# Properties

 Label 2.0.7.1-24964.5-c Base field $$\Q(\sqrt{-7})$$ Weight $2$ Level norm $24964$ Level $$\left(158\right)$$ Dimension $1$ CM no Base change yes Sign $-1$ Analytic rank odd

# Related objects

## Base field: $$\Q(\sqrt{-7})$$

Generator $$a$$, with minimal polynomial $$x^2 - x + 2$$; class number $$1$$.

## Form

 Weight: 2 Level: 24964.5 = $$\left(158\right)$$ Level norm: 24964 Dimension: 1 CM: no Base change: yes 7742.2.a.n , 158.2.a.c Newspace: 2.0.7.1-24964.5 (dimension 7) Sign of functional equation: $-1$ Analytic rank: odd

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$$2$$ 2.1 = ($$a$$) $$-1$$
$$2$$ 2.2 = ($$-a + 1$$) $$-1$$
$$79$$ 79.1 = ($$-6 a + 7$$) $$-1$$
$$79$$ 79.2 = ($$6 a + 1$$) $$-1$$

## Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
$$7$$ 7.1 = ($$-2 a + 1$$) $$-3$$
$$9$$ 9.1 = ($$3$$) $$3$$
$$11$$ 11.1 = ($$-2 a + 3$$) $$-2$$
$$11$$ 11.2 = ($$2 a + 1$$) $$-2$$
$$23$$ 23.1 = ($$-2 a + 5$$) $$-2$$
$$23$$ 23.2 = ($$2 a + 3$$) $$-2$$
$$25$$ 25.1 = ($$5$$) $$-1$$
$$29$$ 29.1 = ($$-4 a + 1$$) $$6$$
$$29$$ 29.2 = ($$4 a - 3$$) $$6$$
$$37$$ 37.1 = ($$-4 a + 5$$) $$-10$$
$$37$$ 37.2 = ($$4 a + 1$$) $$-10$$
$$43$$ 43.1 = ($$-2 a + 7$$) $$4$$
$$43$$ 43.2 = ($$2 a + 5$$) $$4$$
$$53$$ 53.1 = ($$-4 a - 3$$) $$-12$$
$$53$$ 53.2 = ($$4 a - 7$$) $$-12$$
$$67$$ 67.1 = ($$-6 a + 1$$) $$-8$$
$$67$$ 67.2 = ($$6 a - 5$$) $$-8$$
$$71$$ 71.1 = ($$-2 a + 9$$) $$-3$$
$$71$$ 71.2 = ($$2 a + 7$$) $$-3$$
$$107$$ 107.1 = ($$-2 a + 11$$) $$-1$$
 Display number of eigenvalues