Base field: \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \(x^2 - x + 1\); class number \(1\).
Form
Weight: | 2 | |
Level: | 108300.2 = \( \left(-380 a + 190\right) \) | |
Level norm: | 108300 | |
Dimension: | 1 | |
CM: | no | |
Base change: | yes | 570.2.a.j , 1710.2.a.k |
Newspace: | 2.0.3.1-108300.2 (dimension 15) | |
Sign of functional equation: | $+1$ | |
Analytic rank: | \(0\) | |
L-ratio: | 14 |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
\( 4 \) | 4.1 = (\( 2 \)) | \( -1 \) |
\( 3 \) | 3.1 = (\( -2 a + 1 \)) | \( -1 \) |
\( 25 \) | 25.1 = (\( 5 \)) | \( -1 \) |
\( 19 \) | 19.1 = (\( -5 a + 3 \)) | \( -1 \) |
\( 19 \) | 19.2 = (\( -5 a + 2 \)) | \( -1 \) |
Hecke eigenvalues
The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.
$N(\mathfrak{p})$ | $\mathfrak{p}$ | $a_{\mathfrak{p}}$ |
---|---|---|
\( 7 \) | 7.1 = (\( -3 a + 1 \)) | \( 2 \) |
\( 7 \) | 7.2 = (\( 3 a - 2 \)) | \( 2 \) |
\( 13 \) | 13.1 = (\( -4 a + 1 \)) | \( 6 \) |
\( 13 \) | 13.2 = (\( 4 a - 3 \)) | \( 6 \) |
\( 31 \) | 31.1 = (\( -6 a + 1 \)) | \( -2 \) |
\( 31 \) | 31.2 = (\( 6 a - 5 \)) | \( -2 \) |
\( 37 \) | 37.1 = (\( -7 a + 4 \)) | \( -2 \) |
\( 37 \) | 37.2 = (\( -7 a + 3 \)) | \( -2 \) |
\( 43 \) | 43.1 = (\( -7 a + 1 \)) | \( -8 \) |
\( 43 \) | 43.2 = (\( 7 a - 6 \)) | \( -8 \) |
\( 61 \) | 61.1 = (\( -9 a + 5 \)) | \( 2 \) |
\( 61 \) | 61.2 = (\( -9 a + 4 \)) | \( 2 \) |
\( 67 \) | 67.1 = (\( 9 a - 7 \)) | \( 4 \) |
\( 67 \) | 67.2 = (\( 9 a - 2 \)) | \( 4 \) |
\( 73 \) | 73.1 = (\( -9 a + 1 \)) | \( -10 \) |
\( 73 \) | 73.2 = (\( 9 a - 8 \)) | \( -10 \) |
\( 79 \) | 79.1 = (\( 10 a - 7 \)) | \( -2 \) |
\( 79 \) | 79.2 = (\( 10 a - 3 \)) | \( -2 \) |
\( 97 \) | 97.1 = (\( -11 a + 3 \)) | \( -2 \) |
\( 97 \) | 97.2 = (\( -11 a + 8 \)) | \( -2 \) |