""" This code can be loaded, or copied and paste using cpaste, into Sage. It will load the data associated to the BMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data (if known). """ P = PolynomialRing(QQ, "x") x = P.gen() g = P([623, -1, 1]) F = NumberField(g, "a") a = F.gen() ZF = F.ring_of_integers() NN = ZF.ideal((2, 2)) primes_array = [ (2,),(5,a+1),(5,a+3),(7,a),(7,a+6),(3,),(17,a+2),(17,a+14),(19,a+6),(19,a+12),(23,a+9),(23,a+13),(31,a+9),(31,a+21),(37,a+2),(37,a+34),(41,a+12),(41,a+28),(47,a+23),(53,a+26),(59,a+19),(59,a+39),(67,a+25),(67,a+41),(73,a+32),(73,a+40)] primes = [ZF.ideal(I) for I in primes_array] heckePol = x K = QQ e = 1 hecke_eigenvalues_array = [-1, 1, -1, -4, -4, 2, -3, -3, -8, 8, -3, 3, 3, -3, -4, -4, 6, -6, -6, 4, -15, -15, 2, -2, -14, 14] hecke_eigenvalues = {} for i in range(len(hecke_eigenvalues_array)): hecke_eigenvalues[primes[i]] = hecke_eigenvalues_array[i] AL_eigenvalues = {} AL_eigenvalues[ZF.ideal((2,))] = 1 # EXAMPLE: # pp = ZF.ideal(2).factor()[0][0] # hecke_eigenvalues[pp]