# Properties

 Label 2.0.7.1-14641.3-d Base field $$\Q(\sqrt{-7})$$ Weight $2$ Level norm $14641$ Level $$\left(121\right)$$ Dimension $1$ CM no Base change yes Sign $-1$ Analytic rank odd

# Related objects

## Base field: $$\Q(\sqrt{-7})$$

Generator $$a$$, with minimal polynomial $$x^2 - x + 2$$; class number $$1$$.

## Form

 Weight: 2 Level: 14641.3 = $$\left(121\right)$$ Level norm: 14641 Dimension: 1 CM: no Base change: yes 5929.2.a.h , 121.2.a.d Newspace: 2.0.7.1-14641.3 (dimension 24) Sign of functional equation: $-1$ Analytic rank: odd

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$$11$$ 11.1 = ($$-2 a + 3$$) $$-1$$
$$11$$ 11.2 = ($$2 a + 1$$) $$-1$$

## Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
$$2$$ 2.1 = ($$a$$) $$2$$
$$2$$ 2.2 = ($$-a + 1$$) $$2$$
$$7$$ 7.1 = ($$-2 a + 1$$) $$2$$
$$9$$ 9.1 = ($$3$$) $$-5$$
$$23$$ 23.1 = ($$-2 a + 5$$) $$-1$$
$$23$$ 23.2 = ($$2 a + 3$$) $$-1$$
$$25$$ 25.1 = ($$5$$) $$-9$$
$$29$$ 29.1 = ($$-4 a + 1$$) $$0$$
$$29$$ 29.2 = ($$4 a - 3$$) $$0$$
$$37$$ 37.1 = ($$-4 a + 5$$) $$3$$
$$37$$ 37.2 = ($$4 a + 1$$) $$3$$
$$43$$ 43.1 = ($$-2 a + 7$$) $$6$$
$$43$$ 43.2 = ($$2 a + 5$$) $$6$$
$$53$$ 53.1 = ($$-4 a - 3$$) $$-6$$
$$53$$ 53.2 = ($$4 a - 7$$) $$-6$$
$$67$$ 67.1 = ($$-6 a + 1$$) $$-7$$
$$67$$ 67.2 = ($$6 a - 5$$) $$-7$$
$$71$$ 71.1 = ($$-2 a + 9$$) $$-3$$
$$71$$ 71.2 = ($$2 a + 7$$) $$-3$$
$$79$$ 79.1 = ($$-6 a + 7$$) $$10$$
 Display number of eigenvalues