|
\(a_{1}=+1.000000000\) |
\(a_{2}=+0.265379104\) |
\(a_{3}=+0.000000000\) |
\(a_{4}=-0.929573931\) |
\(a_{5}=+1.543951357\) |
\(a_{6}=+0.000000000\) |
\(a_{7}=+1.545386103\) |
\(a_{8}=-0.512068600\) |
\(a_{9}=+0.000000000\) |
\(a_{10}=+0.409732427\) |
\(a_{11}=-1.128807354\) |
\(a_{12}=+0.000000000\) |
\(a_{13}=-0.252585403\) |
\(a_{14}=+0.410113179\) |
\(a_{15}=+0.000000000\) |
\(a_{16}=+0.793681625\) |
\(a_{17}=+0.690149265\) |
\(a_{18}=+0.000000000\) |
\(a_{19}=+0.051167265\) |
\(a_{20}=-1.435216933\) |
\(a_{21}=+0.000000000\) |
\(a_{22}=-0.299561884\) |
\(a_{23}=-0.421812100\) |
\(a_{24}=+0.000000000\) |
\(a_{25}=+1.383785792\) |
\(a_{26}=-0.067030888\) |
\(a_{27}=+0.000000000\) |
\(a_{28}=-1.436550635\) |
\(a_{29}=+1.670159734\) |
\(a_{30}=+0.000000000\) |
\(a_{31}=+0.448042289\) |
\(a_{32}=+0.722695119\) |
\(a_{33}=+0.000000000\) |
\(a_{34}=+0.183151196\) |
\(a_{35}=+2.386000973\) |
\(a_{36}=+0.000000000\) |
\(a_{37}=+0.611507817\) |
\(a_{38}=+0.013578731\) |
\(a_{39}=+0.000000000\) |
\(a_{40}=-0.790608937\) |
\(a_{41}=+1.100583460\) |
\(a_{42}=+0.000000000\) |
\(a_{43}=-0.359006226\) |
\(a_{44}=+1.049309990\) |
\(a_{45}=+0.000000000\) |
\(a_{46}=-0.111938593\) |
\(a_{47}=-0.419313631\) |
\(a_{48}=+0.000000000\) |
\(a_{49}=+1.388226080\) |
\(a_{50}=+0.367226506\) |
\(a_{51}=+0.000000000\) |
\(a_{52}=+0.234835520\) |
\(a_{53}=+0.664036900\) |
\(a_{54}=+0.000000000\) |
\(a_{55}=-1.742681465\) |
\(a_{56}=-0.791377653\) |
\(a_{57}=+0.000000000\) |
\(a_{58}=+0.443872859\) |
\(a_{59}=+0.723263325\) |
\(a_{60}=+0.000000000\) |
\(a_{61}=+0.085798540\) |
\(a_{62}=+0.117794234\) |
\(a_{63}=+0.000000000\) |
\(a_{64}=-0.590670576\) |
\(a_{65}=-0.393667270\) |
\(a_{66}=+0.000000000\) |
\(a_{67}=+1.560918008\) |
\(a_{68}=-0.654665384\) |
\(a_{69}=+0.000000000\) |
\(a_{70}=+0.726987936\) |
Showing all 70 available coefficients