Base field \(\Q(\sqrt{-2}) \)
Generator \(a\), with minimal polynomial \(x^{2} + 2\); class number \(1\).
Level 13122.5
Norm: | 13122 |
Ideal: | \((81 a) = \left(a\right) \cdot \left(-a - 1\right)^{4} \cdot \left(a - 1\right)^{4} \) |
Label: | 13122.5 |
Modular form spaces
Weight | 2 |
---|---|
Dimension of cuspidal subspace: | 162 |
Dimension of new cuspidal subspace: | 8 |
Newforms
This space contains the following newforms of dimension 1.
label | weight | sign | base change | CM |
---|---|---|---|---|
13122.5-a | 2 | +1 | no | no |
13122.5-b | 2 | -1 | yes | no |
13122.5-c | 2 | +1 | no | no |
13122.5-d | 2 | -1 | yes | no |
13122.5-e | 2 | +1 | yes | no |
13122.5-f | 2 | +1 | no | no |
13122.5-g | 2 | +1 | yes | no |
13122.5-h | 2 | +1 | no | no |