\(a_{10}=-0.380276624\) |
\(a_{11}=+1.369510364\) |
\(a_{12}=+0.000000000\) |
\(a_{13}=+1.542792336\) |
\(a_{14}=-0.754288131\) |
\(a_{15}=+0.000000000\) |
\(a_{16}=-1.188933002\) |
\(a_{17}=+0.852523045\) |
\(a_{18}=+0.000000000\) |
\(a_{19}=-1.344615903\) |
\(a_{20}=+0.214945039\) |
\(a_{21}=+0.000000000\) |
\(a_{22}=-1.810199185\) |
\(a_{23}=+0.120763339\) |
\(a_{24}=+0.000000000\) |
\(a_{25}=-0.917229196\) |
\(a_{26}=-2.039240814\) |
\(a_{27}=+0.000000000\) |
\(a_{28}=+0.426348825\) |
\(a_{29}=+0.076011150\) |
\(a_{30}=+0.000000000\) |
\(a_{31}=-0.417485685\) |
\(a_{32}=+1.237257985\) |
\(a_{33}=+0.000000000\) |
\(a_{34}=-1.126852750\) |
\(a_{35}=+0.164177947\) |
\(a_{36}=+0.000000000\) |
\(a_{37}=+1.229951710\) |
\(a_{38}=+1.777294043\) |
\(a_{39}=+0.000000000\) |
\(a_{40}=+0.096165353\) |
\(a_{41}=+1.865224521\) |
\(a_{42}=+0.000000000\) |
\(a_{43}=-0.482975382\) |
\(a_{44}=+1.023184967\) |
\(a_{45}=+0.000000000\) |
\(a_{46}=-0.159623231\) |
\(a_{47}=-0.390517494\) |
\(a_{48}=+0.000000000\) |
\(a_{49}=-0.674348322\) |
\(a_{50}=+1.212379345\) |
\(a_{51}=+0.000000000\) |
\(a_{52}=+1.152646851\) |
\(a_{53}=+1.125703683\) |
\(a_{54}=+0.000000000\) |
\(a_{55}=+0.394010998\) |
\(a_{56}=+0.190764763\) |
\(a_{57}=+0.000000000\) |
\(a_{58}=-0.100435565\) |
\(a_{59}=-1.150526303\) |
\(a_{60}=+0.000000000\) |
\(a_{61}=-1.176325343\) |
\(a_{62}=+0.551298751\) |
\(a_{63}=+0.000000000\) |
\(a_{64}=-0.444630927\) |
\(a_{65}=+0.444834276\) |
\(a_{66}=+0.000000000\) |
\(a_{67}=+1.148605676\) |
\(a_{68}=+0.639835850\) |
\(a_{69}=+0.000000000\) |
\(a_{70}=-0.242493959\) |
Showing all 70 available coefficients