Properties

 Label 2.0.4.1-1225.2-a Base field $$\Q(\sqrt{-1})$$ Weight $2$ Level norm $1225$ Level $$\left(35\right)$$ Dimension $1$ CM no Base change yes Sign $+1$ Analytic rank $$0$$

Related objects

Base field: $$\Q(\sqrt{-1})$$

Generator $$i$$, with minimal polynomial $$x^2 + 1$$; class number $$1$$.

Form

 Weight: 2 Level: 1225.2 = $$\left(35\right)$$ Level norm: 1225 Dimension: 1 CM: no Base change: yes 35.2.a.a , 560.2.a.b Newspace: 2.0.4.1-1225.2 (dimension 3) Sign of functional equation: $+1$ Analytic rank: $$0$$ L-ratio: 1

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$$5$$ 5.1 = ($$-i - 2$$) $$1$$
$$5$$ 5.2 = ($$2 i + 1$$) $$1$$
$$49$$ 49.1 = ($$7$$) $$-1$$

Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
$$2$$ 2.1 = ($$i + 1$$) $$0$$
$$9$$ 9.1 = ($$3$$) $$-5$$
$$13$$ 13.1 = ($$-3 i - 2$$) $$5$$
$$13$$ 13.2 = ($$2 i + 3$$) $$5$$
$$17$$ 17.1 = ($$i + 4$$) $$3$$
$$17$$ 17.2 = ($$i - 4$$) $$3$$
$$29$$ 29.1 = ($$-2 i + 5$$) $$3$$
$$29$$ 29.2 = ($$2 i + 5$$) $$3$$
$$37$$ 37.1 = ($$i + 6$$) $$2$$
$$37$$ 37.2 = ($$i - 6$$) $$2$$
$$41$$ 41.1 = ($$-5 i - 4$$) $$-12$$
$$41$$ 41.2 = ($$4 i + 5$$) $$-12$$
$$53$$ 53.1 = ($$-2 i + 7$$) $$12$$
$$53$$ 53.2 = ($$2 i + 7$$) $$12$$
$$61$$ 61.1 = ($$-6 i - 5$$) $$8$$
$$61$$ 61.2 = ($$5 i + 6$$) $$8$$
$$73$$ 73.1 = ($$-3 i - 8$$) $$2$$
$$73$$ 73.2 = ($$3 i - 8$$) $$2$$
$$89$$ 89.1 = ($$-5 i + 8$$) $$-12$$
$$89$$ 89.2 = ($$-8 i + 5$$) $$-12$$
 Display number of eigenvalues