Base Field: \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \(x^2 - x + 1\); class number \(1\).
Form
Weight | 2 | |
Level | 196.2 = \( \left(14\right) \) | |
Label | 2.0.3.1-196.2-a | |
Dimension: | 1 | |
CM: | no | |
Base change: | yes | 126.2.a.b , 14.2.a.a |
Newspace: | 2.0.3.1-196.2 | (dimension 1) |
Sign of functional equation: | +1 | |
Analytic rank: | \(0\) | |
L-ratio: | 1/6 |
Hecke eigenvalues
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
\( 3 \) | 3.1 = (\( -2 a + 1 \)) | \( -2 \) |
\( 4 \) | 4.1 = (\( 2 \)) | \( 1 \) |
\( 7 \) | 7.1 = (\( -3 a + 1 \)) | \( 1 \) |
\( 7 \) | 7.2 = (\( 3 a - 2 \)) | \( 1 \) |
\( 13 \) | 13.1 = (\( -4 a + 1 \)) | \( -4 \) |
\( 13 \) | 13.2 = (\( 4 a - 3 \)) | \( -4 \) |
\( 19 \) | 19.1 = (\( -5 a + 3 \)) | \( 2 \) |
\( 19 \) | 19.2 = (\( -5 a + 2 \)) | \( 2 \) |
\( 25 \) | 25.1 = (\( 5 \)) | \( -10 \) |
\( 31 \) | 31.1 = (\( -6 a + 1 \)) | \( -4 \) |
\( 31 \) | 31.2 = (\( 6 a - 5 \)) | \( -4 \) |
\( 37 \) | 37.1 = (\( -7 a + 4 \)) | \( 2 \) |
\( 37 \) | 37.2 = (\( -7 a + 3 \)) | \( 2 \) |
\( 43 \) | 43.1 = (\( -7 a + 1 \)) | \( 8 \) |
\( 43 \) | 43.2 = (\( 7 a - 6 \)) | \( 8 \) |
\( 61 \) | 61.1 = (\( -9 a + 5 \)) | \( 8 \) |
\( 61 \) | 61.2 = (\( -9 a + 4 \)) | \( 8 \) |
\( 67 \) | 67.1 = (\( 9 a - 7 \)) | \( -4 \) |
\( 67 \) | 67.2 = (\( 9 a - 2 \)) | \( -4 \) |
\( 73 \) | 73.1 = (\( -9 a + 1 \)) | \( 2 \) |
\( 73 \) | 73.2 = (\( 9 a - 8 \)) | \( 2 \) |
\( 79 \) | 79.1 = (\( 10 a - 7 \)) | \( 8 \) |
\( 79 \) | 79.2 = (\( 10 a - 3 \)) | \( 8 \) |
\( 97 \) | 97.1 = (\( -11 a + 3 \)) | \( -10 \) |
\( 97 \) | 97.2 = (\( -11 a + 8 \)) | \( -10 \) |
\( 103 \) | 103.1 = (\( 11 a - 9 \)) | \( -4 \) |
\( 103 \) | 103.2 = (\( 11 a - 2 \)) | \( -4 \) |
\( 109 \) | 109.1 = (\( 12 a - 5 \)) | \( 2 \) |
\( 109 \) | 109.2 = (\( -12 a + 7 \)) | \( 2 \) |
\( 121 \) | 121.1 = (\( 11 \)) | \( -22 \) |
\( 127 \) | 127.1 = (\( -13 a + 7 \)) | \( -16 \) |
\( 127 \) | 127.2 = (\( -13 a + 6 \)) | \( -16 \) |
\( 139 \) | 139.1 = (\( 13 a - 10 \)) | \( 14 \) |
\( 139 \) | 139.2 = (\( 13 a - 3 \)) | \( 14 \) |
\( 151 \) | 151.1 = (\( -14 a + 5 \)) | \( 8 \) |
\( 151 \) | 151.2 = (\( -14 a + 9 \)) | \( 8 \) |
\( 157 \) | 157.1 = (\( -13 a + 1 \)) | \( -4 \) |
\( 157 \) | 157.2 = (\( 13 a - 12 \)) | \( -4 \) |
\( 163 \) | 163.1 = (\( -14 a + 3 \)) | \( -16 \) |
\( 163 \) | 163.2 = (\( -14 a + 11 \)) | \( -16 \) |
\( 181 \) | 181.1 = (\( -15 a + 4 \)) | \( 20 \) |
\( 181 \) | 181.2 = (\( -15 a + 11 \)) | \( 20 \) |
\( 193 \) | 193.1 = (\( 16 a - 7 \)) | \( 14 \) |
\( 193 \) | 193.2 = (\( -16 a + 9 \)) | \( 14 \) |
\( 199 \) | 199.1 = (\( 15 a - 13 \)) | \( 20 \) |
\( 199 \) | 199.2 = (\( 15 a - 2 \)) | \( 20 \) |
\( 211 \) | 211.1 = (\( -15 a + 1 \)) | \( -4 \) |
\( 211 \) | 211.2 = (\( 15 a - 14 \)) | \( -4 \) |
\( 223 \) | 223.1 = (\( -17 a + 6 \)) | \( 8 \) |
\( 223 \) | 223.2 = (\( -17 a + 11 \)) | \( 8 \) |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
\( 4 \) | 4.1 = (\( 2 \)) | \( -1 \) |
\( 7 \) | 7.1 = (\( -3 a + 1 \)) | \( -1 \) |
\( 7 \) | 7.2 = (\( 3 a - 2 \)) | \( -1 \) |