""" This code can be loaded, or copied and paste using cpaste, into Sage. It will load the data associated to the BMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data (if known). """ P = PolynomialRing(QQ, "x") x = P.gen() g = P([1, -1, 1]) F = NumberField(g, "a") a = F.gen() ZF = F.ring_of_integers() NN = ZF.ideal((48, 16*a + 16)) primes_array = [ (-2*a+1,),(2,),(-3*a+1,),(3*a-2,),(-4*a+1,),(4*a-3,),(-5*a+3,),(-5*a+2,),(5,),(-6*a+1,),(6*a-5,),(-7*a+4,),(-7*a+3,),(-7*a+1,),(7*a-6,),(-9*a+5,),(-9*a+4,),(9*a-7,),(9*a-2,),(-9*a+1,),(9*a-8,),(10*a-7,),(10*a-3,),(-11*a+3,),(-11*a+8,),(11*a-9,),(11*a-2,),(12*a-5,),(-12*a+7,),(11,),(-13*a+7,),(-13*a+6,),(13*a-10,),(13*a-3,),(-14*a+5,),(-14*a+9,),(-13*a+1,),(13*a-12,),(-14*a+3,),(-14*a+11,),(-15*a+4,),(-15*a+11,),(16*a-7,),(-16*a+9,),(15*a-13,),(15*a-2,),(-15*a+1,),(15*a-14,),(-17*a+6,),(-17*a+11,),(-17*a+5,),(17*a-12,),(-16*a+1,),(16*a-15,),(-19*a+10,),(-19*a+9,),(19*a-12,),(-19*a+7,),(19*a-13,),(19*a-6,),(17,),(-18*a+1,),(18*a-17,),(19*a-16,),(19*a-3,),(-21*a+11,),(-21*a+10,),(21*a-8,),(-21*a+13,),(-20*a+3,),(-20*a+17,),(22*a-9,),(-22*a+13,),(21*a-17,),(21*a-4,),(22*a-15,),(22*a-7,),(-23*a+12,),(-23*a+11,),(-23*a+8,),(-23*a+15,),(-21*a+1,),(21*a-20,),(24*a-11,),(-24*a+13,),(-23*a+18,),(23*a-5,),(-24*a+7,),(24*a-17,),(-22*a+1,),(22*a-21,),(23*a-21,),(23*a-2,),(-25*a+18,),(25*a-7,),(-26*a+9,),(-26*a+17,),(23,),(25*a-21,),(25*a-4,),(-27*a+14,),(-27*a+13,),(26*a-21,),(26*a-5,),(-27*a+19,),(27*a-8,),(-25*a+1,),(25*a-24,),(-26*a+3,),(-26*a+23,),(28*a-19,),(28*a-9,),(-27*a+5,),(27*a-22,),(-29*a+15,),(-29*a+14,),(29*a-11,),(-29*a+18,),(-29*a+9,),(29*a-20,),(29*a-8,),(-29*a+21,),(30*a-11,),(-30*a+19,),(28*a-25,),(28*a-3,),(31*a-13,),(31*a-18,),(-31*a+12,),(-31*a+19,),(-30*a+7,),(30*a-23,),(31*a-21,),(31*a-10,),(-28*a+1,),(28*a-27,),(32*a-15,),(-32*a+17,),(29*a-27,),(29*a-2,),(31*a-25,),(31*a-6,),(33*a-19,),(-33*a+14,),(33*a-20,),(-33*a+13,),(29,),(-31*a+4,),(-31*a+27,),(-33*a+10,),(33*a-23,),(31*a-28,),(31*a-3,),(34*a-21,),(34*a-13,),(33*a-26,),(-33*a+7,),(-35*a+18,),(-35*a+17,),(-32*a+3,),(-32*a+29,),(-34*a+7,),(-34*a+27,),(-35*a+9,),(-35*a+26,),(36*a-23,),(-36*a+13,),(-35*a+27,),(35*a-8,),(-36*a+25,),(36*a-11,),(37*a-16,),(-37*a+21,),(37*a-15,),(-37*a+22,),(-35*a+6,),(-35*a+29,),(34*a-31,),(34*a-3,),(37*a-25,),(37*a-12,),(38*a-17,),(-38*a+21,),(36*a-29,),(36*a-7,),(37*a-28,),(37*a-9,),(-34*a+1,),(34*a-33,),(-35*a+3,),(-35*a+32,),(-39*a+23,),(-39*a+16,),(39*a-14,),(-39*a+25,),(40*a-19,),(-40*a+21,),(-39*a+28,),(39*a-11,),(-39*a+10,),(-39*a+29,),(37*a-33,),(37*a-4,),(40*a-27,),(40*a-13,),(-38*a+33,),(38*a-5,),(41*a-15,),(-41*a+26,),(-39*a+32,),(39*a-7,),(-41*a+14,),(-41*a+27,),(-40*a+9,),(40*a-31,),(42*a-23,),(-42*a+19,),(-39*a+4,),(-39*a+35,),(43*a-18,),(43*a-25,),(42*a-31,),(-42*a+11,),(43*a-28,),(-43*a+15,),(39*a-37,),(39*a-2,),(44*a-21,),(-44*a+23,),(-43*a+13,),(43*a-30,),(-41*a+6,),(-41*a+35,),(-39*a+1,),(39*a-38,),(40*a-37,),(40*a-3,),(-45*a+19,),(-45*a+26,),(43*a-34,),(-43*a+9,),(45*a-17,),(-45*a+28,),(-41*a+3,),(-41*a+38,),(-42*a+5,),(42*a-37,),(43*a-36,),(43*a-7,),(-45*a+13,),(45*a-32,),(-44*a+9,),(-44*a+35,),(43*a-37,),(43*a-6,),(-47*a+24,),(-47*a+23,),(47*a-21,),(-47*a+26,),(47*a-27,),(-47*a+20,),(41,),(-43*a+4,),(-43*a+39,),(47*a-30,),(-47*a+17,),(-42*a+1,),(42*a-41,),(-44*a+5,),(-44*a+39,),(-47*a+33,),(47*a-14,),(48*a-29,),(-48*a+19,),(-45*a+7,),(45*a-38,),(48*a-17,),(-48*a+31,),(46*a-37,),(46*a-9,),(-47*a+12,),(-47*a+35,),(-49*a+25,),(-49*a+24,),(49*a-30,),(49*a-19,),(45*a-41,),(45*a-4,),(-47*a+9,),(47*a-38,),(49*a-33,),(49*a-16,),(50*a-27,),(-50*a+23,),(49*a-36,),(-49*a+13,),(-51*a+26,),(-51*a+25,),(46*a-43,),(46*a-3,),(51*a-32,),(-51*a+19,),(-47*a+5,),(47*a-42,),(-49*a+10,),(-49*a+39,),(-48*a+7,),(-48*a+41,),(52*a-25,),(-52*a+27,),(52*a-21,),(-52*a+31,),(51*a-14,),(-51*a+37,),(-48*a+43,),(48*a-5,),(53*a-29,),(-53*a+24,),(-50*a+41,),(50*a-9,),(53*a-32,),(-53*a+21,),(49*a-43,),(49*a-6,),(51*a-11,),(-51*a+40,),(-53*a+18,),(-53*a+35,),(54*a-31,),(-54*a+23,),(47,),(49*a-45,),(49*a-4,),(-53*a+38,),(53*a-15,),(54*a-35,),(-54*a+19,),(-55*a+28,),(-55*a+27,),(-55*a+31,),(-55*a+24,),(-54*a+37,),(54*a-17,),(-51*a+7,),(51*a-44,),(55*a-21,),(55*a-34,),(55*a-36,),(-55*a+19,),(53*a-42,),(-53*a+11,),(51*a-46,),(51*a-5,),(-56*a+33,),(-56*a+23,),(-54*a+13,),(54*a-41,),(-52*a+7,),(52*a-45,),(-57*a+29,),(-57*a+28,),(57*a-23,),(-57*a+34,),(56*a-39,),(56*a-17,),(51*a-49,),(-51*a+2,),(56*a-15,),(-56*a+41,),(58*a-25,),(-58*a+33,),(-51*a+1,),(51*a-50,),(52*a-49,),(52*a-3,),(57*a-16,),(57*a-41,),(-59*a+32,),(-59*a+27,),(57*a-43,),(57*a-14,),(-53*a+3,),(-53*a+50,),(-54*a+5,),(-54*a+49,),(-57*a+13,),(-57*a+44,),(59*a-38,),(-59*a+21,),(-55*a+7,),(-55*a+48,),(53*a-51,),(-53*a+2,),(-56*a+9,),(56*a-47,),(58*a-43,),(-58*a+15,),(55*a-49,),(55*a-6,),(60*a-37,),(60*a-23,),(-59*a+17,),(59*a-42,),(-61*a+31,),(-61*a+30,),(61*a-28,),(61*a-33,),(61*a-34,),(-61*a+27,),(53,),(-61*a+24,),(-61*a+37,),(-59*a+45,),(59*a-14,),(57*a-49,),(57*a-8,),(62*a-29,),(-62*a+33,),(-59*a+12,),(-59*a+47,),(-59*a+48,),(59*a-11,),(-55*a+1,),(55*a-54,),(61*a-45,),(-61*a+16,),(63*a-38,),(-63*a+25,),(57*a-53,),(57*a-4,),(63*a-23,),(-63*a+40,),(-60*a+11,),(60*a-49,),(63*a-41,),(-63*a+22,),(62*a-17,),(-62*a+45,),(-63*a+43,),(63*a-20,),(64*a-39,),(64*a-25,),(-59*a+6,),(-59*a+53,),(-65*a+33,),(-65*a+32,),(65*a-29,),(-65*a+36,),(-63*a+17,),(-63*a+46,),(-63*a+16,),(-63*a+47,),(-60*a+53,),(60*a-7,),(61*a-52,),(-61*a+9,),(65*a-23,),(-65*a+42,),(66*a-35,),(-66*a+31,),(-65*a+21,),(65*a-44,),(-58*a+1,),(58*a-57,),(-59*a+3,),(-59*a+56,),(63*a-50,),(-63*a+13,),(-66*a+41,),(-66*a+25,),(61*a-54,),(-61*a+7,),(-64*a+49,),(64*a-15,),(67*a-31,),(-67*a+36,),(61*a-55,),(61*a-6,),(-64*a+13,),(-64*a+51,),(67*a-24,),(-67*a+43,),(-66*a+19,),(66*a-47,),(68*a-33,),(-68*a+35,),(59,),(67*a-45,),(67*a-22,),(65*a-14,),(-65*a+51,),(68*a-41,),(-68*a+27,),(-63*a+8,),(-63*a+55,),(-60*a+1,),(60*a-59,),(61*a-58,),(61*a-3,),(-62*a+5,),(62*a-57,),(-69*a+35,),(-69*a+34,),(-69*a+38,),(-69*a+31,),(67*a-49,),(67*a-18,),(-69*a+41,),(-69*a+28,),(-65*a+11,),(-65*a+54,),(-68*a+21,),(68*a-47,),(69*a-26,),(-69*a+43,),(-67*a+16,),(67*a-51,),(70*a-39,),(-70*a+31,),(64*a-57,),(64*a-7,),(-67*a+15,),(67*a-52,),(-69*a+22,),(69*a-47,),(-63*a+4,),(-63*a+59,),(-70*a+27,),(-70*a+43,),(65*a-57,),(65*a-8,),(71*a-32,),(71*a-39,),(-71*a+42,),(-71*a+29,),(63*a-61,),(-63*a+2,),(-71*a+44,),(-71*a+27,),(69*a-52,),(69*a-17,),(72*a-35,),(-72*a+37,),(-63*a+1,),(63*a-62,),(67*a-57,),(-67*a+10,),(70*a-51,),(-70*a+19,),(-66*a+7,),(66*a-59,),(-67*a+9,),(67*a-58,),(73*a-39,),(-73*a+34,),(71*a-20,),(71*a-51,),(-73*a+31,),(-73*a+42,),(66*a-61,),(66*a-5,),(-72*a+49,),(72*a-23,),(-68*a+59,),(68*a-9,),(65*a-63,),(-65*a+2,),(74*a-39,),(-74*a+35,),(73*a-48,),(-73*a+25,),(73*a-49,),(73*a-24,),(-70*a+13,),(-70*a+57,),(72*a-19,),(-72*a+53,),(71*a-15,),(-71*a+56,),(-75*a+38,),(-75*a+37,),(75*a-41,),(-75*a+34,),(71*a-57,),(71*a-14,),(75*a-44,),(-75*a+31,),(69*a-8,),(-69*a+61,),(67*a-64,),(67*a-3,),(-69*a+7,),(-69*a+62,),(73*a-55,),(73*a-18,),(-76*a+43,),(-76*a+33,),(-74*a+53,),(74*a-21,),(-67*a+1,),(67*a-66,),(-69*a+5,),(-69*a+64,),(-77*a+39,),(-77*a+38,),(-71*a+9,),(-71*a+62,),(-74*a+57,),(74*a-17,),(-72*a+61,),(72*a-11,),(-77*a+30,),(-77*a+47,),(-73*a+60,),(-73*a+13,),(-75*a+19,),(-75*a+56,),(78*a-37,),(-78*a+41,),(-74*a+15,),(-74*a+59,),(73*a-61,),(73*a-12,),(-77*a+26,),(-77*a+51,),(76*a-21,),(76*a-55,),(75*a-58,),(75*a-17,),(-71*a+6,),(-71*a+65,),(-77*a+53,),(77*a-24,),(-78*a+29,),(-78*a+49,),(79*a-33,),(79*a-46,),(-72*a+7,),(72*a-65,),(-78*a+25,),(78*a-53,),(74*a-11,),(-74*a+63,),(77*a-20,),(-77*a+57,),(80*a-39,),(-80*a+41,),(79*a-51,),(79*a-28,),(-70*a+1,),(70*a-69,),(76*a-61,),(76*a-15,),(71*a-69,),(-71*a+2,),(-77*a+60,),(77*a-17,),(-81*a+44,),(-81*a+37,),(-81*a+46,),(-81*a+35,),(76*a-63,),(-76*a+13,),(-80*a+27,),(-80*a+53,),(79*a-22,),(79*a-57,),(-81*a+32,),(-81*a+49,),(-77*a+15,),(77*a-62,),(-81*a+31,),(81*a-50,),(79*a-58,),(-79*a+21,),(71,),(82*a-45,),(82*a-37,),(81*a-53,),(-81*a+28,),(-79*a+19,),(79*a-60,),(82*a-33,),(-82*a+49,),(-72*a+1,),(72*a-71,),(73*a-70,),(73*a-3,),(-83*a+42,),(-83*a+41,),(-83*a+45,),(-83*a+38,),(83*a-36,),(83*a-47,),(-83*a+35,),(-83*a+48,),(-81*a+58,),(81*a-23,),(-79*a+16,),(-79*a+63,),(-79*a+64,),(79*a-15,),(83*a-54,),(-83*a+29,),(78*a-67,),(78*a-11,),(-83*a+26,),(83*a-57,),(-84*a+31,),(-84*a+53,),(-85*a+43,),(-85*a+42,),(85*a-39,),(85*a-46,),(79*a-12,),(79*a-67,),(82*a-61,),(-82*a+21,),(85*a-37,),(85*a-48,),(75*a-73,),(-75*a+2,),(-77*a+6,),(-77*a+71,),(81*a-65,),(81*a-16,),(-82*a+19,),(82*a-63,),(76*a-73,),(76*a-3,),(86*a-47,),(-86*a+39,),(-77*a+5,),(77*a-72,),(84*a-25,),(84*a-59,),(81*a-14,),(-81*a+67,),(-80*a+69,),(80*a-11,),(86*a-53,),(86*a-33,),(84*a-23,),(-84*a+61,),(-85*a+58,),(85*a-27,),(87*a-41,),(-87*a+46,),(-87*a+40,),(-87*a+47,),(-76*a+1,),(76*a-75,),(-79*a+7,),(79*a-72,),(-86*a+29,),(-86*a+57,),(87*a-35,),(-87*a+52,),(77*a-75,),(-77*a+2,),(-81*a+70,),(81*a-11,),(-84*a+19,),(-84*a+65,),(-82*a+13,),(82*a-69,),(85*a-63,),(-85*a+22,),(81*a-71,),(81*a-10,),(88*a-51,),(88*a-37,),(-83*a+68,),(83*a-15,),(85*a-64,),(85*a-21,),(-83*a+14,),(-83*a+69,),(89*a-48,),(-89*a+41,),(-78*a+1,),(78*a-77,),(-83*a+12,),(-83*a+71,),(-81*a+74,),(81*a-7,),(82*a-73,),(82*a-9,),(-89*a+33,),(-89*a+56,),(90*a-47,),(-90*a+43,),(90*a-41,),(-90*a+49,),(-85*a+16,),(85*a-69,),(-84*a+13,),(84*a-71,),(-89*a+30,),(-89*a+59,),(-79*a+1,),(79*a-78,),(82*a-75,),(-82*a+7,),(-91*a+46,),(-91*a+45,),(91*a-43,),(91*a-48,),(-87*a+67,),(87*a-20,),(-89*a+27,),(-89*a+62,),(90*a-59,),(-90*a+31,),(-87*a+68,),(-87*a+19,),(-91*a+36,),(-91*a+55,),(-88*a+21,),(88*a-67,),(91*a-57,),(-91*a+34,),(-89*a+24,),(-89*a+65,),(91*a-58,),(-91*a+33,),(92*a-41,),(-92*a+51,),(-87*a+17,),(87*a-70,),(92*a-53,),(92*a-39,),(91*a-60,),(-91*a+31,),(-83*a+6,),(-83*a+77,),(91*a-61,),(91*a-30,),(-92*a+57,),(-92*a+35,),(-81*a+1,),(81*a-80,),(93*a-40,),(-93*a+53,),(-87*a+73,),(87*a-14,),(91*a-27,),(91*a-64,),(86*a-75,),(-86*a+11,),(93*a-56,),(-93*a+37,),(87*a-74,),(-87*a+13,),(93*a-35,),(-93*a+58,),(-92*a+63,),(92*a-29,),(-84*a+5,),(-84*a+79,),(91*a-24,),(-91*a+67,),(85*a-78,),(85*a-7,),(94*a-39,),(-94*a+55,),(-86*a+77,),(86*a-9,),(92*a-65,),(92*a-27,),(-87*a+11,),(-87*a+76,),(-91*a+22,),(91*a-69,),(-95*a+51,),(-95*a+44,),(-93*a+64,),(93*a-29,),(94*a-61,),(94*a-33,),(-93*a+28,),(93*a-65,),(95*a-39,),(-95*a+56,),(-89*a+75,),(89*a-14,),(94*a-63,),(94*a-31,),(83,),(-93*a+67,),(-93*a+26,),(93*a-68,),(93*a-25,),(96*a-55,),(-96*a+41,),(91*a-73,),(91*a-18,),(86*a-81,),(86*a-5,),(89*a-77,),(89*a-12,),(-94*a+27,),(94*a-67,),(93*a-70,),(93*a-23,),(-97*a+49,),(-97*a+48,),(-97*a+52,),(-97*a+45,),(97*a-40,),(97*a-57,),(-87*a+5,),(87*a-82,),(-88*a+81,),(88*a-7,),(98*a-51,),(-98*a+47,),(97*a-61,),(97*a-36,),(98*a-53,),(98*a-45,),(-87*a+4,),(-87*a+83,),(93*a-74,),(-93*a+19,),(97*a-64,),(-97*a+33,),(-92*a+15,),(92*a-77,),(-95*a+24,),(-95*a+71,),(91*a-12,),(91*a-79,),(-99*a+50,),(-99*a+49,),(-95*a+72,),(95*a-23,),(-99*a+56,),(-99*a+43,),(-94*a+19,),(-94*a+75,),(93*a-77,),(-93*a+16,),(-98*a+33,),(-98*a+65,),(97*a-69,),(97*a-28,),(88*a-85,),(88*a-3,),(99*a-62,),(-99*a+37,),(-96*a+73,),(96*a-23,),(100*a-43,),(-100*a+57,),(99*a-35,),(-99*a+64,),(-92*a+81,),(92*a-11,),(99*a-65,),(-99*a+34,),(-98*a+69,),(-98*a+29,),(100*a-61,),(-100*a+39,),(-95*a+18,),(-95*a+77,),(100*a-63,),(100*a-37,),(101*a-45,),(-101*a+56,),(-98*a+71,),(-98*a+27,),(95*a-17,),(95*a-78,),(-92*a+9,),(92*a-83,),(-101*a+59,),(-101*a+42,),(-101*a+60,),(-101*a+41,),(96*a-77,),(96*a-19,),(97*a-75,),(97*a-22,),(100*a-67,),(100*a-33,),(-102*a+43,),(-102*a+59,),(96*a-17,),(-96*a+79,),(-98*a+75,),(98*a-23,),(89,),(-97*a+19,),(97*a-78,),(-91*a+4,),(-91*a+87,),(-99*a+25,),(-99*a+74,)] primes = [ZF.ideal(I) for I in primes_array] heckePol = x K = QQ e = 1 hecke_eigenvalues_array = [1, 0, 0, 0, -2, -2, 4, 4, -6, -8, -8, 6, 6, -4, -4, -2, -2, 4, 4, 10, 10, 8, 8, 2, 2, -16, -16, -2, -2, -6, 8, 8, 12, 12, 16, 16, -2, -2, -12, -12, 6, 6, 2, 2, -16, -16, 20, 20, 8, 8, 22, 22, 18, 18, -8, -8, -26, -26, 28, 28, -30, -12, -12, -6, -6, -20, -20, 18, 18, 30, 30, 8, 8, -10, -10, -20, -20, 14, 14, -6, -6, -10, -10, -14, -14, 0, 0, -22, -22, -8, -8, 32, 32, -12, -12, -4, -4, 18, -18, -18, -44, -44, -36, -36, 2, 2, -38, -38, 40, 40, 38, 38, 44, 44, -16, -16, -12, -12, -10, -10, 34, 34, 4, 4, -10, -10, -48, -48, 14, 14, 4, 4, -24, -24, 38, 38, 2, 2, -28, -28, -4, -4, 16, 16, -50, -50, -22, -10, -10, 12, 12, -18, -18, 4, 4, -4, -4, -16, -16, 42, 42, 16, 16, -40, -40, -26, -26, -46, -46, 30, 30, 10, 10, 40, 40, 28, 28, -16, -16, 14, 14, -8, -8, 54, 54, -50, -50, 36, 36, 10, 10, -62, -62, 20, 20, -14, -14, 46, 46, -8, -8, 38, 38, 34, 34, -56, -56, -4, -4, 18, 18, 32, 32, -22, -22, 40, 40, -10, -10, 0, 0, -8, -8, -10, -10, -48, -48, -66, -66, -28, -28, 40, 40, 60, 60, 50, 50, 28, 28, -64, -64, 46, 46, 56, 56, -52, -52, 78, 78, 10, 10, 38, 38, -4, -4, 58, 58, 8, 8, 22, 22, -46, -66, -66, 4, 4, 76, 76, -50, -50, 52, 52, -38, -38, -40, -40, -14, -14, 64, 64, 62, 62, 10, 10, -16, -16, -58, -58, 28, 28, 50, 50, 16, 16, -18, -18, 40, 40, -44, -44, 74, 74, 40, 40, -84, -84, 2, 2, -34, -34, -58, -58, 20, 20, -22, -22, 2, 2, 20, 20, -38, -38, 56, 56, 18, 18, -12, -12, -84, -84, -94, -2, -2, -24, -24, 12, 12, -2, -2, -22, -22, -72, -72, 22, 22, 48, 48, -42, -42, -52, -52, 84, 84, -22, -22, 24, 24, -10, -10, 38, 38, 68, 68, 42, 42, 32, 32, -38, -38, -36, -36, -16, -16, -82, -82, 34, 34, 26, 26, -48, -48, 20, 20, -24, -24, -58, -58, -4, -4, -62, -62, -60, -60, 58, 58, -24, -24, 28, 28, 62, 62, -40, -40, -64, -64, -2, -2, 100, 100, -102, -46, -46, -76, -76, 42, 42, -32, -32, -58, -58, 10, 10, 12, 12, -38, -38, 28, 28, 62, 62, -22, -22, -10, -10, -20, -20, 80, 80, 70, 70, -14, -14, 28, 28, 34, 34, -66, -66, 52, 52, 82, 82, 14, 14, 38, 38, -20, -20, 32, 32, 70, 70, -4, -4, -14, -14, -64, -64, 4, 4, -104, -104, -30, -30, -66, -66, 40, 40, -54, -54, 34, 34, 16, 16, -98, -98, -102, -52, -52, 0, 0, -98, -98, 74, 74, -74, -74, -36, -36, 0, 0, -60, -60, 56, 56, 64, 64, 30, 30, 24, 24, 38, 38, 28, 28, -38, -38, 92, 92, -14, -14, -2, -2, 24, 24, 70, 70, -100, -100, 58, 58, -14, -14, -56, -56, 16, 16, 94, 94, 102, 102, 114, 114, 68, 68, 24, 24, 60, 60, 64, 64, -88, -88, 100, 100, -26, -26, -52, -52, 100, 100, 90, 90, -50, -50, 4, 4, 8, 8, 34, 34, -70, -70, -104, -104, 18, 18, 42, 42, -36, -36, -112, -112, 52, 52, 102, 102, -14, -14, -54, -54, -80, -80, -12, -12, -90, -90, 12, 12, -16, -16, 90, 90, -56, -56, -92, -92, 108, 108, -30, -30, -16, -16, 70, 70, 18, 18, 112, 112, 40, 40, 118, 118, 60, 60, 46, 46, 56, 56, 28, 28, 50, 50, 64, 64, -44, -44, -102, -102, -128, -128, -88, -88, -74, -74, 66, 66, -50, -50, 72, 72, 78, 78, -96, -96, -98, -98, 86, 86, -128, -128, -82, -82, -86, -86, -84, -84, 2, 2, 96, 96, 116, 116, 24, 24, -78, 20, 20, -74, -74, -34, -34, -76, -76, -6, -6, 8, 8, -104, -104, -100, -100, 14, 14, -38, -38, 28, 28, -14, -14, 98, 98, -84, -84, 52, 52, -8, -8, 118, 118, 76, 76, 0, 0, -82, -82, 20, 20, 74, 74, 64, 64, -104, -104, -46, -46, 16, 16, 38, 38, -84, -84, -62, -62, 110, 110, -112, -112, -22, -22, 56, 56, -10, -10, 28, 28, 84, 84, -6, -6, -10, -10, -86, -86, 56, 56, -90, -90, 100, 100, 88, 88, 14, 14, -76, -76, -56, -56, 44, 44, 66, 66, 126, 126, -6, -6, -12, -12, 98, 98, -64, -64, 86, 86, 44, 44, -76, -76, -6, -6, -104, -104, -100, -100, 106, 106, -74, -74, 32, 32, 52, 52, -128, -128, 116, 116, 106, 106, 118, 118, 80, 80, -120, -120, 70, 70, -114, -114, -62, -62, 96, 96, 26, 26, 8, 8, -154, -154, -36, -36, 30, 30, 70, 70, 124, 124, -28, -28, 54, 54, 82, 82, -62, -62, 52, 52, 154, 154, 108, 108, 82, 82, 40, 40, 124, 124, 14, 14, 86, 86, 50, 50, -80, -80, -124, -124, -8, -8, 86, 86, 30, 30, 140, 140, 14, 14, -118, -118, 16, 16, 46, 46, -70, -70, -64, -64, -124, -124, -150, -68, -68, 54, 54, -110, -110, -128, -128, 88, 88, -122, -122, 4, 4, 136, 136, -110, -110, 46, 46, -38, -38, -48, -48, 10, 10, -32, -32, -50, -50, 100, 100, -138, -138, 12, 12, -158, -158, -82, -82, 154, 154, -74, -74, 80, 80, -54, -54, -94, -94, 68, 68, 122, 122, -28, -28, 70, 70, 2, 2, -28, -28, 50, 50, 94, 94, -22, -22, 70, 70, 80, 80, -92, -92, 22, 22, 96, 96, 70, 70, 2, 2, 32, 32, 116, 116, -74, -74, 76, 76, -82, -82, 10, 10, 24, 24, -114, -114, -164, -164, 34, 34, -96, -96, -142, 64, 64, 62, 62, -104, -104] hecke_eigenvalues = {} for i in range(len(hecke_eigenvalues_array)): hecke_eigenvalues[primes[i]] = hecke_eigenvalues_array[i] AL_eigenvalues = {} AL_eigenvalues[ZF.ideal((2,))] = -1 AL_eigenvalues[ZF.ideal((-2*a + 1,))] = 1 # EXAMPLE: # pp = ZF.ideal(2).factor()[0][0] # hecke_eigenvalues[pp]