|
\(a_{1}=+1.000000000\) |
\(a_{2}=+0.627908079\) |
\(a_{3}=+0.000000000\) |
\(a_{4}=-0.605731445\) |
\(a_{5}=-0.337954619\) |
\(a_{6}=+0.000000000\) |
\(a_{7}=-0.422016282\) |
\(a_{8}=-1.008251746\) |
\(a_{9}=+0.000000000\) |
\(a_{10}=-0.212204436\) |
\(a_{11}=+0.651460357\) |
\(a_{12}=+0.000000000\) |
\(a_{13}=+1.426865361\) |
\(a_{14}=-0.264987433\) |
\(a_{15}=+0.000000000\) |
\(a_{16}=-0.027357972\) |
\(a_{17}=-1.261451510\) |
\(a_{18}=+0.000000000\) |
\(a_{19}=+0.613740611\) |
\(a_{20}=+0.204709740\) |
\(a_{21}=+0.000000000\) |
\(a_{22}=+0.409057221\) |
\(a_{23}=+1.623594130\) |
\(a_{24}=+0.000000000\) |
\(a_{25}=-0.885786675\) |
\(a_{26}=+0.895940287\) |
\(a_{27}=+0.000000000\) |
\(a_{28}=+0.255628532\) |
\(a_{29}=+1.740581407\) |
\(a_{30}=+0.000000000\) |
\(a_{31}=+1.055845250\) |
\(a_{32}=+0.991073458\) |
\(a_{33}=+0.000000000\) |
\(a_{34}=-0.792075600\) |
\(a_{35}=+0.142622372\) |
\(a_{36}=+0.000000000\) |
\(a_{37}=-0.573890622\) |
\(a_{38}=+0.385372807\) |
\(a_{39}=+0.000000000\) |
\(a_{40}=+0.340743108\) |
\(a_{41}=+0.833601151\) |
\(a_{42}=+0.000000000\) |
\(a_{43}=+0.216108083\) |
\(a_{44}=-0.394606641\) |
\(a_{45}=+0.000000000\) |
\(a_{46}=+1.019462827\) |
\(a_{47}=+0.249276411\) |
\(a_{48}=+0.000000000\) |
\(a_{49}=-0.821922731\) |
\(a_{50}=-0.556121337\) |
\(a_{51}=+0.000000000\) |
\(a_{52}=-0.864369420\) |
\(a_{53}=+0.783899953\) |
\(a_{54}=+0.000000000\) |
\(a_{55}=-0.220375328\) |
\(a_{56}=+0.426590177\) |
\(a_{57}=+0.000000000\) |
\(a_{58}=+1.092458140\) |
\(a_{59}=-1.229615533\) |
\(a_{60}=+0.000000000\) |
\(a_{61}=+0.144904013\) |
\(a_{62}=+0.674487652\) |
\(a_{63}=+0.000000000\) |
\(a_{64}=+0.653132197\) |
\(a_{65}=-0.451043156\) |
\(a_{66}=+0.000000000\) |
\(a_{67}=-0.933974115\) |
\(a_{68}=+0.831669391\) |
\(a_{69}=+0.000000000\) |
\(a_{70}=+0.186772293\) |
Showing all 70 available coefficients